JPH05167073A - Semiconductor integrated circuit device and fabrication thereof - Google Patents
Semiconductor integrated circuit device and fabrication thereofInfo
- Publication number
- JPH05167073A JPH05167073A JP3333454A JP33345491A JPH05167073A JP H05167073 A JPH05167073 A JP H05167073A JP 3333454 A JP3333454 A JP 3333454A JP 33345491 A JP33345491 A JP 33345491A JP H05167073 A JPH05167073 A JP H05167073A
- Authority
- JP
- Japan
- Prior art keywords
- integrated circuit
- insulating film
- circuit device
- semiconductor
- semiconductor integrated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Thin Film Transistor (AREA)
- Dram (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体集積回路装置及び
その製造方法、特に絶縁膜上にMOSトランジスタを含
む半導体回路が集積化された半導体集積回路装置及びそ
の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device and a manufacturing method thereof, and more particularly to a semiconductor integrated circuit device in which a semiconductor circuit including a MOS transistor is integrated on an insulating film and a manufacturing method thereof.
【0002】[0002]
【従来の技術】絶縁膜上に半導体回路が構成された構造
は、SOI(シリコン オン インシュレータ “Silic
on On Insulator”)構造として知られており、α線照射
の影響を受けにくい、ラッチアップ現象がない、さらに
は超薄膜半導体層の完全空乏化による大電流化、高速動
作化等の利点を持つ。SOI構造のMOSトランジスタ
(以下SOIトランジスタと略称する)は図1の断面図に
示す構造をしている。支持基板1上に絶縁膜2を介して
SOIトランジスタの単結晶半導体層3(ソ−ス拡散層
7、ドレイン拡散層8)、単結晶半導体層3上に素子分
離用絶縁膜4、ゲ−ト絶縁膜5、ゲ−ト電極6、及びソ
−ス電極9、ドレイン電極10等が構成されている。S
OIトランジスタは、単結晶半導体層3が100nm程
度と極めて薄く、ゲ-ト電極6に印加するゲ-ト電圧によ
り完全空乏化が生じる条件では従来のトランジスタに比
べて、約1.5倍程度の大電流を得ることができる特長
をもつ。2. Description of the Related Art A structure in which a semiconductor circuit is formed on an insulating film is an SOI (silicon on insulator "Silic
On On Insulator ”) structure, it is not easily affected by α-ray irradiation, has no latch-up phenomenon, and has the advantages of large current and high-speed operation due to complete depletion of the ultra-thin semiconductor layer. . SOI MOS transistor
The SOI transistor (hereinafter abbreviated as SOI transistor) has a structure shown in the cross-sectional view of FIG. The single crystal semiconductor layer 3 (source diffusion layer 7, drain diffusion layer 8) of the SOI transistor is formed on the support substrate 1 with the insulating film 2 interposed therebetween, and the element isolation insulating film 4 and the gate are formed on the single crystal semiconductor layer 3. The insulating film 5, the gate electrode 6, the source electrode 9, the drain electrode 10 and the like are formed. S
In the OI transistor, the single crystal semiconductor layer 3 is extremely thin, about 100 nm, and under the condition that the gate voltage applied to the gate electrode 6 causes complete depletion, it is about 1.5 times that of the conventional transistor. It has the feature that a large current can be obtained.
【0003】一方、SOIトランジスタの閾電圧値は通
常のトランジスタに比べて低い傾向を有しており、閾電
圧値を任意の値に制御することが難しかった。そのた
め、インバータ、フリップフロップ回路、メモリ回路、
その他の論理回路を形成することに制約があった。MO
Sトランジスタの閾電圧値の制御は、一般的には単結晶
半導体層3の不純物濃度、ゲ−ト電極6の仕事函数、ゲ
−ト絶縁膜5膜厚及び支持基板1に印加する基板電圧に
よるが、SOIトランジスタの単結晶半導体層3は極め
て薄いため不純物濃度で閾電圧値を制御できる程度は極
く僅かである。極度に不純物濃度を高めることは耐圧、
伝達コンダクタンス等の低下をもたらす。ゲ−ト電極6
材料及びゲ-ト絶縁膜5膜厚を所望トランジスタごとに
設定することは製造工程の複雑化を招き、製造歩留まり
の低下及び製造価格の上昇をもたらす。On the other hand, the threshold voltage value of the SOI transistor tends to be lower than that of a normal transistor, and it is difficult to control the threshold voltage value to an arbitrary value. Therefore, inverters, flip-flop circuits, memory circuits,
There was a limitation in forming other logic circuits. MO
The control of the threshold voltage value of the S-transistor is generally based on the impurity concentration of the single crystal semiconductor layer 3, the work function of the gate electrode 6, the thickness of the gate insulating film 5 and the substrate voltage applied to the supporting substrate 1. However, since the single crystal semiconductor layer 3 of the SOI transistor is extremely thin, the threshold voltage value can be controlled very little by the impurity concentration. To raise the impurity concentration to the extreme
It causes a decrease in transfer conductance. Gate electrode 6
Setting the material and the thickness of the gate insulating film 5 for each desired transistor causes the manufacturing process to be complicated, resulting in a decrease in manufacturing yield and an increase in manufacturing cost.
【0004】また、H.Lim and J.Fossum, スレショルド
ボルテージ オブ スィン−フィルム シリコン−オ
ン インスレータ(エス オウ アイ) MOSFE
T,sアイ イー イー イー トランスアクション
エレクトロン デバイス ED−30巻 10号 12
44頁ないし12511 1983年 10月"Thresho
ld Voltage of Thin-Film Silicon-on Insuator (SOI)
MOSFET's; IEEE Trans.Electron Devices, vol. ED-3
0,No.10, pp1244-12511 (Oct) 1983 に報告されている
ように、支持基板に印加する基板電圧で閾電圧値を制御
する方法は通常絶縁膜2として1μm程度の厚いシリコ
ン酸化膜を用いるため高電圧を印加しないと効果が得ら
れず、高電圧を用いることは実用的とはいえない。また
集積回路中の特定のトランジスタ毎に基板電圧を制御す
ることも不可能である。H. Lim and J. Fossum, Threshold Voltage of Thin-Film Silicon-on Insulator (S-O-I) MOSFE
T, s Eye E E E Transaction Action
Electron Device ED-30 Vol. 10, No. 12
Pages 44 to 12511 October 1983 "Thresho
ld Voltage of Thin-Film Silicon-on Insuator (SOI)
MOSFET's; IEEE Trans. Electron Devices, vol. ED-3
As reported in 0, No. 10, pp1244-12511 (Oct) 1983, the method of controlling the threshold voltage value by the substrate voltage applied to the supporting substrate is usually a thick silicon oxide film of about 1 μm as the insulating film 2. Since it is used, the effect cannot be obtained unless a high voltage is applied, and it cannot be said to be practical to use a high voltage. It is also impossible to control the substrate voltage for each specific transistor in the integrated circuit.
