JPH05166531A - Manufacture of solid electrolyte fuel cell - Google Patents

Manufacture of solid electrolyte fuel cell

Info

Publication number
JPH05166531A
JPH05166531A JP3328857A JP32885791A JPH05166531A JP H05166531 A JPH05166531 A JP H05166531A JP 3328857 A JP3328857 A JP 3328857A JP 32885791 A JP32885791 A JP 32885791A JP H05166531 A JPH05166531 A JP H05166531A
Authority
JP
Japan
Prior art keywords
substrate
electrode
porous
fuel cell
auxiliary material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3328857A
Other languages
Japanese (ja)
Inventor
Takayoshi Yoshimura
尊義 吉村
Masanori Sato
正紀 佐藤
Toshio Arai
敏夫 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP3328857A priority Critical patent/JPH05166531A/en
Priority to US07/988,733 priority patent/US5372895A/en
Priority to DE4241884A priority patent/DE4241884C2/en
Publication of JPH05166531A publication Critical patent/JPH05166531A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To surely and stably retain a porous substrate or electrode by arranging an auxiliary member on an inner wall of fitting hole of a hollow fine quality substrate, and fitting the porous substrate or electrode via this auxiliary member. CONSTITUTION:A porous air electrode substrate 3 is fitted to a fitting hole of a fine quality substrate 1 via an adhesive agent 6 being an auxiliary member. An electrolytic film 4 is formed on the substrate 3 by means of plasma spraying. Then, a fuel electrode film is formed on the electrolytic film 4 by means of gas flame spraying, thus completing a cell part 2. Next, a conductive member 7 is formed on the fine quality substrate 1 by means of plasma spraying or gas flame spraying so that the cell parts 2 are connected to each other in series as well as in parallel. After completion of a process on one surface, a similar process is applied to the other surface of the fine quality substrate 1 so as to obtain a solid electrolyte fuel cell. These substrates can be thereby stably fixed to predetermined positions of the fitting holes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気化学反応を行わ
せ、電気エネルギーを取り出す固体電解質燃料電池の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a solid electrolyte fuel cell in which an electrochemical reaction is carried out to extract electric energy.

【0002】[0002]

【従来の技術】従来、細長い環状の多孔性、支持管の表
面に、内側環状電極、外側環状電極及びそれらの間に電
解質を備え、外側環状電極と電解質とを貫通して、そこ
に内側電極の選定された区分に導電性接続部材を備えた
第1電池と第2電池とを互いに隣接して配置し、第1電
池の内側環状電極と第2電池の外側環状電極とが、第1
電池の導電性接続部材と、第1電池と第2電池との間に
配された金属フェルトを介して直列に接続してなる固体
電解質燃料電池が知られている(特開昭57−130381号公
報参照)。
2. Description of the Related Art Conventionally, an elongated annular porous material is provided on the surface of a supporting tube with an inner annular electrode, an outer annular electrode and an electrolyte therebetween, and the inner annular electrode penetrates through the outer annular electrode and the electrolyte. A first battery and a second battery provided with a conductive connecting member adjacent to each other in a selected section of the first battery, and the inner annular electrode of the first battery and the outer annular electrode of the second battery are
There is known a solid electrolyte fuel cell in which a conductive connecting member of a battery and a first battery and a second battery are connected in series through a metal felt arranged between the first battery and the second battery (JP-A-57-130381). See the bulletin).

【0003】[0003]

【発明が解決しようとする課題】固体電解質燃料電池の
実用化に際し、その発電における高効率化が大きな課題
であり、そのため電池の薄膜化があらゆる面から検討さ
れている。その1つとして、反応生成物を排出しやすく
するためや、燃料を電極に取り込みやすくするため、燃
料を供給する多孔質材料からなる支持管を薄肉とするこ
とが、発電における高効率化を達成するのに有用である
と考えられている。
When a solid oxide fuel cell is put to practical use, high efficiency in power generation is a major issue, and therefore thinning of the cell is being studied from all aspects. As one of them, in order to make it easier to discharge the reaction products and to make it easier to take the fuel into the electrode, the support tube made of a porous material that supplies the fuel is made thin to achieve high efficiency in power generation. It is believed to be useful to

【0004】しかしながら、従来の固体電解質燃料電池
においては、電極、電解質、導電性接続部材などを支持
する必要があるとともに、第1電池においては第2電池
などの並列又は直列に接続される電池を、金属フェルト
を介して支持しなければならないため、支持管はある程
度の強度に耐えられるような肉厚に設定しなければなら
なかった。又、上記第1電池、第2電池などは各々が金
属フェルトを介して並列又は直列に接続しなければなら
ず、固体電解質燃料電池の組立てが容易に行えないなど
の問題を有していた。
However, in the conventional solid electrolyte fuel cell, it is necessary to support electrodes, electrolytes, conductive connecting members, etc., and in the first battery, a battery connected in parallel or in series such as the second battery is used. Since it must be supported through metal felt, the support tube had to be thick enough to withstand some strength. In addition, the first battery, the second battery, and the like have to be connected in parallel or in series via metal felts, which has a problem that the solid electrolyte fuel cell cannot be easily assembled.

