JPH0516872B2 - - Google Patents

Info

Publication number
JPH0516872B2
JPH0516872B2 JP60068669A JP6866985A JPH0516872B2 JP H0516872 B2 JPH0516872 B2 JP H0516872B2 JP 60068669 A JP60068669 A JP 60068669A JP 6866985 A JP6866985 A JP 6866985A JP H0516872 B2 JPH0516872 B2 JP H0516872B2
Authority
JP
Japan
Prior art keywords
catheter
fibers
present
capd
cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60068669A
Other languages
Japanese (ja)
Other versions
JPS61228876A (en
Inventor
Kenju Kitaoka
Shozo Koshikawa
Ayanori Takabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP60068669A priority Critical patent/JPS61228876A/en
Publication of JPS61228876A publication Critical patent/JPS61228876A/en
Publication of JPH0516872B2 publication Critical patent/JPH0516872B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は持続的可動性腹膜透析等に適用する経
皮留置カテーテルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a percutaneous indwelling catheter applicable to continuous mobile peritoneal dialysis and the like.

1976年、米国ポポブイツチらにより最初の臨床
応用がなされた持続的可動性腹膜透析療法(以
下、CAPDと称する)は、血液透析HDや間欠的
腹膜透析IPDに代わる腎不全の治療法として、欧
米においては急速な普及をみせ、我が国において
も徐々に増加の傾向にある。
Continuous mobile peritoneal dialysis (hereinafter referred to as CAPD), which was first clinically applied in 1976 by Popobuitsi et al. in the United States, has become popular in Europe and the United States as a treatment for renal failure as an alternative to hemodialysis HD and intermittent peritoneal dialysis IPD. has become rapidly popular and is gradually increasing in Japan as well.

CAPDは血液透析HD或いは間欠的腹膜透析
IPDに比較し、社会復帰が容易で臨床症状もより
改善される等の利点を有する。しかしながら、
CAPDは一方では合併症も種々報告されており、
このうち最も頻度が高く重要なものは腹膜炎であ
る。
CAPD is hemodialysis HD or intermittent peritoneal dialysis
Compared to IPD, it has advantages such as easier reintegration into society and better clinical symptoms. however,
On the other hand, various complications have been reported with CAPD,
The most frequent and important of these is peritonitis.

近年、透析(灌流)液交換の際の汚染に関連す
る腹膜炎は軟質プラスチツクスバツグによる完全
閉鎖システムの開発やチタンアダプターの工夫等
により、その誘発率が著減している。
In recent years, the incidence of peritonitis related to contamination during dialysis (perfusion) fluid exchange has been significantly reduced due to the development of completely closed systems using soft plastic bags and the development of titanium adapters.

しかしながら、カテーテルに関連する腹膜炎の
発生に対してはその対策が十分でないのが現状で
ある。
However, the current situation is that there are insufficient measures against the occurrence of catheter-related peritonitis.

即ち、CAPDカテーテルとしてテンコフ
(Tenckhoff)型、ライフカス(Life Cath)型、
TWH型或いはそれらの改良品等が市販されてい
るが、それらのCAPDカテーテルは生体皮膚組織
との適合性が悪く、カテーテルと腹膜皮膚貫通部
における接合不良、固定の不十分から感染症を生
じやすく、腹膜炎を誘発する確率が高いものであ
る。最近、生体皮膚組織適合性を改善するCAPD
カテーテルとして、皮膚との接合部に多孔性のポ
リ四フツ化エチレンよりなるカフ、フランジ、カ
ラーを装着したカテーテルが提案されている。
In other words, CAPD catheters include Tenckhoff type, Life Cath type,
TWH type or improved versions thereof are commercially available, but these CAPD catheters are not compatible with living body skin tissue, and infection is likely to occur due to poor bonding and insufficient fixation between the catheter and the peritoneal skin penetration site. , which has a high probability of inducing peritonitis. Recently, CAPD to improve bio-skin tissue compatibility
As a catheter, a catheter having a cuff, flange, and collar made of porous polytetrafluoroethylene attached to the joint with the skin has been proposed.