【0005】[0005]
【発明が解決しようとする課題】従って、本発明の主な
目的は、SOI構造に形成されるMOSトランジスタの
閾電圧値をSOIトランジスタの不純物濃度、ゲ−ト電
極材料、ゲ−ト絶縁膜厚、及び支持基板印加電圧に依ら
ず、制御することにある。すなわち、耐圧、伝達コンダ
クタンス等の低下をもたらすことなく制御きる半導体集
積回路装置を実現することである。本発明の他の目的
は、SOI構造に形成される半導体集積回路装置が複数
のMOSトランジスタを含むとき、上記のMOSトラン
ジスタの閾電圧値制御は所望トランジスタ、又は所望ト
ランジスタ群ごとに任意の値に設定できる半導体集積回
路装置を実現することである。本発明の更に他の目的
は、上記目的を達成すると共に、製造工程が比較的簡単
で、製造歩留まりがよく、経済的にSOIトランジスタ
を製造できる半導体集積回路装置の製造方法を実現する
ことである。Therefore, the main object of the present invention is to determine the threshold voltage value of a MOS transistor formed in the SOI structure, the impurity concentration of the SOI transistor, the gate electrode material, the gate insulating film thickness. , And the voltage applied to the supporting substrate regardless of the applied voltage. That is, it is to realize a semiconductor integrated circuit device that can be controlled without lowering the breakdown voltage and the transfer conductance. Another object of the present invention is to control the threshold voltage value of the MOS transistor to an arbitrary value for each desired transistor or each desired transistor group when the semiconductor integrated circuit device formed in the SOI structure includes a plurality of MOS transistors. It is to realize a semiconductor integrated circuit device that can be set. Still another object of the present invention is to achieve the above-mentioned object, and to realize a method of manufacturing a semiconductor integrated circuit device which is relatively simple in manufacturing process, has a high manufacturing yield, and can economically manufacture an SOI transistor. ..
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、本発明は、MOSトランジスタを含む半導体集積回
路がSOI構造に形成される半導体集積回路装置におい
て、上記MOSトランジスタの活性層を構成する単結晶
半導体層の下部に埋め込み絶縁膜を介して埋め込みゲ−
ト電極を有する構造にし、上記埋め込みゲ−ト電極を所
望電位にする回路手段を設けて半導体集積回路装置を構
成した。上記埋め込みゲ−ト電極は回路構成に基づき所
定の電圧を接続することにより所望トランジスタあるい
はトランジスタ群ごとに所望閾電圧値が制御される。例
えば上記相補型トランジスタにおいてはpチャネル・ト
ランジスタ群の各埋め込みゲ−ト電極は正の所望電位
に、またnチャネル・トランジスタ群の各埋め込みゲ−
ト電極は零電位又はソ−ス電位に対して負の所望電位に
固定する。また、構成回路によっては同一チャネルトラ
ンジスタ群に対して異なる電位に設定する構成としても
良い。In order to achieve the above object, the present invention provides a semiconductor integrated circuit device in which a semiconductor integrated circuit including a MOS transistor is formed in an SOI structure, in which an active layer of the MOS transistor is formed. A buried gate is formed below the crystalline semiconductor layer via a buried insulating film.
A semiconductor integrated circuit device is constituted by providing a structure having a gate electrode and providing a circuit means for setting the embedded gate electrode to a desired potential. By connecting a predetermined voltage to the embedded gate electrode based on the circuit configuration, the desired threshold voltage value is controlled for each desired transistor or each transistor group. For example, in the above complementary transistor, each buried gate electrode of the p-channel transistor group is set to a positive desired potential, and each buried gate electrode of the n-channel transistor group is
The ground electrode is fixed to zero potential or a desired potential negative with respect to the source potential. Further, depending on the configuration circuit, different potentials may be set for the same channel transistor group.
【0007】本発明による埋め込みゲ−ト電極を持つ半
導体集積回路装置の製造は、MOS型トランジスタの製
造工程に基づき素子間分離絶縁膜、埋め込みゲ−ト絶縁
膜、埋め込みゲ−ト電極及び配線保護膜まで製造した第
一の半導体基板と主表面に酸化膜を形成した第二の半導
体基板を貼合せた多層構造半導体基板を製造し、上記多
層構造半導体基板の第一の半導体基板裏面側から研削及
び研磨で薄化させ、素子間分離絶縁膜の裏面で規定され
る面まで第一の半導体基板を選択研磨することにより多
層構造半導体基板の主表面を新たに得る。なお、上記貼
合せを可能にするために配線保護絶縁膜上に厚い半導体
膜を堆積し、その表面を機械的・化学的研磨により超平
坦に加工してから貼合せ工程を実施する。素子間分離絶
縁膜の裏面で規定される面までの選択研磨により素子間
分離絶縁膜膜厚のほぼ半分の膜厚を有する単結晶超薄膜
半導体層が互いに分離された状態で残置されるが、上記
単結晶超薄膜半導体層の下部領域には埋め込みゲ-ト絶
縁膜を介して埋め込まれた構造で埋め込みゲ-ト電極が
構成されている。埋め込みゲ-ト電極は素子間分離絶縁
膜下部にまで延在されており素子間分離絶縁膜の所望個
所に開孔を設け多層構造半導体基板の主表面側と回路的
に接続すればよい。露出形成された単結晶超薄膜半導体
層に公知の製造工程に基づきMOS型トランジスタを形
成する。The manufacturing of the semiconductor integrated circuit device having the buried gate electrode according to the present invention is based on the manufacturing process of the MOS type transistor, the element isolation insulating film, the buried gate insulating film, the buried gate electrode and the wiring protection. Manufacture a multi-layered semiconductor substrate in which a first semiconductor substrate manufactured up to the film and a second semiconductor substrate having an oxide film formed on the main surface are bonded together, and the back side of the first semiconductor substrate of the multi-layered semiconductor substrate is ground. Further, the main surface of the multi-layer structure semiconductor substrate is newly obtained by thinning by polishing and selectively polishing the first semiconductor substrate up to the surface defined by the back surface of the element isolation insulating film. Note that a thick semiconductor film is deposited on the wiring protection insulating film to enable the above bonding, and the surface is processed to be ultra-flat by mechanical / chemical polishing, and then the bonding step is performed. By selective polishing up to the surface defined by the back surface of the element isolation insulating film, the single crystal ultra-thin film semiconductor layer having a film thickness of about half of the element isolation insulating film is left in a state of being separated from each other, A buried gate electrode is formed in a lower region of the single crystal ultra thin film semiconductor layer with a structure buried via a buried gate insulating film. The buried gate electrode extends to the lower part of the element isolation insulating film, and an opening may be provided at a desired portion of the element isolation insulating film to connect it to the main surface side of the multilayer structure semiconductor substrate in a circuit manner. A MOS transistor is formed on the exposed single crystal ultra-thin film semiconductor layer by a known manufacturing process.
【0008】[0008]
【作用】本発明の半導体集積回路装置によれば、支持基
板から完全に絶縁分離された単結晶超薄膜半導体層の下
部に埋め込み絶縁膜を介して埋め込みゲ−ト電極を構成
するので、上記単結晶超薄膜半導体層に構成するMOS
トランジスの閾電圧値を埋め込みゲ−ト電極に印加する
電圧で所望値に設定制御できる。nチャネルトランジス
タを例にとると閾電圧値を増大させるためには単結晶超
薄膜半導体層下部が蓄積(accumulation)状態になるよう
に、埋め込みゲ−ト電極に負の一定値以上の電圧を印加
する。閾電圧値を低下させるためには正の一定値以上の
電圧を印加し、反転(inversion)状態にすれば良い。上
記の閾電圧値制御は、所望トランジスタ、又は所望トラ
ンジスタ群ごとに制御でき、これにより所望の閾電圧値
を有するSOIトランジスタで構成された半導体集積回
路装置が構成され、電子機器の構成装置として有効な手
段となる。According to the semiconductor integrated circuit device of the present invention, since the embedded gate electrode is formed below the single crystal ultra-thin film semiconductor layer completely insulated and separated from the supporting substrate, the single gate ultra-thin semiconductor layer is formed. MOS composed of crystalline ultra-thin semiconductor layer
The threshold voltage value of the transistor can be set and controlled to a desired value by the voltage applied to the embedded gate electrode. Taking an n-channel transistor as an example, in order to increase the threshold voltage value, a voltage higher than a certain negative value is applied to the buried gate electrode so that the lower portion of the single crystal ultra-thin semiconductor layer is in an accumulation state. To do. In order to reduce the threshold voltage value, a voltage above a certain positive value may be applied to bring it into an inversion state. The above threshold voltage value control can be performed for each desired transistor or each desired transistor group, and thus a semiconductor integrated circuit device configured with an SOI transistor having a desired threshold voltage value is configured and is effective as a component device of an electronic device. It will be a means.