【0005】こうした問題点を解消するため、本出願人
は、先に特願平 2−106610号として支持体(多孔質基体
又は内側電極)への必要強度を軽減することで支持体を
薄肉とし発電における高効率化を達成し、又、組立てが
容易に行える固体電解質燃料電池及びその製造方法を提
案した。
In order to solve these problems, the present applicant has previously made Japanese Patent Application No. 2-106610 to reduce the strength required for a support (a porous substrate or an inner electrode) to make the support thin. We have proposed a solid oxide fuel cell that achieves high efficiency in power generation and can be easily assembled, and a method of manufacturing the same.

【0006】この中で、特に第9〜11図に示されるタ
イプの固体電解質燃料電池は、複数の取付け穴を有する
中空の緻密質基板に多孔質基板又は一方側の電極を配
し、この表面に電解質、他方の電極、導電性部材を形成
する製造方法を示している。
Among them, in particular, a solid electrolyte fuel cell of the type shown in FIGS. 9 to 11 has a porous dense substrate or an electrode on one side arranged on a hollow dense substrate having a plurality of mounting holes, and its surface Shows the manufacturing method for forming the electrolyte, the other electrode, and the conductive member.

【0007】しかしながら、前記の9〜11図に示され
るタイプの固体電解質燃料電池においては、取付け穴及
び多孔質基板又は一方側の電極はもろい薄膜状であると
いう事情もあって、取付け穴に対して、すきまなく取付
けることは困難であり、取付け穴と多孔質基板又は電極
との間に隙間が生じるという問題が発生する。このた
め、次工程以降の電解質などの形成において、配置した
多孔質基板又は電極が取付け穴の所定箇所からはずれた
位置に取付けられたり、この表面に膜を形成する際、多
孔質基板又は電極が取付け穴内を移動し、成形している
膜を傷付けるといった問題を引き起こす。
However, in the solid electrolyte fuel cell of the type shown in FIGS. 9 to 11, the mounting hole and the porous substrate or the electrode on one side are in the form of a fragile thin film. Therefore, it is difficult to mount without a gap, and there arises a problem that a gap is formed between the mounting hole and the porous substrate or the electrode. Therefore, in the formation of the electrolyte or the like in the subsequent steps, the placed porous substrate or electrode is attached at a position deviated from the predetermined position of the attachment hole, or when forming a film on this surface, the porous substrate or electrode is It moves in the mounting hole and causes problems such as damage to the film being formed.

【0008】そこで、本発明は、前記取付け穴の所定位
置に取付けるべき多孔質基板又は電極を確実にかつ安定
した状態にて保持することができ、前記問題を解消する
ことができる固体電解質燃料電池の製造方法を提供する
ことを目的とするものである。
Therefore, according to the present invention, the porous substrate or the electrode to be mounted at the predetermined position of the mounting hole can be securely and stably held, and the above problems can be solved. It is an object of the present invention to provide a manufacturing method of.

【0009】[0009]

【課題を解決するための手段】本発明者は、鋭意検討し
た結果、中空緻密質基板の取付け穴の少なくとも内壁に
補助材を配設し、これを介して多孔質基板又は電極を取
付けることが有効であることを知見し、本発明に至っ
た。
As a result of earnest studies, the present inventor has found that an auxiliary material is provided on at least the inner wall of the attachment hole of the hollow dense substrate, and the porous substrate or the electrode can be attached through this. The present invention has been completed by finding that it is effective.