しかしながら、前記カテーテルは生体皮膚組織
との接触面が比較的滑らかで、また開孔率が小さ
い為、生体皮膚組織の侵入生着性に劣り、更にフ
ランジが比較的大きなつば状であるため生体挿入
時の切開面積が大きくなる等の欠点を有してい
る。また、前記カテーテルにおいて、単に開孔率
を大きくした成形体を用いたのでは、材料強度が
低下し、経皮的インプラントに要求される外力に
対する耐久性が損われる。
However, since the contact surface with living body skin tissue is relatively smooth and the pore ratio is small, the above-mentioned catheter has poor penetration and engraftment of living body skin tissue, and furthermore, the flange has a relatively large brim shape, so it cannot be inserted into living body. It has disadvantages such as the incision area becomes large. Furthermore, if a molded body with a simply increased pore size is used in the catheter, the material strength will decrease and the durability against external forces required for percutaneous implants will be impaired.

従つて、実用段階で固定の不十分による感染、
炎症等の不都合を生じることなく、しかも耐久性
に優れるCAPDカテーテルは未だないのが現状で
ある。
Therefore, during the practical stage, infection due to insufficient fixation,
At present, there is currently no CAPD catheter that does not cause inconveniences such as inflammation and has excellent durability.

本発明者等は前記実情に鑑み、生体皮膚組織適
合性に優れるCAPDカテーテルの提供を目的とし
鋭意研究の結果、本発明の完成に至つた。即ち、
本発明は生体適合性プラスチツクスよりなるカテ
ーテルの皮膚貫通部の表面に、耐熱性繊維集合体
層を形成してなる経皮留置カテーテルに係る。特
開昭59−174161は生体適合性繊維層と、プラスチ
ツク層よりなる医療用生体適合性プラスチツクス
複合材を開示するが、具体的な用途に関しては何
等開示していない。
In view of the above-mentioned circumstances, the present inventors conducted intensive research aimed at providing a CAPD catheter with excellent compatibility with living skin and tissues, and as a result, completed the present invention. That is,
The present invention relates to a percutaneous indwelling catheter comprising a heat-resistant fiber aggregate layer formed on the surface of the skin-penetrating portion of the catheter made of biocompatible plastics. JP-A-59-174161 discloses a biocompatible plastic composite material for medical use consisting of a biocompatible fiber layer and a plastic layer, but does not disclose any specific uses.

本発明の特徴の1つは、前記特開昭59−174161
に開示する炭素材料或いはセラミツクス材料等の
硬質材料を、それらの繊維集合体として用いた複
合材の型でCAPD等の経皮留置カテーテルへ応用
することを可能にしたことにある。
One of the features of the present invention is the above-mentioned Japanese Patent Application Publication No. 59-174161
The object of the present invention is to make it possible to apply hard materials such as carbon materials or ceramic materials disclosed in 2003 to percutaneous indwelling catheters such as CAPD in the form of composite materials using these fiber aggregates.

また、第2の特徴は皮膚貫通部位の複合材は、
空隙(見掛けの比表面積)が大きく、又は“開放
気孔”が多く、従つて生体組織細胞の侵入を容易
とする繊維集合体層と緻密な生体適合性プラスチ
ツク成形体層とで構成されているところにある。
In addition, the second feature is that the composite material at the skin penetration site is
Places that have large voids (apparent specific surface area) or many "open pores" and therefore are composed of a fiber aggregate layer and a dense biocompatible plastic molded layer that facilitate the penetration of living tissue cells. It is in.

従つて、本発明の経皮留置カテーテルは生体皮
膚組織と強固な結合性を有するため、カテーテル
と腹膜皮膚貫通部からの感染症による腹膜炎の誘
発が問題となつているCAPDカテーテルとして特
に有用である。
Therefore, since the percutaneous indwelling catheter of the present invention has strong bonding properties with living body skin tissue, it is particularly useful as a CAPD catheter, where induction of peritonitis due to infection from the catheter and the peritoneal skin penetration site is a problem. .

以下、本発明を詳述する。 The present invention will be explained in detail below.