【0009】本発明による半導体集積回路装置は閾電圧
値の制御において、単結晶半導体層の不純物濃度は所望
濃度、即ち、1016/cm3以下の低不純物濃度でよ
く、ソ-ス・ドレイン耐圧や伝達コンダクタンスの低下を
避けることができる。さらにゲ-ト電極材料及びゲ-ト絶
縁膜膜厚を所望トランジスタごとに設定する必要もな
く、従って製造工程の複雑化や製造歩留まりの低下及び
製造価格の上昇をもたらす恐れもない。本発明による半
導体集積回路装置は、従来のSOIトランジスタの特
徴、即ち、トランジスタが絶縁膜により半導体基板から
完全に分離されていることによる優れた耐α線照射特
性、及びラッチアップ現象からの完全解決、さらには超
薄膜半導体層の完全空乏化による大電流化、高速動作化
等の緒特長は損なわれない。In the control of the threshold voltage value of the semiconductor integrated circuit device according to the present invention, the impurity concentration of the single crystal semiconductor layer may be a desired concentration, that is, a low impurity concentration of 10 16 / cm 3 or less, and the source / drain breakdown voltage. It is possible to avoid a decrease in transfer conductance. Further, it is not necessary to set the gate electrode material and the gate insulating film thickness for each desired transistor, and therefore, there is no fear that the manufacturing process is complicated, the manufacturing yield is lowered, and the manufacturing cost is increased. The semiconductor integrated circuit device according to the present invention has the characteristics of a conventional SOI transistor, namely, excellent α-ray irradiation resistance due to the transistor being completely separated from the semiconductor substrate by an insulating film, and a complete solution from the latch-up phenomenon. Moreover, the features such as large current and high speed operation due to complete depletion of the ultra-thin semiconductor layer are not impaired.
【0010】[0010]
【実施例】以下、本発明を実施例により詳細に説明す
る。 実施例1 図2ないし図5は、本発明による半導体集積回路装置の
第1の実施例の製造工程を順に示す断面図である。図2
に示す工程においては、まず、面方位(100)、抵抗
率10Ωcm、直径12.5cm、p導電型の単結晶シ
リコン(Si)基板30の主表面に300nm厚の熱酸
化膜を選択的に形成して素子間分離絶縁膜4とした。続
いて、所望活性領域の基板30表面には8nm厚のシリ
コン熱酸化膜を形成して埋め込み絶縁膜51とし、多結
晶シリコン膜とタングステン珪化膜の積層堆積膜による
埋め込み電極61及び62を形成した。この状態より電
極保護絶縁膜41を全面に堆積してから厚さ5μmの多
結晶シリコン膜31を堆積し、その表面を機械的・化学
的研磨により二乗平均粗さが0.3nmになるように鏡
面研磨を施した。EXAMPLES The present invention will be described in detail below with reference to examples. Embodiment 1 FIGS. 2 to 5 are sectional views sequentially showing manufacturing steps of a first embodiment of a semiconductor integrated circuit device according to the present invention. Figure 2
In the step shown in (1), first, a thermal oxide film having a thickness of 300 nm is selectively formed on the main surface of a single crystal silicon (Si) substrate 30 having a plane orientation (100), a resistivity of 10 Ωcm, a diameter of 12.5 cm, and p conductivity type. Then, the element isolation insulating film 4 was formed. Subsequently, a silicon thermal oxide film having a thickness of 8 nm is formed on the surface of the substrate 30 in the desired active region to form a buried insulating film 51, and buried electrodes 61 and 62 are formed by a stacked deposition film of a polycrystalline silicon film and a tungsten silicide film. .. In this state, the electrode protection insulating film 41 is deposited on the entire surface, then the polycrystalline silicon film 31 having a thickness of 5 μm is deposited, and the surface thereof is subjected to mechanical / chemical polishing so that the root mean square roughness becomes 0.3 nm. It was mirror-polished.
【0011】図3に示す工程においては、別途用意した
主表面に200nm厚のシリコン熱酸化膜2が形成され
た第二の単結晶Si基板1の酸化膜2の面と図2の多結
晶シリコン膜31面とを直接貼合せた。単結晶Si基板
1の仕様は上記単結晶Si基板30と同一仕様とした。
上記直接貼合せは貼合せ面が極めて清浄であり、かつ表
面の微細な凹凸が約5nm以下と平坦であればボイドの
発生なしで均一に貼合せることができる。In the step shown in FIG. 3, the surface of the oxide film 2 of the second single crystal Si substrate 1 having a 200 nm thick silicon thermal oxide film 2 formed on a separately prepared main surface and the polycrystalline silicon of FIG. The surface of the membrane 31 was directly attached. The single crystal Si substrate 1 had the same specifications as the single crystal Si substrate 30.
In the direct bonding, if the bonding surface is extremely clean and the fine irregularities on the surface are flat at about 5 nm or less, the bonding can be performed uniformly without generating voids.
【0012】図4に示す工程においては、図3の状態よ
り接着強度を向上させるための熱処理を1000℃、2
時間の条件で施した。上記熱処理の後、接着強度を引張
り試験により調べたところ約800kg/cm2とな
り、Si単結晶の破壊強度と同程度の破壊強度が得られ
た。この状態より単結晶Si基板30の裏面側(図面の
上側)より高精度研削装置により約10μm厚さになる
まで薄化させ、続いてエチレンジアミン・ピロカテコ−
ルが添加された研磨液を用いて機械的・化学的研磨を施
した。上記研磨は回転円盤上に設けられた研磨布にSi
基板を 1.9×104Paの圧力で押しつけ、研磨液
を供給しながら行ったが研磨の進行に伴って露出される
素子間分離絶縁膜4の研磨速度は単結晶Siに比べて極
めて遅く、1/104倍以下であった。従って、上記研
磨により単結晶Si基板30は完全に平坦化され、素子
間分離絶縁膜4の裏面と同一面となった。これにより活
性領域に対応して素子間分離絶縁膜4により互いに分離
された約100nm厚の超薄膜である単結晶半導体層3
2及び33が得られた。In the process shown in FIG. 4, heat treatment for improving the adhesive strength is performed at 1000 ° C. for 2 times as compared with the state shown in FIG.
It was given under the condition of time. After the above heat treatment, the adhesion strength was examined by a tensile test to find that it was about 800 kg / cm 2 , and a fracture strength similar to that of Si single crystal was obtained. From this state, the single crystal Si substrate 30 is thinned from the back surface side (upper side of the drawing) by a high precision grinding machine to a thickness of about 10 μm, and then ethylenediamine pyrocateco-
Mechanical and chemical polishing was carried out using a polishing liquid to which silver was added. The above polishing is performed by using a polishing cloth provided on the rotating disk with Si.
The substrate was pressed at a pressure of 1.9 × 10 4 Pa and the polishing liquid was supplied, but the polishing rate of the inter-element isolation insulating film 4 exposed as the polishing progressed was much slower than that of single crystal Si. Was less than 1/10 4 times. Therefore, the single crystal Si substrate 30 was completely flattened by the above polishing, and became flush with the back surface of the element isolation insulating film 4. As a result, the single crystal semiconductor layer 3 which is an ultrathin film having a thickness of about 100 nm is separated from each other by the element isolation insulating film 4 corresponding to the active region.
2 and 33 were obtained.