【0010】すなわち、本発明は、(1) 複数の取付け穴
を有する中空の緻密質基板の少なくとも該取付け穴の内
壁に補助材を配するとともに、該補助材を介して多孔質
支持基板を該取付け穴に取付け、次いで該多孔質支持基
板上に複数の電池部及び隣接する電池部を接続する導電
性部材を形成することを特徴とする固体電解質燃料電池
の製造方法及び(2) 複数の取付け穴を有する中空の緻密
質基板の少なくとも該取付け穴の内壁に補助材を配する
とともに、該補助材を介して空気電極又は燃料電極のい
ずれか一方の電極材からなる多孔質電極基板を該取付け
穴に取付け、次いで該多孔質電極基板上に複数の電池部
及び隣接する電池部を接続する導電性部材を形成するこ
とを特徴とする固体電解質燃料電池の製造方法である。
That is, according to the present invention, (1) an auxiliary material is provided on at least the inner wall of the mounting hole of a hollow dense substrate having a plurality of mounting holes, and the porous supporting substrate is provided through the auxiliary material. A method for manufacturing a solid electrolyte fuel cell, characterized by comprising mounting in a mounting hole, and then forming a plurality of battery parts and a conductive member for connecting adjacent battery parts on the porous support substrate, and (2) a plurality of mountings. An auxiliary material is arranged on at least the inner wall of the mounting hole of a hollow dense substrate having holes, and the porous electrode substrate made of either one of an air electrode and a fuel electrode is attached through the auxiliary material. A method for manufacturing a solid oxide fuel cell, which comprises mounting in a hole and then forming a conductive member for connecting a plurality of battery parts and adjacent battery parts on the porous electrode substrate.

【0011】上記のように、本発明は、取付け穴のある
中空の緻密質基板(第7図参照)に、多孔質支持基板又
は多孔質電極基板を設置する際、該取付け穴10の内壁
に配した補助材を介して行うことを特徴とする固体電解
質燃料電池(以下、単にSOFCと略記する)の製造方
法である。
As described above, according to the present invention, when the porous supporting substrate or the porous electrode substrate is installed on the hollow dense substrate having the mounting holes (see FIG. 7), the inner walls of the mounting holes 10 are mounted. It is a method for manufacturing a solid oxide fuel cell (hereinafter, simply referred to as SOFC), which is characterized in that it is carried out through an arranged auxiliary material.

【0012】本発明における電池部の第一のタイプは、
図8、図9に示すような層構成からなり、すなわち、空
気電極又は燃料電極のどちらか一方の電極材からなる多
孔質基板上に、電解質膜、もう一方の電極膜の順に積層
したものであり、第二のタイプは、図10、図11に示
すような層構成からなり、すなわち、支持体となる多孔
質基板上に、空気電極膜(もしくは燃料電極膜)、電解
質膜、燃料電極膜(もしくは空気電極膜)の順に積層し
たものである。
The first type of battery part in the present invention is
It has a layered structure as shown in FIGS. 8 and 9, that is, one in which an electrolyte membrane and the other electrode film are laminated in this order on a porous substrate made of either one of the air electrode or the fuel electrode. The second type has a layer structure as shown in FIGS. 10 and 11, that is, an air electrode film (or a fuel electrode film), an electrolyte film, and a fuel electrode film on a porous substrate serving as a support. (Or an air electrode film) in this order.

【0013】したがって、本発明においては、中空緻密
質基板の取付け穴に補助材を介して多孔質支持基板又は
電極(空気電極又は燃料電極)材からなる多孔質電極基
板を取付けた後、プラズマ溶射、ガスフレーム溶射、C
VD又はPVDの乾式法により、前者では一方の電極
膜、電解質膜、他方の電極膜を、又後者では電解質膜、
他方の電極膜をそれぞれ順次形成することにより電池部
が設けられる。
Therefore, in the present invention, after the porous support substrate or the porous electrode substrate made of the electrode (air electrode or fuel electrode) material is attached to the attachment hole of the hollow dense substrate via the auxiliary material, plasma spraying is performed. , Gas flame spraying, C
By the dry method of VD or PVD, one electrode film, an electrolyte film, the other electrode film in the former, and an electrolyte film in the latter,
The battery portion is provided by sequentially forming the other electrode films.

【0014】本発明に使用する中空の緻密質基板は、電
気的に絶縁体であるセラミクス材料が好ましく、例え
ば、アルミナ、マグネシア、またはその混合物が適して
いる。電解質膜は、イットリア安定化ジルコニア(以下
YSZと呼ぶ)などが適しており、多孔質電極基板およ
び電極膜は、空気電極については、アルカリ土類金属を
添加したLaMnO3やLaCoO3などが適しており、
燃料電極については、Ni−ジルコニアサーメットなど
が適している。
The hollow dense substrate used in the present invention is preferably an electrically insulating ceramic material, for example, alumina, magnesia, or a mixture thereof is suitable. Yttria-stabilized zirconia (hereinafter referred to as YSZ) or the like is suitable for the electrolyte membrane, and LaMnO 3 or LaCoO 3 to which an alkaline earth metal is added is suitable for the air electrode for the porous electrode substrate and the electrode film. Cage,
Ni-zirconia cermet or the like is suitable for the fuel electrode.