本発明に係る繊維集合体は繊維の一次加工品、
例えば、編組品、織物、不織布、フエルト或いは
捲き付け糸等を例示し得る。それら繊維集合体の
形態は複合材としての使用目的、使用部位等に応
じ適宜選択すれば良い。
The fiber aggregate according to the present invention is a primary processed product of fibers,
For example, braided products, woven fabrics, non-woven fabrics, felt, wound yarns, etc. can be exemplified. The form of these fiber aggregates may be appropriately selected depending on the purpose of use as a composite material, the site of use, etc.

繊維集合体は組織細胞の侵入を容易とするため
一般に20μ〜1000μの空隙又は開放気孔を有して
いることが好ましい。
Generally, the fiber aggregate preferably has voids or open pores of 20 μ to 1000 μ to facilitate the invasion of tissue cells.

繊維集合体を構成する繊維材料としては、生体
適合性耐熱繊維、例えば、炭素繊維、黒鉛繊維、
シリカ、アルミナ、ジルコニア、アパタイト等よ
りなる無機繊維或いはステンレス、チタン、ボロ
ン等よりなる金属繊維等を例示し得る。前記繊維
は単独で又は複合して用いる。
The fiber materials constituting the fiber aggregate include biocompatible heat-resistant fibers such as carbon fibers, graphite fibers,
Examples include inorganic fibers made of silica, alumina, zirconia, apatite, etc., and metal fibers made of stainless steel, titanium, boron, etc. The above fibers may be used alone or in combination.

また、繊維の形態及び太さ等は特に限定される
ものではなく、形態としては単糸、双糸、撚糸、
紡績糸、短繊維或いはウイスカー等を例示し得
る。
In addition, the form and thickness of the fibers are not particularly limited, and the forms include single thread, double thread, twisted thread, etc.
Examples include spun yarn, short fibers, whiskers, etc.

繊維材料はそのまま或いはCVD(Chemical
Vapor Deposition)法等により炭素被覆して用
いる。特に、前記無機繊維或いは金属繊維はさら
に生体適合性を向上せしめるという観点から炭素
被覆したものが好ましい。
The fiber material can be used as it is or by CVD (Chemical).
It is used after being coated with carbon using a method such as Vapor Deposition. In particular, the inorganic fibers or metal fibers are preferably coated with carbon from the viewpoint of further improving biocompatibility.

CVDは、炭素水素例えばメタン、エチレン、
プロパン、ブタン、ベンゼン、トルエン等のガス
をそのガスの分解温度以上で分解し、繊維上に炭
素被覆をするものである。その温度は600℃乃至
3000℃で好ましくは700℃乃至2500℃である。
CVD uses carbon hydrogen e.g. methane, ethylene,
Gas such as propane, butane, benzene, toluene, etc. is decomposed at a temperature higher than the decomposition temperature of the gas, and the fibers are coated with carbon. Its temperature is 600℃~
The temperature is 3000°C, preferably 700°C to 2500°C.

第1図はCVD法によつて繊維集合体上へ炭素
被覆する際の装置の1例である。図中、14は
CVD処理すべき繊維集合体である。CVD被覆は
アルゴン、水素、窒素等の不活性ガス3をキヤリ
アとして、メタン、ベンゼン等4を600〜3000℃
好ましくは700〜2500℃の温度に保持した電気炉
8の石英製、アルミナ製等の管9に導入すること
で行なわれ、通常5〜180分で終了させる。図中、
1はガストラツプ、10は石英又はアルミナ等よ
りなるボード、11は予熱部を示す。
FIG. 1 shows an example of an apparatus for coating fiber aggregates with carbon using the CVD method. In the figure, 14 is
This is a fiber aggregate to be subjected to CVD treatment. CVD coating uses inert gas 3 such as argon, hydrogen, nitrogen, etc. as a carrier and methane, benzene, etc. 4 at 600 to 3000℃.
Preferably, it is carried out by introducing it into a tube 9 made of quartz, alumina, etc. of an electric furnace 8 maintained at a temperature of 700 to 2500°C, and is usually completed in 5 to 180 minutes. In the figure,
1 is a gas trap, 10 is a board made of quartz or alumina, etc., and 11 is a preheating section.