【0013】図5は、最後の工程の図であり、かつ本発
明による半導体集積回路装置の第1の実施例の構成を示
す断面図で、図6はその等価回路図を示す。図4の状態
において従来知られているMOSトランジスタの製造方
法に基づいて単結晶半導体層32及び33領域に8nm
厚のゲ−ト酸化膜52、ゲ−ト電極63及び64、高濃
度不純物層によるソ−ス領域71及び72、ドレイン領
域81及び82、さらに、金属電極91、92及び93
を形成した。埋め込みゲ−ト電極61及び62の取り出
しはゲ−ト電極63及び64又は金属電極91、92及
び93の形成前に埋め込みゲ−ト電極61及び62が素
子間分離絶縁膜4下部に延在されている領域での開孔
(図示せず)により実施した。FIG. 5 is a final step diagram and is a sectional view showing the structure of the first embodiment of the semiconductor integrated circuit device according to the present invention, and FIG. 6 is an equivalent circuit diagram thereof. In the state of FIG. 4, 8 nm is formed in the regions of the single crystal semiconductor layers 32 and 33 based on the conventionally known method of manufacturing a MOS transistor.
A thick gate oxide film 52, gate electrodes 63 and 64, source regions 71 and 72 of high-concentration impurity layers, drain regions 81 and 82, and metal electrodes 91, 92 and 93.
Formed. The embedded gate electrodes 61 and 62 are taken out before the gate electrodes 63 and 64 or the metal electrodes 91, 92 and 93 are formed, and the embedded gate electrodes 61 and 62 are extended below the element isolation insulating film 4. It was carried out by an opening (not shown) in the region where the region was formed.
【0014】上述の製造方法に基づいて製造された半導
体集積回路装置は、埋め込みゲ−ト電極61及び62が
単結晶半導体層32及び33の底部で埋め込みゲ−ト絶
縁膜51を介して埋め込みまれた構造になっており、ト
ランジスタ1及びトランジスタ2の各々の閾電圧値を埋
め込みゲ−ト電極61及び62に印加する電圧を任意値
に各々設定することで互いに独立の値に設定制御でき
た。また、単結晶半導体層32及び33が100nmと
極めて薄く、ゲ−ト電極63及び64に印加するゲ−ト
電圧により完全空乏化がなされて通常構造トランジスタ
の1.8倍の伝達コンダクタンスを得ることができ大電
流、高速動作化が実現できた。また、2つのトランジス
タ1及びトランジスタ2の間には何の干渉も観測され
ず、ラッチアップ現象が生じないことが確認された。In the semiconductor integrated circuit device manufactured by the above manufacturing method, the buried gate electrodes 61 and 62 are buried at the bottoms of the single crystal semiconductor layers 32 and 33 with the buried gate insulating film 51 interposed therebetween. The threshold voltage value of each of the transistors 1 and 2 is set to an independent value by setting the voltage applied to the embedded gate electrodes 61 and 62 to an arbitrary value. Further, the single crystal semiconductor layers 32 and 33 are extremely thin, 100 nm, and are fully depleted by the gate voltage applied to the gate electrodes 63 and 64 to obtain 1.8 times the transfer conductance of the normal structure transistor. It was possible to realize high current and high speed operation. Further, no interference was observed between the two transistors 1 and 2, and it was confirmed that the latch-up phenomenon did not occur.
【0015】実施例2 図7は、本発明による半導体集積回路装置の第2の実施
例を示す回路構成図である。本実施例は、相補型トラン
ジスタインバ−タを含む半導体集積回路装置を実施例1
で説明した製造方法に従って製造したものである。トラ
ンジスタ(Trと略記する)1とTr2の単結晶半導体
層(例えば、図4の33)は、図4の状態よりイオン注
入法により硼素イオンの注入とその後の活性化熱処理に
よりn導電型とした。また、図5の上記単結晶半導体層
におけるソ−ス領域(例えば図5の72、図7では10
3及び109)及びドレイン領域(例えば図5の82、
図7では102及び108)はp型高濃度不純物層をイ
オン注入法で形成し、他の製造工程は前記実施例1に基
づいた。本実施例による半導体集積回路装置では、Tr
1及びTr3の埋め込みゲ−ト電極は、各々105及び
111で正の一定電圧が印加された配線150に接続さ
れ、Tr2及びTr4の埋め込みゲ−トは各々106及
び112でソ−ス電位に対して負の電位が印加された配
線250に接続されている。配線100は電源電圧線、
配線200は接地電位線、101は入力、102と10
7との間は次段のインバ−タ間の接続線、108は出力
線である。本実施例に基づく半導体集積回路装置におい
てはpチャネル及びnチャネルの各トランジスタごとに
所望極性の電圧を埋め込みゲ−ト電極に印加することに
より正常なインバ−タ動作を実現することができた。ま
た基本トランジスタの高速動作特性の効果により遅延時
間を従来装置に比べて約30%低減できた。Second Embodiment FIG. 7 is a circuit configuration diagram showing a second embodiment of the semiconductor integrated circuit device according to the present invention. In this embodiment, a semiconductor integrated circuit device including a complementary transistor inverter is used.
It is manufactured according to the manufacturing method described in. The single crystal semiconductor layers (for example, 33 in FIG. 4) of the transistors (abbreviated as Tr) 1 and Tr2 are made n-conductivity type by ion implantation from the state of FIG. 4 by boron ion implantation and subsequent activation heat treatment. .. In addition, the source region in the single crystal semiconductor layer in FIG. 5 (for example, 72 in FIG. 5, 10 in FIG. 7).
3 and 109) and the drain region (eg 82 in FIG. 5,
In FIG. 7, 102 and 108) are p-type high-concentration impurity layers formed by the ion implantation method, and other manufacturing steps are based on the first embodiment. In the semiconductor integrated circuit device according to the present embodiment, Tr
The embedded gate electrodes of 1 and Tr3 are connected to the wiring 150 to which a positive constant voltage is applied at 105 and 111, respectively, and the embedded gate electrodes of Tr2 and Tr4 are at 106 and 112, respectively, with respect to the source potential. Is connected to the wiring 250 to which a negative potential is applied. The wiring 100 is a power supply voltage line,
Wiring 200 is a ground potential line, 101 is an input, 102 and 10
7 is a connection line between the inverters in the next stage, and 108 is an output line. In the semiconductor integrated circuit device according to this embodiment, a normal inverter operation can be realized by applying a voltage of desired polarity to the buried gate electrode for each of the p-channel and n-channel transistors. Further, the delay time can be reduced by about 30% as compared with the conventional device due to the effect of the high speed operation characteristic of the basic transistor.
【0016】実施例3 図8は、本発明による半導体集積回路装置の第3の実施
例を示す回路構成図である。本実施例においては異なる
閾電圧値を有するnチャネルトランジスタ群で構成さ
れ、基準電圧発生回路を含む半導体集積回路装置を前記
実施例1に従って製造した。定電流供給トランジスタT
r5、ソ−スホロ−トランジスタTr7及びTr8の埋
め込みゲ−ト電極は各々117、123及び124で負
の低電位が印加された配線180に、Tr6は負の高電
位が印加された配線250に接続した。配線100は電
源電圧線、配線200は接地電位線、出力120は差動
増幅器の一端へ接続した。上記構成によりによりTr
5、Tr7及びTr8はデプレション型に、Tr6はエ
ンハンス型のトランジスタとして動作し、出力120に
は閾電圧値差に相当する安定な基準電位を発生できた。Third Embodiment FIG. 8 is a circuit configuration diagram showing a third embodiment of the semiconductor integrated circuit device according to the present invention. In this embodiment, a semiconductor integrated circuit device including n-channel transistor groups having different threshold voltage values and including a reference voltage generating circuit was manufactured according to the first embodiment. Constant current supply transistor T
The embedded gate electrodes of r5 and the source-following transistors Tr7 and Tr8 are connected to the wiring 180 to which a negative low potential is applied at 117, 123 and 124, respectively, and Tr6 is connected to the wiring 250 to which a negative high potential is applied. did. The wiring 100 was connected to the power supply voltage line, the wiring 200 was connected to the ground potential line, and the output 120 was connected to one end of the differential amplifier. With the above configuration, Tr
5, Tr7 and Tr8 operated as a depletion type transistor, and Tr6 operated as an enhanced type transistor, and a stable reference potential corresponding to the threshold voltage difference could be generated at the output 120.