【0015】支持体となる多孔質基板は、開孔性セラミ
クス材料が好ましく、例えば、アルミナ、マグネシア、
およびその混合物、安定化ジルコニアなどが適している
が、電子的導電性を付与できればなお望ましい。
The porous substrate serving as a support is preferably a porous ceramic material, for example, alumina, magnesia,
And mixtures thereof, stabilized zirconia, and the like are suitable, but it is more desirable if electronic conductivity can be imparted.

【0016】本発明に使用する補助材は、中空緻密質基
板の取付け穴において、該取付け穴内壁部と電池部が形
成される多孔質支持基板又は多孔質電極基板との間に介
在することによりそれら基板を確実に安定して保持させ
るものである。
The auxiliary material used in the present invention is provided in the mounting hole of the hollow dense substrate by interposing between the inner wall of the mounting hole and the porous supporting substrate or the porous electrode substrate on which the battery portion is formed. The substrate is held reliably and stably.

【0017】このような補助材として、本発明において
は接着剤、又は取付け穴に嵌合する保持部材を用いるこ
とができる。図12、13に示すものは、保持部材の例
である。図12は底部にガスが自由に透過できるような
孔を有するもの、又図13は底部にリブを設けて補強し
たもので、いずれも上部において取付け穴の周縁部にて
係止するためのつば部を有している(図6参照)。保持
部材がこうした構造を有するので、中空緻密質基板の取
付け穴と、そこに取付けるべき多孔質基板との間に隙間
があっても、この保持部材を取付け穴に固定し、そこに
多孔質基板を嵌合又は載置することにより確実に安定し
て保持することができる。
In the present invention, as such an auxiliary material, an adhesive or a holding member that fits into the mounting hole can be used. 12 and 13 are examples of the holding member. FIG. 12 shows a bottom having a hole through which gas can freely pass, and FIG. 13 shows a bottom provided with a rib for reinforcement, both of which have a collar for locking at the peripheral edge of the mounting hole at the top. Part (see FIG. 6). Since the holding member has such a structure, even if there is a gap between the mounting hole of the hollow dense substrate and the porous substrate to be mounted therein, this holding member is fixed to the mounting hole, and the porous substrate is placed there. It is possible to surely and stably hold by fitting or mounting.

【0018】又、本発明において補助材が接着剤である
場合は、これが取付け穴内壁周囲に存在するように塗布
することにより形成する。好ましくは図4に示すように
基板1の中空部に設けた支持部材8と多孔質基板との間
にも接着剤6を配することにより一層確実に保持するこ
とができる。
In the present invention, when the auxiliary material is an adhesive, it is formed by applying it so that it exists around the inner wall of the mounting hole. Preferably, as shown in FIG. 4, the adhesive 6 is also provided between the support member 8 provided in the hollow portion of the substrate 1 and the porous substrate so that the adhesive can be held more reliably.

【0019】上記保持部材は、Ni基超耐熱合金等の耐
熱性の金属材料から構成され、又、接着剤はアルミナ、
シリカ、ジルコニアなどを母材とした、酸化還元雰囲気
で安定かつ緻密化するセラミクス系のものが好ましい。
この場合、金属、サーメット、伝導性セラミクスなどの
電気伝導性物質を用いると接着剤は内側電極の集電極と
して作用し、電極部と緻密性基板との熱移動も円滑にな
る。
The holding member is made of a heat resistant metal material such as a Ni-base super heat resistant alloy, and the adhesive is alumina.
A ceramic-based material that is stable and densified in an oxidation-reduction atmosphere, using silica, zirconia, or the like as a base material is preferable.
In this case, if an electrically conductive substance such as metal, cermet, or conductive ceramics is used, the adhesive acts as a collector electrode of the inner electrode, and heat transfer between the electrode portion and the dense substrate is also facilitated.

【0020】又、導電性部材は、電子的導電性を持ち酸
化還元雰囲気で安定な材料で、例えば、LaCrO3
アルカリ土類金属を添加したペロブスカイト型酸化物な
どが適している。この場合、導電性部材と接着剤とは同
一材料とし、接着剤と導電性部材との構成を同時に行な
うこともできる。
The conductive member is a material that has electronic conductivity and is stable in a redox atmosphere, and for example, a perovskite type oxide obtained by adding an alkaline earth metal to LaCrO 3 is suitable. In this case, the conductive member and the adhesive can be made of the same material, and the adhesive and the conductive member can be configured at the same time.