なお、得られたCVD被覆繊維集合体を、必要
に応じ、更に不活性ガス雰囲気下、前記CVD被
覆温度より高い温度で熱処理しても良い。
Note that, if necessary, the obtained CVD-coated fiber aggregate may be further heat-treated in an inert gas atmosphere at a temperature higher than the CVD coating temperature.

CVD処理は繊維の状態で行なつてもよいが、
編組、織物、不織布、フエルト等に加工してから
行うことが好ましい。
CVD treatment may be performed in the fiber state, but
It is preferable to carry out the process after processing into braid, woven fabric, non-woven fabric, felt, etc.

本発明でいう生体適合性プラスチツクはエラス
トマーも含むもので、一般の市販の生体適合性プ
ラスチツクであればいずれのものであつてもよ
い。
The biocompatible plastic referred to in the present invention includes elastomer, and may be any general commercially available biocompatible plastic.

例えばポリ四フツ化エチレン等のフツ素系樹
脂、シリコンゴム等のシリコン樹脂、塩化ビニー
ル樹脂、塩化ビニリデン樹脂、フツ素化シリコン
ゴム、ポリエチレン、ポリプロピレン、ポリエス
テル、ポリヒドロキシエチルメタアクリレート、
ポリアクリルアミド、ポリサルフオン、ポリ−N
−ビニルピロリドン、セグメント化ポリウレタン
等のプラスチツクを例示し得る。なお、これらの
プラスチツクは後述の接着をよくするためにエツ
チング、グロー放電処理又は表面処理剤等の塗布
等により表面処理することも好ましい。
For example, fluorine resins such as polytetrafluoroethylene, silicone resins such as silicone rubber, vinyl chloride resin, vinylidene chloride resin, fluorinated silicone rubber, polyethylene, polypropylene, polyester, polyhydroxyethyl methacrylate,
Polyacrylamide, polysulfone, poly-N
- Plastics such as vinylpyrrolidone, segmented polyurethane, etc. may be exemplified. It is also preferable that these plastics be surface-treated by etching, glow discharge treatment, or coating with a surface-treating agent to improve adhesion as described below.

前記プラスチツク材料からなる本発明のカテー
テルはテンコフ型、ライフカス型、TWH型或い
はそれらの改良品等であり、CAPDに用いられる
カテーテルであればその型式形状は特に限定され
ない。
The catheter of the present invention made of the above-mentioned plastic material may be a Tenkov type, a Lifecass type, a TWH type, or an improved product thereof, and its shape is not particularly limited as long as it is a catheter used for CAPD.

繊維集合体層とカテーテルとの接合は、繊維集
合体層の多孔性と可撓性が損われない限り、任意
の方法を用いることができる。
Any method can be used to join the fiber aggregate layer and the catheter as long as the porosity and flexibility of the fiber aggregate layer are not impaired.

最も一般的には、カテーテル表面に接着剤を薄
く塗布して、繊維集合体層をこれに圧着する。接
着剤を用いる代りに、カテーテル表面を熔融さ
せ、これに繊維集合体を融着させても良い。又、
接着剤を塗布したり、部分熔融させたカテーテル
表面に直接繊維を編付けたり捲き付けたり、或い
は植毛する方法によつても良い。
Most commonly, a thin layer of adhesive is applied to the surface of the catheter and the fiber aggregate layer is crimped thereto. Instead of using an adhesive, the surface of the catheter may be melted and the fiber aggregate may be fused thereto. or,
It is also possible to apply an adhesive, directly knit or wrap fibers on the partially melted surface of the catheter, or to implant fibers.

前記接合に使用し得る接着剤としては、シリコ
ン系接着剤、ポリエチン−酢酸ビニル共重合体、
ポリエステル、ナイロン、ウレタンエラストマー
又は、酢酸ビニル、アクリル樹脂等が挙げられ
る。
Adhesives that can be used for the bonding include silicone adhesives, polyethine-vinyl acetate copolymers,
Examples include polyester, nylon, urethane elastomer, vinyl acetate, and acrylic resin.