【0017】実施例4 図9は、本発明による半導体集積回路装置の第4の実施
例を示す断面構成図である。図10は、図9の半導体集
積回路装置の等価回路図である。本実施例は前記実施例
1に従って随時書込み読出し(RAM)型記憶装置を含
む半導体集積回路装置を製造した。図2の製造工程にお
いて、中央部の素子間分離絶縁膜4を設けない状態で、
電極保護絶縁膜41の堆積の後、所望領域の電極保護絶
縁膜41に選択的に開孔を施し、不純物の添加された低
抵抗多結晶Si膜の堆積とパタ−ニングにより容量素子
電極75及び751を形成した。続いて容量素子電極7
5の表面に 6nm厚の薄い絶縁膜53を形成してから
プレ−ト電極となる厚さ5μm、不純物が添加された低
抵抗のシリコン膜34を堆積した。その後、実施例1の
製造工程に従い本実施例の半導体集積回路装置を製造し
た。なお、本実施例においては単結晶半導体層73上に
ゲ−ト絶縁膜52、ワ−ド線として働くゲ−ト電極65
及び651の形成後、配線層間絶縁膜42の堆積と所望
箇所への開孔を施し、金属配線によるビット線94を形
成した。上記製造工程を経て製造された半導体集積回路
装置は埋め込み電極66及び661を負電位に設定する
ことにより各トランジスタをエンハンス型にすることが
できた。これにより超薄膜トランジスタの特長を活かし
た超高速でソフトエラ−に耐性のある半導体記憶装置を
含む半導体集積回路装置を実現することができた。Fourth Embodiment FIG. 9 is a cross sectional view showing a fourth embodiment of the semiconductor integrated circuit device according to the present invention. FIG. 10 is an equivalent circuit diagram of the semiconductor integrated circuit device of FIG. In this embodiment, a semiconductor integrated circuit device including a write / read (RAM) memory device is manufactured according to the first embodiment. In the manufacturing process of FIG. 2, with the element isolation insulating film 4 in the central portion not provided,
After the electrode protective insulating film 41 is deposited, the electrode protective insulating film 41 in the desired region is selectively opened, and the capacitive element electrode 75 and the capacitor element electrode 75 are formed by the deposition and patterning of the low resistance polycrystalline Si film to which impurities are added. 751 was formed. Then, the capacitor element electrode 7
A thin insulating film 53 having a thickness of 6 nm was formed on the surface of No. 5, and then a low-resistance silicon film 34 having a thickness of 5 μm and serving as a plate electrode was deposited. Thereafter, the semiconductor integrated circuit device of this example was manufactured according to the manufacturing process of Example 1. In this embodiment, the gate insulating film 52 is provided on the single crystal semiconductor layer 73, and the gate electrode 65 serving as a word line.
After forming 651 and 651, a wiring interlayer insulating film 42 was deposited and a hole was formed at a desired position to form a bit line 94 of metal wiring. In the semiconductor integrated circuit device manufactured through the above manufacturing process, each transistor can be made an enhanced type by setting the embedded electrodes 66 and 661 to a negative potential. As a result, it has been possible to realize a semiconductor integrated circuit device including a semiconductor memory device that is extremely fast and is resistant to soft errors by taking advantage of the features of the ultrathin film transistor.
【0018】実施例5 図11は、本発明による半導体集積回路装置の第5の実
施例を示す回路構成図である。本実施例では前記実施例
2に従ってフリップ・フロップ回路を記憶回路の一単位
とするスタテック型記憶装素子を含む半導体集積回路装
置を製造した。フリップ・フロップ回路を構成するTr
9からTr12までのトランジスタのうちTr9とTr
11はpチャネル型、 Tr10とTr12はnチャネ
ル型である。スイッチトランジスタTr13及びTr1
4もnチャネル型である。nチャネルトランジスタの各
埋め込みゲ−ト電極は、ソ−ス電位に対して負の電位が
印加された配線250に106及び112で接続した。
pチャネルトランジスタの埋め込みゲ−ト電極は正の一
定電圧が印加された配線150に105及び111で接
続した。配線200は接地電位線、配線100は電源電
圧線、126及び127はデ−タ線である。本実施例に
基づく半導体集積回路装置においてはpチャネル、及び
nチャネルの各トランジスタごとに所望極性の電圧を埋
め込みゲ−ト電極に印加することにより正常な記憶動作
を実現できた。これにより超薄膜トランジスタの特徴を
活かし、従来装置より1.3倍超高速で、ソフトエラ−
に耐性のある半導体記憶装置を含む半導体集積回路装置
を実現することができた。Embodiment 5 FIG. 11 is a circuit configuration diagram showing a fifth embodiment of a semiconductor integrated circuit device according to the present invention. In this embodiment, a semiconductor integrated circuit device including a static memory device having a flip-flop circuit as one unit of a memory circuit is manufactured according to the second embodiment. Tr forming a flip-flop circuit
Of the transistors from 9 to Tr12, Tr9 and Tr
11 is a p-channel type, and Tr10 and Tr12 are n-channel types. Switch transistors Tr13 and Tr1
4 is also an n-channel type. Each embedded gate electrode of the n-channel transistor was connected at 106 and 112 to the wiring 250 to which a negative potential with respect to the source potential was applied.
The buried gate electrode of the p-channel transistor was connected at 105 and 111 to the wiring 150 to which a positive constant voltage was applied. The wiring 200 is a ground potential line, the wiring 100 is a power supply voltage line, and 126 and 127 are data lines. In the semiconductor integrated circuit device according to this embodiment, a normal memory operation can be realized by applying a voltage of desired polarity to the buried gate electrode for each of p-channel and n-channel transistors. This makes it possible to take advantage of the characteristics of the ultra-thin film transistor and achieve 1.3 times faster speed and soft error than conventional devices.
It has been possible to realize a semiconductor integrated circuit device including a semiconductor memory device that is resistant to aging.
【0019】実施例6 図12は、本発明による半導体集積回路装置を、命令や
演算を処理するプロセッサ500が、複数個並列に接続
された高速大型計算機に適用した例である。本実施例6
では、本発明による高速半導体集積回路装置の集積度が
高いため、命令や演算を処理するプロセッサ500や、
記憶制御装置501や、主記憶装置502等を、一辺が
約10〜30mmのシリコン半導体チップで構成でき
た。プロセッサ500と、記憶制御装置501と、化合
物半導体集積回路よりなるデータ通信インタフェース5
03を、同一セラミック基板506に実装した。また、
データ通信インタフェース503と、データ通信制御装
置504を、同一セラミック基板507に実装した。こ
れらセラミック基板506並びに507と、主記憶装置
502を実装したセラミック基板を、大きさが一辺約5
0cm程度、あるいはそれ以下の基板に実装し、大型計
算機の中央処理ユニット508を形成した。この中央処
理ユニット508内データ通信や、複数の中央処理ユニ
ット間データ通信、あるいはデータ通信インタフェース
503と入出力プロセッサ505を実装した基板509
との間のデータの通信は、図中の両端矢印線で示される
光ファイバ510を介して行なわれた。この計算機で
は、命令や演算を処理するプロセッサ500や、記憶制
御装置501や、主記憶装置502等のシリコン半導体
集積回路が、並列に高速で動作し、また、データの通信
を光を媒体に行なったため、1秒間当りの命令処理回数
を大幅に増加することができた。Embodiment 6 FIG. 12 is an example in which the semiconductor integrated circuit device according to the present invention is applied to a high-speed large-scale computer in which a plurality of processors 500 for processing instructions and operations are connected in parallel. Example 6
Since the high-speed semiconductor integrated circuit device according to the present invention has a high degree of integration, a processor 500 for processing instructions and operations,
The storage control device 501, the main storage device 502, and the like can be configured by a silicon semiconductor chip having a side of about 10 to 30 mm. Data communication interface 5 including processor 500, storage controller 501, and compound semiconductor integrated circuit
03 was mounted on the same ceramic substrate 506. Also,
The data communication interface 503 and the data communication control device 504 are mounted on the same ceramic substrate 507. These ceramic substrates 506 and 507 and the ceramic substrate on which the main memory device 502 is mounted have a size of about 5 per side.