【0021】なお、上記SOFC構成要素のうち、中空
の緻密質基板は、押出し成形により作製し、多孔質電極
基板や多孔質支持基板は、ドクターブレード法、粉末プ
レス法などにより作製する。
Among the above SOFC components, the hollow dense substrate is produced by extrusion molding, and the porous electrode substrate and the porous supporting substrate are produced by the doctor blade method, powder pressing method, or the like.

【0022】また、電極膜、電解質膜、導電性部材、ガ
スシール膜の作製は、プラズマ溶射、ガスフレーム溶
射、CVD、PVDの様な乾式法、またはスクリーン印
刷法、ディッピング法のような湿式法などの成膜技術に
より行う。本発明においては、特に乾式法による成膜が
好ましい。
Further, the electrode film, the electrolyte film, the conductive member, and the gas seal film are produced by a dry method such as plasma spraying, gas flame spraying, CVD, PVD, or a wet method such as a screen printing method or a dipping method. It is performed by a film forming technique such as. In the present invention, film formation by a dry method is particularly preferable.

【0023】[0023]

【作用】本発明のSOFCについて、電池部の多孔質電
極基板が空気電極の場合について説明する。SOFCを
約1000℃に保持し、緻密質基板の中空部に酸素を供給し
し、燃料電極側の緻密質基板外部に水素を供給すること
により、電気化学反応が起こり、電気エネルギーを発生
する。
In the SOFC of the present invention, the case where the porous electrode substrate of the battery part is the air electrode will be described. By holding SOFC at about 1000 ° C., supplying oxygen to the hollow portion of the dense substrate and supplying hydrogen to the outside of the dense substrate on the fuel electrode side, an electrochemical reaction occurs and electric energy is generated.

【0024】[0024]

【実施例】以下、本発明の第一の実施例を図面を基づい
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings.

【0025】図1は、SOFC全体の概略を示す平面図
であり、図2、図3は、それぞれY−Y線による断面
図、X−X線による断面図である。
FIG. 1 is a plan view showing the outline of the SOFC as a whole, and FIGS. 2 and 3 are sectional views taken along the line YY and XX, respectively.

【0026】緻密質基板1は、アルミナを原料として押
出し成形した後、電池部取付け穴を適宜開け、これを14
00℃〜1700℃で焼成することにより製造する。
The dense substrate 1 is formed by extruding alumina as a raw material, and then a battery portion mounting hole is appropriately opened.
It is manufactured by firing at 00 ° C to 1700 ° C.

【0027】別に、La0.8Sr0.2MnO3を原料とし
て、ドクターブレード法でグリーン膜を作り、カッター
で切断した後、1200℃〜1500℃で焼成し、多孔質空気電
極基板3を得る。
Separately, using La 0.8 Sr 0.2 MnO 3 as a raw material, a green film is formed by a doctor blade method, cut with a cutter, and then baked at 1200 ° C. to 1500 ° C. to obtain a porous air electrode substrate 3.

【0028】前記緻密質基板1の取付け穴に、補助材と
しての接着剤6を介して前記多孔質空気電極基板3を取
付ける。
The porous air electrode substrate 3 is attached to the mounting hole of the dense substrate 1 with an adhesive 6 as an auxiliary material.

【0029】次に、多孔質空気電極基板3に電流取り出
し部分のマスキングを施し、プラズマ溶射法でイットリ
ア安定化ジルコニアを溶射し、電解質膜4を作製する。
Next, the porous air electrode substrate 3 is masked at the current extraction portion, and yttria-stabilized zirconia is sprayed by the plasma spraying method to form the electrolyte membrane 4.

【0030】更に、電解質膜4上にマスキングを施し、
ガスフレーム溶射法でNiO−YSZを溶射して燃料電
極膜を形成し、電池部2が完成する。
Further, masking is applied on the electrolyte membrane 4,
NiO-YSZ is sprayed by a gas flame spraying method to form a fuel electrode film, and the cell unit 2 is completed.

【0031】次いで、緻密質基板にマスキングを施し、
LaMgCrO3をプラズマ溶射法もしくは、ガスフレ
ーム溶射法により溶射することにより、導電性部材7が
形成され、電池部2は、直列かつ並列に接続される。
Next, the dense substrate is masked,
The conductive member 7 is formed by spraying LaMgCrO 3 by the plasma spraying method or the gas flame spraying method, and the battery parts 2 are connected in series and in parallel.