繊維間の接着されない部分は層全体の可撓性を
示す為にも、又生体細胞が侵入して固定化する上
にも必要である。
The non-adhered portions between the fibers are necessary for the flexibility of the entire layer and for the penetration and immobilization of biological cells.

又、十分な強度が得られる場合には、カテーテ
ルに繊維を巻付けたり、繊維を袋編状にして、プ
ラスチツク材料にかぶせて固定する等の機械的な
力を利用してもよい。
If sufficient strength can be obtained, mechanical force may be used, such as by winding the fibers around the catheter or forming the fibers into a bag-knitted structure and fixing the fibers over a plastic material.

以下、本発明の経皮留置カテーテルの1実施態
様を示す。
One embodiment of the percutaneous indwelling catheter of the present invention will be shown below.

第2図は本発明の複合材を利用した持続的可動
性腹膜透析CAPDのカテーテルを図示する。図
中、15はシリコン製カテーテル、16は透析液
容器、17はトランスフアチユーブ、18はセラ
ミツクス又はチタン等よりなるジヨイントで透析
容器16とトランスフアチユーブ及びトランスフ
アチユーブ17とカテーテル15を接合する。
FIG. 2 illustrates a continuous mobility peritoneal dialysis CAPD catheter utilizing the composite of the present invention. In the figure, 15 is a catheter made of silicone, 16 is a dialysate container, 17 is a transfer tube, and 18 is a joint made of ceramics, titanium, etc., which connects the dialysis container 16 and the transfer tube, and the transfer tube 17 and the catheter 15.

19は本発明の複合材であつて、前記シリコン
チユーブカテーテル15の表面にCVD被覆シリ
カ繊維を袋編したものをシリコン接着剤で接合し
たもので、皮膚貫通部位に位置する。
Reference numeral 19 is a composite material of the present invention, which is a bag-knitted CVD-coated silica fiber bonded to the surface of the silicone tube catheter 15 with a silicone adhesive, and is located at the skin penetration site.

20はダクロン(ポリエステル)フエルト等よ
りなるカフで、通常カテーテル15を生体内部に
固定する目的に用いられるものである。21は透
析液の流通弁である。本発明の複合材を適用した
場合、前記カフ20は残しても良いが、本発明の
複合材19と皮膚組織との接合が強固であるので
必ずしもカフ20は必要としない。この場合、カ
テーテルの構造は単純となり、手術手段も著しく
簡略化できる。前記第2図のカテーテルを臨床に
適用したが、生体組織との接合性に優れ、十分実
用に供することが判明した。
Reference numeral 20 denotes a cuff made of Dacron (polyester) felt or the like, which is normally used for the purpose of fixing the catheter 15 inside a living body. 21 is a dialysate flow valve. When the composite material of the present invention is applied, the cuff 20 may be left in place, but since the bond between the composite material 19 of the present invention and the skin tissue is strong, the cuff 20 is not necessarily required. In this case, the structure of the catheter becomes simple and the surgical procedure can be significantly simplified. The catheter shown in FIG. 2 was applied clinically and was found to have excellent bonding properties with living tissue and to be fully usable for practical use.

なお、第2図は、テンコフ(Tenckhoff)型の
カテーテルに本発明の複合材を装着した例を示す
が、ライフカス(Life Cath)、THW型カテーテ
ル等、持続的可動性腹膜透析に用いられるカテー
テルであれば型、種類に関係なく本発明の複合材
を皮膚貫通部に適用しても良い。
Although Figure 2 shows an example in which the composite material of the present invention is attached to a Tenckhoff-type catheter, it may also be used with catheters used for continuous mobile peritoneal dialysis, such as Life Cath and THW-type catheters. The composite material of the present invention may be applied to any skin-penetrating part, regardless of its type or type.