A central processing unit 508 of a large-scale computer was formed by mounting on a substrate having a size of 0 cm or less. The data communication in the central processing unit 508, the data communication between a plurality of central processing units, or the board 509 on which the data communication interface 503 and the input / output processor 505 are mounted.
The communication of data between and was carried out via an optical fiber 510 indicated by a double-ended arrow line in the figure. In this computer, a processor 500 that processes instructions and operations, a silicon semiconductor integrated circuit such as a storage control device 501 and a main storage device 502 operate in parallel at high speed, and data communication is performed using light as a medium. Therefore, the number of instruction processings per second could be significantly increased.
【0020】[0020]
【発明の効果】本発明によれば従来のトランジスタに比
べて超高速動作が可能でソフトエラ-やラッチアップ不
良に耐性のあるSOIトランジスタに対して基板不純物
濃度やゲ−ト材料、さらにはゲ−ト絶縁膜厚等によらず
閾電圧値を各トランジスタ毎、あるいはトランジスタ群
毎に独立して制御できる。これにより種々の回路装置を
SOIトランジスタを含んで構成される半導体集積回路
装置で実現でき、かつ超高速で信頼性の高い半導体集積
回路装置を提供できる。According to the present invention, the substrate impurity concentration, the gate material, and the gate material for the SOI transistor which can operate at an ultra-high speed as compared with the conventional transistor and is resistant to the soft error and the latch-up failure. The threshold voltage value can be independently controlled for each transistor or each transistor group regardless of the insulating film thickness. As a result, various circuit devices can be realized by a semiconductor integrated circuit device including an SOI transistor, and a semiconductor integrated circuit device having an ultrahigh speed and high reliability can be provided.
【図1】従来の半導体集積回路装置であるSOIトラン
ジスタの構造を示す断面図である。FIG. 1 is a sectional view showing a structure of an SOI transistor which is a conventional semiconductor integrated circuit device.
【図2】本発明による半導体集積回路装置の実施例1の
製造工程を示す断面図である。FIG. 2 is a cross-sectional view showing the manufacturing process of the first embodiment of the semiconductor integrated circuit device according to the present invention.
【図3】本発明による半導体集積回路装置の実施例1の
製造工程を示す断面図である。FIG. 3 is a cross-sectional view showing the manufacturing process of Embodiment 1 of the semiconductor integrated circuit device according to the present invention.
【図4】本発明による半導体集積回路装置の実施例1の
製造工程を示す断面図である。FIG. 4 is a cross-sectional view showing the manufacturing process of Embodiment 1 of the semiconductor integrated circuit device according to the present invention.
【図5】本発明による半導体集積回路装置の実施例1の
製造工程を示す断面図である。FIG. 5 is a cross-sectional view showing the manufacturing process of Embodiment 1 of the semiconductor integrated circuit device according to the present invention.
【図6】本発明による半導体集積回路装置の実施例1の
等価回路を示す図である。FIG. 6 is a diagram showing an equivalent circuit of Example 1 of the semiconductor integrated circuit device according to the present invention.
【図7】本発明による半導体集積回路装置の実施例2の
等価回路を示す図である。FIG. 7 is a diagram showing an equivalent circuit of a second embodiment of the semiconductor integrated circuit device according to the present invention.
【図8】本発明による半導体集積回路装置の実施例3の
等価回路を示す図である。FIG. 8 is a diagram showing an equivalent circuit of a third embodiment of the semiconductor integrated circuit device according to the present invention.
【図9】本発明による半導体集積回路装置の実施例4の
構成を示す断面図である。FIG. 9 is a sectional view showing a configuration of a semiconductor integrated circuit device according to a fourth embodiment of the present invention.
【図10】本発明による半導体集積回路装置の実施例4
の等価回路を示す図である。FIG. 10 is a fourth embodiment of the semiconductor integrated circuit device according to the present invention.
It is a figure which shows the equivalent circuit of.
【図11】本発明による半導体集積回路装置の実施例5
の等価回路を示す図である。FIG. 11 is a fifth embodiment of the semiconductor integrated circuit device according to the present invention.
It is a figure which shows the equivalent circuit of.
【図12】本発明の半導体集積回路装置を使用した計算
機の構成図である。FIG. 12 is a configuration diagram of a computer using the semiconductor integrated circuit device of the present invention.
1:支持基板、 81、82:ドレ
イン領域、2:絶縁膜、91、92、93:金属電極、
3:半導体薄膜、 94:ビット線、
4:素子間分離絶縁膜、 100:電源電圧
線、5:ゲ−ト絶縁膜、 101:入
力、6:ゲ−ト電極、 102及び1
08:p型ドレイン領域、7:ソ−ス拡散層、
103及び109:p型ソ−ス領域、8:ドレ
イン拡散層、 120:出力、9:ソ−ス
電極、 126及び127:デ−タ
線、10:ドレイン電極、 150:正電
圧線、30:単結晶Si基板、 180及び250:負
電圧線、31:多結晶シリコン膜、 200:
接地電位線、32及び33:単結晶超薄膜、 50
0:命令や演算を処理するプロセッサ、34:低抵抗シ
リコン膜、 501:半導体集積回路(記憶制
御装置)、41:電極保護絶縁膜、 50
2:半導体集積回路(主記憶装置)、51:埋込ゲ−ト
絶縁膜、 503:データ通信インタフェー
ス、52:ゲ−ト酸化膜、 504:デー
タ通信制御装置、53:薄い絶縁膜、
505:入出力プロセッサ、61、62、66、661:埋込ゲ−ト
電極、 506、507:セラミック基板、63、64、6
5、651:ゲ−ト電極、 508:中央処理ユニッ
ト、71、72:ソ−ス領域、 509:入出
力プロセッサ実装基板、75、751:容量素子電極
510:データ通信用光ファイバ。1: support substrate, 81, 82: drain region, 2: insulating film, 91, 92, 93: metal electrode,
3: semiconductor thin film, 94: bit line,
4: element isolation insulating film, 100: power supply voltage line, 5: gate insulating film, 101: input, 6: gate electrode, 102 and 1
08: p-type drain region, 7: source diffusion layer,
103 and 109: p-type source region, 8: drain diffusion layer, 120: output, 9: source electrode, 126 and 127: data line, 10: drain electrode, 150: positive voltage line, 30: Single crystal Si substrate, 180 and 250: Negative voltage line, 31: Polycrystalline silicon film, 200:
Ground potential line, 32 and 33: single crystal ultra thin film, 50
0: Processor for processing instructions and operations, 34: Low resistance silicon film, 501: Semiconductor integrated circuit (memory control device), 41: Electrode protection insulating film, 50
2: semiconductor integrated circuit (main memory device), 51: embedded gate insulating film, 503: data communication interface, 52: gate oxide film, 504: data communication control device, 53: thin insulating film,
505: Input / output processor, 61, 62, 66, 661: Embedded gate electrode, 506, 507: Ceramic substrate, 63, 64, 6
5, 651: Gate electrode, 508: Central processing unit, 71, 72: Source area, 509: Input / output processor mounting board, 75, 751: Capacitance element electrode
510: Optical fiber for data communication.