【0032】片面終了後、緻密質基板1のもう一方の面
に、上記と同様の作業を行うことにより、SOFCが製
造される。なお、導電性部材7を形成する前に、アルミ
ナをプラズマ溶射法により溶射してガスシ−ル膜を形成
することもできる。
After the completion of one surface, the other surface of the dense substrate 1 is subjected to the same operation as described above to manufacture the SOFC. Before forming the conductive member 7, alumina may be sprayed by a plasma spraying method to form a gas seal film.

【0033】次に、第二の実施例を、図5に基づいて説
明する。
Next, a second embodiment will be described with reference to FIG.

【0034】図5(イ)〜(ニ)は、SOFCの製造工
程を説明するものである。
FIGS. 5 (a) to 5 (d) illustrate the SOFC manufacturing process.

【0035】この例においては、(イ)緻密質基板1の
取付け穴に補助材としての接着剤6を穴の内周面及び基
板1の中空部に設けた支持部材8上に塗布して、多孔質
空気電極基板3を取付け、次いで(ロ)隣接する電池部
との間に導電性部材7を設け、さらに(ハ)電解質膜
4、(ニ)燃料電極膜5を順次設けた態様であり、その
他の使用材料、製造方法等は、前記実施例と同様であ
る。
In this example, (a) the adhesive 6 as an auxiliary material is applied to the mounting hole of the dense substrate 1 on the inner peripheral surface of the hole and the supporting member 8 provided in the hollow portion of the substrate 1, This is a mode in which the porous air electrode substrate 3 is attached, then (b) a conductive member 7 is provided between adjacent battery parts, and (c) an electrolyte membrane 4 and (d) a fuel electrode membrane 5 are sequentially provided. The other materials used, the manufacturing method, and the like are the same as those in the above embodiment.

【0036】完成したSOFCを約1000℃に保持し、緻
密質基板1の中空部9に酸素を供給し、燃料電極側に水
素を供給することにより、発電を行うことができる。
Power generation can be performed by keeping the completed SOFC at about 1000 ° C., supplying oxygen to the hollow portion 9 of the dense substrate 1 and supplying hydrogen to the fuel electrode side.

【0037】なお、補助材として接着剤の例を示した
が、図6に示すように図12、13に図示したような保
持部材14を補助材として用いて実施例1と同様にSO
FCを製造することができる。又、緻密質基板1、電池
部2、マスキングなどの形状に関しては、上記実施例に
限らず、他の形状であってもよいし、電池部2に多孔質
支持基板を用いた構造のSOFCであっても、また燃料
電極を中空部9側にした場合でも、上記製造方法による
効果は、同様である。
Although an example of an adhesive is shown as an auxiliary material, as shown in FIG. 6, the holding member 14 as shown in FIGS.
FC can be manufactured. Further, the shapes of the dense substrate 1, the battery portion 2, the masking, etc. are not limited to those in the above-described embodiment, and other shapes may be used. In the SOFC having a structure using the porous supporting substrate for the battery portion 2, Even if the fuel electrode is provided on the hollow portion 9 side, the effect of the above manufacturing method is the same.

【0038】[0038]

【発明の効果】以上詳述したように、本発明によれば、
機械加工により作成された取付け穴、多孔質支持基板及
び多孔質電極基板の寸法誤差または、多孔質支持基板及
び多孔質電極基板を焼成することにより発生する熱収縮
による寸法誤差により生じるこれらの間の隙間を補助材
を介在させることにより補正することができるととも
に、取付け穴の所定位置にこれらの基板を安定した状態
で固定することができる。又、固定された基板上に配さ
れる膜は、200μm程度の薄膜であるが、この薄膜の形成
において、固定された下層が安定しているため何ら支障
なく成膜することができる。特にこの成膜を乾式で行う
場合、一層有効である。
As described in detail above, according to the present invention,
Between mounting holes created by machining, dimensional error of porous support substrate and porous electrode substrate, or dimensional error due to thermal contraction generated by firing porous support substrate and porous electrode substrate The gap can be corrected by interposing an auxiliary material, and at the same time, these substrates can be fixed to the predetermined positions of the mounting holes in a stable state. Further, the film arranged on the fixed substrate is a thin film of about 200 μm, but in the formation of this thin film, since the fixed lower layer is stable, it can be formed without any trouble. In particular, it is more effective when this film formation is performed by a dry method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例に係るSOFCの概略を
示す平面図。
FIG. 1 is a plan view showing the outline of an SOFC according to a first embodiment of the present invention.

【図2】図1Y−Y線による断面図。FIG. 2 is a sectional view taken along line YY of FIG.

【図3】図1X−X線による断面図。FIG. 3 is a sectional view taken along line XX of FIG.