又、繊維集合体として前記するCVD被覆シリ
カ繊維の代りに炭素繊維、或いはCVD処理した
炭素繊維もしくは金属繊維もしくは無機繊維等を
用いても生体皮膚組織との結合性が良く実用に供
することが確認された。
Furthermore, it has been confirmed that carbon fibers, CVD-treated carbon fibers, metal fibers, inorganic fibers, etc. can be used in place of the above-mentioned CVD-coated silica fibers as fiber aggregates, and have good bonding properties with living skin tissues and can be put to practical use. It was done.

参考例 本発明の耐熱性繊維集合体の製造例 第1図のような装置を用いてシリカ繊維14よ
りなる厚さ0.5mmの平織布を石英ボード10に乗
せた。
Reference Example Manufacturing Example of a Heat-Resistant Fiber Aggregate of the Present Invention Using an apparatus as shown in FIG. 1, a 0.5 mm thick plain woven fabric made of silica fibers 14 was placed on a quartz board 10.

アルゴンガス3を100c.c./min及びメタンガス
4を1c.c./minを流し、混合ガスとして、1000℃
に保持した電気炉8内の石英管9に導入した。ト
ラツプ1から電気炉のリボンヒーター11で予備
加熱(500℃)した石英管9の内径は55mmφで均
熱帯長は30cmである。最初アルゴンガス3のみ流
し、電気炉を1000℃まで昇温し、その後、メタン
ガスをアルゴンガスに加えて流した。約1時間流
し、その後はアルゴン雰囲気中で冷却した。この
冷却されたCVD被覆シリカ繊維布をとり出し、
さらにアルゴン雰囲気中2000℃の温度で30分熱処
理を行なつた。降温してCVD処理したシリカ繊
維布を得た。
Argon gas 3 flows at 100c.c./min and methane gas 4 flows at 1c.c./min to form a mixed gas at 1000℃.
It was introduced into a quartz tube 9 in an electric furnace 8 held at The inner diameter of the quartz tube 9 preheated (500° C.) from the trap 1 by the ribbon heater 11 of the electric furnace is 55 mmφ, and the length of the soaking zone is 30 cm. At first, only argon gas 3 was flowed to raise the temperature of the electric furnace to 1000°C, and then methane gas was added to the argon gas and flowed. The mixture was allowed to flow for about 1 hour, and then cooled in an argon atmosphere. Take out this cooled CVD coated silica fiber cloth,
Further, heat treatment was performed at a temperature of 2000°C for 30 minutes in an argon atmosphere. A silica fiber cloth subjected to CVD treatment was obtained by lowering the temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明で使用するCVD処理装置の
説明図であり、第2図は本発明の経皮留置カテー
テルの1つの実施例を示す図である。 1……トラツプ、2……マントルヒーター、3
……不活性ガス、4……CVD用ガス、5,6,
7……流量計、8……電気炉、9……石英管、1
0……石英ボード、11……リボンヒーター、1
2……熱電対、13……ピツト、14……繊維集
合体、15……カテーテル、16……透析液容
器、17……トランスフアチユーブ、18……ジ
ヨイント、19……本発明複合材、20……カ
フ、21……透析液流通弁。
FIG. 1 is an explanatory diagram of a CVD treatment apparatus used in the present invention, and FIG. 2 is a diagram showing one embodiment of the percutaneous indwelling catheter of the present invention. 1... Trap, 2... Mantle heater, 3
...Inert gas, 4...CVD gas, 5,6,
7...Flowmeter, 8...Electric furnace, 9...Quartz tube, 1
0...Quartz board, 11...Ribbon heater, 1
2... thermocouple, 13... pit, 14... fiber aggregate, 15... catheter, 16... dialysate container, 17... transfer tube, 18... joint, 19... composite material of the present invention, 20...cuff, 21...dialysate flow valve.