Claims (11)
記絶縁膜の上側に少なくとも1つのMOSトランジスタ
を含む半導体集積回路が形成された装置であって、上記
MOSトランジスタの活性領域を形成する単結晶半導体
層のゲート酸化膜側と反対側に埋め込み絶縁膜及び上記
埋め込み絶縁膜上に設けられ埋め込み電極が形成された
ことを特徴とする半導体集積回路装置。1. A device in which a semiconductor integrated circuit including at least one MOS transistor is formed on an upper side of the insulating film of a support substrate on which a first insulating film is laminated, the active region of the MOS transistor being formed. A semiconductor integrated circuit device characterized in that a buried insulating film and a buried electrode provided on the buried insulating film are formed on the side of the single crystal semiconductor layer opposite to the gate oxide film side.
いて、上記埋め込み絶縁膜及び上記埋め込み電極と上記
第1の絶縁膜との間に電極保護絶縁膜と、多結晶シリコ
ン膜を介在させて構成されたことを特徴とする半導体集
積回路装置。2. The semiconductor integrated circuit device according to claim 1, wherein an electrode protection insulating film and a polycrystalline silicon film are interposed between the buried insulating film and the buried electrode and the first insulating film. A semiconductor integrated circuit device characterized by the above.
置において、上記MOSトランジスタは複数個であり、
上記複数個のMOSトランジスタに対応する複数の埋め
込み電極に選択的に同一又は異なる電圧を加える回路が
付加されたことを特徴とする半導体集積回路装置。3. The semiconductor integrated circuit device according to claim 1, wherein a plurality of the MOS transistors are provided,
A semiconductor integrated circuit device, wherein a circuit for selectively applying the same or different voltages is added to a plurality of embedded electrodes corresponding to the plurality of MOS transistors.
置において、上記MOSトランジスタは複数個であり、
上記複数個の一部のMOSトランジスタの単結晶半導体
層は第一の導電型であり、上記複数個の他の一部のMO
Sトランジスタの単結晶半導体層は第二の導電型であ
り、上記第一の導電型のMOSトランジスタに設けられ
た上記埋め込み電極は第一の一定電位に固定され、上記
第二の導電型のMOSトランジスタに設けられた上記埋
め込み電極は第二の一定電位に固定されたことを特徴と
する半導体集積回路装置。4. The semiconductor integrated circuit device according to claim 1 or 2, wherein a plurality of the MOS transistors are provided,
The single crystal semiconductor layers of the plurality of some of the MOS transistors are of the first conductivity type, and the other part of the plurality of MO transistors of the plurality of MO transistors are
The single crystal semiconductor layer of the S transistor is of the second conductivity type, the embedded electrode provided in the first conductivity type MOS transistor is fixed at a first constant potential, and the second conductivity type MOS transistor is fixed. A semiconductor integrated circuit device, wherein the embedded electrode provided in the transistor is fixed to a second constant potential.
装置において、上記MOSトランジスタは複数個であ
り、上記複数個のMOSトランジスタの1部は同一導電
型の単結晶半導体層で、かつ上記埋め込み電極に加えら
れる固定電圧が異なることを特徴とする半導体集積回路
装置。5. The semiconductor integrated circuit device according to claim 1, wherein there are a plurality of the MOS transistors, and a part of the plurality of MOS transistors is a single crystal semiconductor layer of the same conductivity type, and A semiconductor integrated circuit device characterized in that a fixed voltage applied to an embedded electrode is different.
置において、上記MOSトランジスタは複数個であり、
上記MOSトランジスタの活性層を形成する単結晶半導
体層の上記埋め込み電極側の1部に容量素子が形成さ
れ、上記上記MOSトランジスタのそれぞれが記憶素子
の1単位であるように半導体素子が構成されていること
を特徴とする半導体集積回路装置。6. The semiconductor integrated circuit device according to claim 1 or 2, wherein a plurality of the MOS transistors are provided,
A capacitive element is formed in a part of the single crystal semiconductor layer forming the active layer of the MOS transistor on the embedded electrode side, and the semiconductor element is configured such that each of the MOS transistors is a unit of a memory element. A semiconductor integrated circuit device characterized in that.
置において、上記上記MOSトランジスタは複数個であ
り、その少なくとも一部は相補形MOSインバータ回路
を構成することを特徴とする半導体集積回路装置。7. The semiconductor integrated circuit device according to claim 1, wherein the MOS transistor is plural, and at least a part of the MOS transistor forms a complementary MOS inverter circuit. ..
置において、上記上記MOSトランジスタは複数個であ
り、その少なくとも一部はフリップ・フロップ回路を構
成することを特徴とする半導体集積回路装置。8. The semiconductor integrated circuit device according to claim 1, wherein the MOS transistor is plural, and at least a part of the MOS transistor constitutes a flip-flop circuit.
体集積回路装置で少なくとも一部が構成されたことを特
徴とする電子計算機。9. An electronic computer comprising at least a part of the semiconductor integrated circuit device according to claim 1. Description:
埋め込みゲ-ト電極、配線保護膜及び多結晶半導体層を
順に積層した第一の半導体基板を作る工程と、多結晶半
導体層の主表面に絶縁膜膜を形成した第二の半導体基板
を作る工程と、上記第一の半導体基板の単結晶基板の面
と第二の半導体基板の多結晶半導体層の面とを貼合せた
多層構造半導体基板を作る工程と、上記多層構造半導体
基板の第一の半導体基板の単結晶基板を研磨し、MOS
トランジスタの単結晶半導体層を形成する工程と、上記
形成された単結晶半導体層上にMOS型トランジスタを
形成する工程とを含む半導体集積回路装置の製造方法。10. A gate insulating film embedded in a single crystal substrate,
A step of forming a first semiconductor substrate in which a buried gate electrode, a wiring protective film and a polycrystalline semiconductor layer are sequentially laminated, and a step of forming a second semiconductor substrate in which an insulating film is formed on the main surface of the polycrystalline semiconductor layer. And a step of making a multilayer structure semiconductor substrate in which the surface of the single crystal substrate of the first semiconductor substrate and the surface of the polycrystalline semiconductor layer of the second semiconductor substrate are bonded together, Polishing a single crystal substrate of a semiconductor substrate, MOS
A method of manufacturing a semiconductor integrated circuit device, comprising: a step of forming a single crystal semiconductor layer of a transistor; and a step of forming a MOS transistor on the formed single crystal semiconductor layer.