【図4】本発明の第二の実施例に係るSOFCの概略を
示す断面説明図。
FIG. 4 is an explanatory sectional view showing the outline of an SOFC according to a second embodiment of the present invention.

【図5】本発明の第二の実施例の各工程の説明図。FIG. 5 is an explanatory diagram of each step of the second embodiment of the present invention.

【図6】本発明において補助部材として保持部材を用い
た場合の説明図。
FIG. 6 is an explanatory view when a holding member is used as an auxiliary member in the present invention.

【図7】電池部取付け穴を加工した中空の緻密質基板の
一部内部構造を省略した斜視図。
FIG. 7 is a perspective view in which a partial internal structure of a hollow dense substrate having a battery portion mounting hole is omitted.

【図8】多孔質空気電極基板を使用した電池部の斜視
図。
FIG. 8 is a perspective view of a battery unit using a porous air electrode substrate.

【図9】多孔質燃料電極基板を使用した電池部の斜視
図。
FIG. 9 is a perspective view of a cell unit using a porous fuel electrode substrate.

【図10】多孔質支持基板に空気電極、電解質、燃料電
極の順に積層した電池部の斜視図。
FIG. 10 is a perspective view of a battery part in which an air electrode, an electrolyte, and a fuel electrode are laminated in this order on a porous support substrate.

【図11】多孔質支持基板に燃料電極、電解質、空気電
極の順に積層した電池部の斜視図。
FIG. 11 is a perspective view of a battery unit in which a fuel electrode, an electrolyte, and an air electrode are laminated in this order on a porous support substrate.

【図12】本発明に使用する補助材としての保持部材の
一例を説明する斜視図。
FIG. 12 is a perspective view illustrating an example of a holding member as an auxiliary material used in the present invention.

【図13】同別の例を説明する斜視図。FIG. 13 is a perspective view illustrating another example of the same.

【符号の説明】[Explanation of symbols]

1…緻密質基板 2…電池部 3…多孔質空気電極基板 4…電解質膜 5…燃料電極膜 6…接着剤 7…導電性部材 8…支持部材 9…中空部 10…電池部取付け穴 11…多孔質燃料電極基板 12…空気電極膜 13…多孔質支持基板 14…保持部材 DESCRIPTION OF SYMBOLS 1 ... Dense substrate 2 ... Battery part 3 ... Porous air electrode substrate 4 ... Electrolyte film 5 ... Fuel electrode film 6 ... Adhesive 7 ... Conductive member 8 ... Supporting member 9 ... Hollow part 10 ... Battery part mounting hole 11 ... Porous fuel electrode substrate 12 ... Air electrode film 13 ... Porous support substrate 14 ... Holding member

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の取付け穴を有する中空の緻密質基
板の少なくとも該取付け穴の内壁に補助材を配するとと
もに、該補助材を介して多孔質支持基板を該取付け穴に
取付け、次いで該多孔質支持基板上に複数の電池部及び
隣接する電池部を接続する導電性部材を形成することを
特徴とする固体電解質燃料電池の製造方法。
1. A hollow dense substrate having a plurality of mounting holes, at least an auxiliary material being disposed on an inner wall of the mounting hole, and a porous supporting substrate being mounted in the mounting hole through the auxiliary material, and then the A method for manufacturing a solid electrolyte fuel cell, comprising forming a conductive member that connects a plurality of battery parts and adjacent battery parts on a porous support substrate.
【請求項2】 複数の取付け穴を有する中空の緻密質基
板の少なくとも該取付け穴の内壁に補助材を配するとと
もに、該補助材を介して空気電極又は燃料電極のいずれ
か一方の電極材からなる多孔質電極基板を該取付け穴に
取付け、次いで該多孔質電極基板上に複数の電池部及び
隣接する電池部を接続する導電性部材を形成することを
特徴とする固体電解質燃料電池の製造方法。
2. An auxiliary material is provided on at least the inner wall of the mounting hole of a hollow dense substrate having a plurality of mounting holes, and an electrode material of either one of an air electrode or a fuel electrode is provided through the auxiliary material. And a conductive member for connecting a plurality of battery parts and adjacent battery parts is formed on the porous electrode substrate, and a method for manufacturing a solid electrolyte fuel cell, comprising: ..
【請求項3】 電池部の形成及び導電性部材の形成をプ
ラズマ溶射、ガスフレーム溶射、CVD又はPVDの乾
式法で行うことを特徴とする請求項1又は2記載の固体
電解質燃料電池の製造方法。
3. The method for producing a solid electrolyte fuel cell according to claim 1, wherein the formation of the cell portion and the formation of the conductive member are performed by a plasma spraying method, a gas flame spraying method, a CVD or a PVD dry method. ..
【請求項4】 補助材が接着剤又は耐熱性金属材料から
なる保持部材である請求項1又は2記載の固体電解質燃
料電池の製造方法。
4. The method for producing a solid oxide fuel cell according to claim 1, wherein the auxiliary material is a holding member made of an adhesive or a heat resistant metal material.
JP3328857A 1991-12-12 1991-12-12 Manufacture of solid electrolyte fuel cell Pending JPH05166531A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3328857A JPH05166531A (en) 1991-12-12 1991-12-12 Manufacture of solid electrolyte fuel cell
US07/988,733 US5372895A (en) 1991-12-12 1992-12-10 Solid oxide fuel cell and method for manufacturing the same
DE4241884A DE4241884C2 (en) 1991-12-12 1992-12-11 Solid oxide fuel cell and process for its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3328857A JPH05166531A (en) 1991-12-12 1991-12-12 Manufacture of solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH05166531A true JPH05166531A (en) 1993-07-02