Claims (1)

【特許請求の範囲】 1 生体適合性プラスチツクよりなるカテーテル
の皮膚貫通部の表面に、生体組織細胞の侵入を容
易にする空隙又は開放気孔を有する、炭素被覆を
施した又は施していない炭素繊維、黒鉛繊維、無
機繊維若しくは金属繊維より選ばれる単独又は複
合の生体適合性耐熱性繊維からなる生体適合性耐
熱性繊維集合体層を形成してなるCAPD用経皮留
置カテーテル。 2 前記空隙又は開放気孔が20μ〜1000μの大き
さである特許請求の範囲第1項に記載のカテーテ
ル。
[Scope of Claims] 1. Carbon fibers with or without carbon coating, which have voids or open pores that facilitate the penetration of biological tissue cells on the surface of the skin-penetrating part of a catheter made of biocompatible plastic; A percutaneous indwelling catheter for CAPD comprising a biocompatible heat-resistant fiber aggregate layer made of a single or composite biocompatible heat-resistant fiber selected from graphite fibers, inorganic fibers, or metal fibers. 2. The catheter according to claim 1, wherein the void or open pore has a size of 20μ to 1000μ.
JP60068669A 1985-04-01 1985-04-01 Subcataneous stay catheter Granted JPS61228876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60068669A JPS61228876A (en) 1985-04-01 1985-04-01 Subcataneous stay catheter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60068669A JPS61228876A (en) 1985-04-01 1985-04-01 Subcataneous stay catheter

Publications (2)

Publication Number Publication Date
JPS61228876A JPS61228876A (en) 1986-10-13
JPH0516872B2 true JPH0516872B2 (en) 1993-03-05

Family

ID=13380348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60068669A Granted JPS61228876A (en) 1985-04-01 1985-04-01 Subcataneous stay catheter

Country Status (1)

Country Link
JP (1) JPS61228876A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278234A (en) * 1987-04-15 1988-11-15 Mitsubishi Electric Corp Silica glass solution feeder
US4789601A (en) * 1987-05-04 1988-12-06 Banes Albert J Biocompatible polyorganosiloxane composition for cell culture apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149157A (en) * 1974-10-28 1976-04-28 Toyota Motor Co Ltd Nijukanno mage kakoo okonauhoho oyobi sochi
JPS5626738U (en) * 1979-08-07 1981-03-12
JPS59174161A (en) * 1983-03-23 1984-10-02 呉羽化学工業株式会社 Body compatible plastic composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149157A (en) * 1974-10-28 1976-04-28 Toyota Motor Co Ltd Nijukanno mage kakoo okonauhoho oyobi sochi
JPS5626738U (en) * 1979-08-07 1981-03-12
JPS59174161A (en) * 1983-03-23 1984-10-02 呉羽化学工業株式会社 Body compatible plastic composite material

Also Published As

Publication number Publication date
JPS61228876A (en) 1986-10-13

Similar Documents

Publication Publication Date Title
EP0996519B1 (en) Laminated metal structure
US6303179B1 (en) Method for attachment of biomolecules to surfaces through amine-functional groups
US5647858A (en) Zirconium oxide and zirconium nitride coated catheters
US4668222A (en) Percutaneous access device with removable tube
JP4401165B2 (en) Composite ePTFE / fiber prosthesis
US4897081A (en) Percutaneous access device
US5971962A (en) Skin button
US3646616A (en) Prosthesis for implanting around a body duct such as the urethra and method of treating urinary incontinence
US8343567B2 (en) Method of treating the surface of a medical device with a biomolecule
JPH11229146A (en) Composite material
EP1359969A1 (en) Extra-corporeal vascular conduit
EP1802360A2 (en) Synthetic prosthesis for aortic root replacement
US5545212A (en) Artificial blood vessel
JPH0516872B2 (en)
EP0123426B1 (en) Biocompatible composite material for implants and artificial organs for the human body
WO2005094699A1 (en) Surgical coronary artery anastomosing connector
EP0164896B1 (en) Percutaneous access device
JPH06327757A (en) Bioimplant composite material and bioadaptable composite material
EP0093138B1 (en) Improved continuous ambulatory peritoneal dialysis system
JPH02107268A (en) Internal stay tube and preparation thereof
JPH0429394B2 (en)
EP0202917A2 (en) Implant device
JPH1015061A (en) Intraperitioneal indwelling catheter
JP2005152181A (en) Embedding-type tubular treating tool
JPH1199163A (en) Blood vessel prosthetic material