込みゲ−ト絶縁膜、埋め込みゲ−ト電極、配線保護膜及
び多結晶半導体層を形成した第一の半導体基板と第一の
半導体基板を作る工程と、主表面に酸化膜を形成した第
二の半導体基板を作る工程と、上記第一の半導体基板の
単結晶基板の面と第二の半導体基板の多結晶半導体層の
面とを貼合せた多層構造半導体基板を作る工程と、上記
多層構造半導体基板の第一の半導体基板裏面側から研削
及び研磨で薄化させ、素子間分離絶縁膜の裏面で規定さ
れる面まで第一の半導体基板を選択研磨することにより
多層構造半導体基板の主表面を形成する工程と、上記選
択研磨により上記素子間分離絶縁膜で分離された単結晶
半導体層上にMOS型トランジスタを形成する工程とを
含む半導体集積回路装置の製造方法。11. A first semiconductor substrate and a first semiconductor substrate in which an element isolation insulating film, a buried gate insulating film, a buried gate electrode, a wiring protective film and a polycrystalline semiconductor layer are formed on a single crystal substrate. And a step of forming a second semiconductor substrate having an oxide film formed on the main surface thereof, and a surface of the single crystal substrate of the first semiconductor substrate and a surface of the polycrystalline semiconductor layer of the second semiconductor substrate. The step of making a laminated multi-layered semiconductor substrate, thinning from the back surface side of the first semiconductor substrate of the above-mentioned multi-layered semiconductor substrate by grinding and polishing, and the first surface up to the surface defined by the back surface of the element isolation insulating film A step of forming a main surface of the multilayer structure semiconductor substrate by selectively polishing the semiconductor substrate; and a step of forming a MOS type transistor on the single crystal semiconductor layer separated by the element isolation insulating film by the selective polishing. Semiconductor integrated circuit including Device manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3333454A JPH05167073A (en) | 1991-12-17 | 1991-12-17 | Semiconductor integrated circuit device and fabrication thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3333454A JPH05167073A (en) | 1991-12-17 | 1991-12-17 | Semiconductor integrated circuit device and fabrication thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05167073A true JPH05167073A (en) | 1993-07-02 |
Family
ID=18266268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3333454A Pending JPH05167073A (en) | 1991-12-17 | 1991-12-17 | Semiconductor integrated circuit device and fabrication thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05167073A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1114991C (en) * | 1997-02-14 | 2003-07-16 | 日本电气株式会社 | Oscilation circuit and delay circuit |
WO2008081740A1 (en) * | 2006-12-28 | 2008-07-10 | National Institute Of Advanced Industrial Science And Technology | Sram cell and sram device |
JP2011192373A (en) * | 2010-03-11 | 2011-09-29 | Soi Tec Silicon On Insulator Technologies | Nano-sense amplifier for memory |
JP2012079399A (en) * | 2010-09-10 | 2012-04-19 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
JP2012146965A (en) * | 2010-12-24 | 2012-08-02 | Semiconductor Energy Lab Co Ltd | Semiconductor circuit and driving method therefor, and storage device, register circuit, display unit and electronic apparatus |
US20120275254A1 (en) * | 2011-04-26 | 2012-11-01 | Soitec | Differential sense amplifier without dedicated precharge transistors |
JP2012238373A (en) * | 2011-04-26 | 2012-12-06 | Soytec | Differential sense amplifier without switch transistor |
US8664712B2 (en) | 2009-12-08 | 2014-03-04 | Soitec | Flash memory cell on SeOI having a second control gate buried under the insulating layer |
JP2015216386A (en) * | 2009-11-27 | 2015-12-03 | 株式会社半導体エネルギー研究所 | Semiconductor device |
JP2018046288A (en) * | 2010-08-27 | 2018-03-22 | 株式会社半導体エネルギー研究所 | Semiconductor device |
-
1991
- 1991-12-17 JP JP3333454A patent/JPH05167073A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1114991C (en) * | 1997-02-14 | 2003-07-16 | 日本电气株式会社 | Oscilation circuit and delay circuit |
JP5004251B2 (en) * | 2006-12-28 | 2012-08-22 | 独立行政法人産業技術総合研究所 | SRAM cell and SRAM device |
US8040717B2 (en) | 2006-12-28 | 2011-10-18 | National Institute Of Advanced Industrial Science And Technology | SRAM cell and SRAM device |
WO2008081740A1 (en) * | 2006-12-28 | 2008-07-10 | National Institute Of Advanced Industrial Science And Technology | Sram cell and sram device |
JP2015216386A (en) * | 2009-11-27 | 2015-12-03 | 株式会社半導体エネルギー研究所 | Semiconductor device |
US8664712B2 (en) | 2009-12-08 | 2014-03-04 | Soitec | Flash memory cell on SeOI having a second control gate buried under the insulating layer |
JP2011192373A (en) * | 2010-03-11 | 2011-09-29 | Soi Tec Silicon On Insulator Technologies | Nano-sense amplifier for memory |
US8625374B2 (en) | 2010-03-11 | 2014-01-07 | Soitec | Nano-sense amplifier |
JP2021073738A (en) * | 2010-08-27 | 2021-05-13 | 株式会社半導体エネルギー研究所 | Semiconductor device |
US10297322B2 (en) | 2010-08-27 | 2019-05-21 | Semiconductor Energy Laboratory Co., Ltd. | Memory device with a driving circuit comprising transistors each having two gate electrodes and an oxide semiconductor layer |
KR20190053300A (en) * | 2010-08-27 | 2019-05-17 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Memory device and semiconductor device |
JP2018046288A (en) * | 2010-08-27 | 2018-03-22 | 株式会社半導体エネルギー研究所 | Semiconductor device |
JP2012079399A (en) * | 2010-09-10 | 2012-04-19 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
JP2016042407A (en) * | 2010-09-10 | 2016-03-31 | 株式会社半導体エネルギー研究所 | Semiconductor device |
JP2012146965A (en) * | 2010-12-24 | 2012-08-02 | Semiconductor Energy Lab Co Ltd | Semiconductor circuit and driving method therefor, and storage device, register circuit, display unit and electronic apparatus |
US9735179B2 (en) | 2010-12-24 | 2017-08-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor circuit, method for driving the same, storage device, register circuit, display device, and electronic device |
US9111593B2 (en) | 2011-04-26 | 2015-08-18 | Soitec | Differential sense amplifier without dedicated precharge transistors |
US8953399B2 (en) | 2011-04-26 | 2015-02-10 | Soitech | Differential sense amplifier without dedicated pass-gate transistors |
JP2012238373A (en) * | 2011-04-26 | 2012-12-06 | Soytec | Differential sense amplifier without switch transistor |
US20120275254A1 (en) * | 2011-04-26 | 2012-11-01 | Soitec | Differential sense amplifier without dedicated precharge transistors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7528463B2 (en) | Semiconductor on insulator structure | |
KR100372478B1 (en) | Having a single crystal semiconductor film formed on an insulating film Laminated structure and its manufacturing method | |
EP0299087A1 (en) | Semiconductor device and method of fabricating the same | |
JP2002184993A (en) | Semiconductor device | |
JPH05167073A (en) | Semiconductor integrated circuit device and fabrication thereof | |
KR20010070479A (en) | Buried metal body contact structure and method for fabricating soi mosfet devices | |
JPH04206766A (en) | Manufacture of semiconductor device | |
JPS58204568A (en) | Semiconductor device | |
JPS601861A (en) | Semiconductor integrated circuit device | |
JPH03220766A (en) | Mos type dram device | |
JPS59224165A (en) | Semiconductor device | |
JP3980670B2 (en) | Semiconductor device | |
JPH08222705A (en) | Complementary semiconductor device | |
JPS5835969A (en) | Semiconductor device | |
JPH0695528B2 (en) | Method for manufacturing semiconductor device | |
JP2597750B2 (en) | Method for manufacturing semiconductor device | |
JPH0521763A (en) | Semiconductor substrate, device and its manufacturing method | |
JPH04176165A (en) | Semiconductor device and manufacture thereof | |
JP2006066928A (en) | Method of manufacturing semiconductor device | |
JPS58140151A (en) | Semiconductor integrated circuit device | |
JPH0864827A (en) | Semiconductor device and method of fabrication thereof | |
JPH08102501A (en) | Semiconductor device | |
JPH0621456A (en) | Semiconductor device and manufacture thereof | |
JPH05183166A (en) | Soi type semiconductor device and manufacture thereof | |
JPH05326957A (en) | Semiconductor device and its production |