Family

ID=18214870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3328857A Pending JPH05166531A (en) 1991-12-12 1991-12-12 Manufacture of solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH05166531A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051319A (en) * 2001-08-06 2003-02-21 Nissan Motor Co Ltd Cell plate for solid electrolyte type fuel cell and power generation unit
JP2005086127A (en) * 2003-09-11 2005-03-31 Tanaka Kikinzoku Kogyo Kk Method for forming bump on semiconductor device or wiring board
JP4800439B1 (en) * 2010-07-15 2011-10-26 日本碍子株式会社 Fuel cell structure
JP2012004523A (en) * 2010-05-17 2012-01-05 Nitto Denko Corp Method of manufacturing wiring circuit board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051319A (en) * 2001-08-06 2003-02-21 Nissan Motor Co Ltd Cell plate for solid electrolyte type fuel cell and power generation unit
JP2005086127A (en) * 2003-09-11 2005-03-31 Tanaka Kikinzoku Kogyo Kk Method for forming bump on semiconductor device or wiring board
JP2012004523A (en) * 2010-05-17 2012-01-05 Nitto Denko Corp Method of manufacturing wiring circuit board
JP4800439B1 (en) * 2010-07-15 2011-10-26 日本碍子株式会社 Fuel cell structure
JP2012124134A (en) * 2010-07-15 2012-06-28 Ngk Insulators Ltd Structure of fuel cell

Similar Documents

Publication Publication Date Title
EP0756347B1 (en) Solid oxide fuel cell
US5169731A (en) Solid oxide fuel cell and method for manufacturing the same
EP0617475B1 (en) Method of forming an interconnection layer by sintering on an electrode of an electrochemical cell
JPH04230954A (en) Fuel cell device and manufacture thereof
JP3102809B2 (en) Hollow thin plate solid electrolyte fuel cell
JP2730817B2 (en) Method for manufacturing solid electrolyte fuel cell
JP2002329511A (en) Stack for solid electrolyte fuel cell and solid electrolyte fuel cell
US5372895A (en) Solid oxide fuel cell and method for manufacturing the same
JP2599810B2 (en) Solid electrolyte fuel cell
US5429644A (en) Method of manufacturing solid oxide fuel cell
JPH05166531A (en) Manufacture of solid electrolyte fuel cell
JP2780885B2 (en) Solid electrolyte fuel cell
JPH06349516A (en) Stack for solid electrolyte type fuel cell
JPH06325779A (en) Stack for solid electrolytic fuel cell and its manufacture
JPH10134829A (en) Solid electrolyte fuel cell, solid electrolyte fuel cell assembly, manufacture of solid electrolyte fuel cell, and manufacture of solid electrolyte fuel cell assembly unit
JP2003263996A (en) Solid oxide fuel cell
JP2948399B2 (en) Support member for solid oxide fuel cell
JP3966950B2 (en) Electrochemical cell support, electrochemical cell and production method thereof
JP3102806B2 (en) Hollow solid electrolyte fuel cell
JP3310866B2 (en) Cylindrical horizontal stripe solid electrolyte fuel cell
JPH05166532A (en) Solid electrolyte fuel cell
JPH07130385A (en) Cylindrical lateral band type solid electrolyte electrolytic cell
JPH0696791A (en) Solid electrolytic fuel cell and its manufacture
JPH1050331A (en) Solid electrolyte fuel cell and manufacture thereof
JP2002358976A (en) Solid electrolyte fuel cell