JPH0516526Y2 - - Google Patents

Info

Publication number
JPH0516526Y2
JPH0516526Y2 JP1992016583U JP1658392U JPH0516526Y2 JP H0516526 Y2 JPH0516526 Y2 JP H0516526Y2 JP 1992016583 U JP1992016583 U JP 1992016583U JP 1658392 U JP1658392 U JP 1658392U JP H0516526 Y2 JPH0516526 Y2 JP H0516526Y2
Authority
JP
Japan
Prior art keywords
cylindrical body
light
axis
nuclear fuel
circumferential side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1992016583U
Other languages
Japanese (ja)
Other versions
JPH04106751U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1992016583U priority Critical patent/JPH04106751U/en
Publication of JPH04106751U publication Critical patent/JPH04106751U/en
Application granted granted Critical
Publication of JPH0516526Y2 publication Critical patent/JPH0516526Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】[0001]

【産業上の利用分野】 本考案は、加圧水型炉
(PWR)や沸騰水型炉(BWR)用の核燃料棒に
あつて、その被覆管内に収納して使用される核燃
料ペレツトなどの円柱状体につき、その周側面に
生じた欠け、クラツク、そして異物の付着等によ
る欠陥部を、自動的に検知できるようにした検査
装置に関する。
[Industrial Application Field] This invention is a nuclear fuel rod for a pressurized water reactor (PWR) or a boiling water reactor (BWR). The present invention relates to an inspection device that can automatically detect defects caused by chips, cracks, adhesion of foreign matter, etc. that occur on the circumferential surface.

【0002】[0002]

【従来の技術】 この種円柱状体(円柱、円筒を
含む)の周側面欠陥部を検知する手段としては、
均一光線または拡散光線を用いての画像処理が考
えられているが、これによるときは欠陥部と正常
部との差を判別することが困難、すなわち画像処
理におけるしきい値の設定ができない。 そこで従来実際に行われている当該検知手段と
しては、図4に示す通り円柱状体aを適宜の手段
により軸心線bを中心として矢印c方向に自転す
ると共に、当該軸心線bに沿つて円柱状体aを進
行(図面の前後方向)させ、一方この際円柱状体
aの一径線d上にあつて、光電素子等による受光
検出器eを配置し、さらに図示されていない投光
機からの入射光線fを、前記径線dとの交点箇所
gに照射するが、この際当該入射光線fは、交点
箇所gにおける接線hと所定角度θにて斜交する
よう入射させており、従つて当該円柱状体aの周
側面に欠陥部がなければ、同図aにあつてその反
射光線f′方向へ指向し、受光検出器eには受光さ
れず、欠陥部があつたときのみ、そこからの平常
でない反射光が受光検出器eにより検知されるよ
うになつている。
[Prior Art] As a means for detecting defects on the circumferential side of this type of cylindrical body (including columns and cylinders),
Image processing using uniform light beams or diffused light beams has been considered, but when using this method, it is difficult to distinguish between defective areas and normal areas, that is, it is not possible to set a threshold value in image processing. Therefore, as a detection means that has been actually used in the past, as shown in FIG. The cylindrical body a is moved forward (in the front-rear direction of the drawing), and at this time, a light-receiving detector e made of a photoelectric element or the like is arranged on the radial line d of the cylindrical body a, and a light-receiving detector e, which is not shown in the figure, is placed on the diameter line d of the cylindrical body a. The incident light beam f from the optical device is irradiated to the intersection point g with the meridian d, and at this time, the incident light beam f is made to enter so as to obliquely intersect the tangent h at the intersection point g at a predetermined angle θ. Therefore, if there is no defect on the circumferential surface of the cylindrical body a, the reflected light beam will be directed in the direction of f' as shown in figure a, and the light will not be received by the photodetector e, indicating that there is a defect. Only then is the unusual reflected light therefrom detected by the light receiving detector e.

【0003】 上記検知手段によれば、円柱状体aが
自転しながら進行するから、入射光線fによるス
ポツトとが円柱状体aの周側面に対して螺旋状走
査となり、同側面全域にわたり検査が行われるこ
とになるのであるが、この場合同手段では、図4
のbに示される通り、その軸心線bが極く僅かで
も変位してb′にずれたとすれば、入射光線fの照
射箇所はgではなくg′となり、その反射光線は
f″に指向することとなり、これがノイズとして受
光検出器eに受光されてしまうことにもなる。
[0003] According to the above-mentioned detection means, since the cylindrical body a advances while rotating, the spot caused by the incident light beam f scans the circumferential side of the cylindrical body a in a spiral pattern, and the inspection can be performed over the entire area of the same side surface. In this case, using the same method, as shown in Figure 4.
As shown in b, if the axis b is displaced even slightly and shifts to b', the irradiation point of the incident ray f will be g' instead of g, and the reflected ray will be
f'', and this light is received by the light receiving detector e as noise.

【0004】 この結果円柱状体a、受光検出器e、
入射光線fの各相対関係位置に、可成り高い精度
の調整が要求され、当該調整操作に時間と労力を
尽くさねばならないだけでなく、実際上円柱状体
aを自転進行させる際、その自転中心が全く変動
しない構成とすることは難事となるから、信号と
ノイズとの所謂S/N比も低下してしまうことに
なる。
[0004] As a result, the cylindrical body a, the light receiving detector e,
Each relative position of the incident light beam f is required to be adjusted with a fairly high degree of precision, and not only is it necessary to devote time and effort to the adjustment operation, but in reality, when the cylindrical body a is rotated, its center of rotation must be adjusted. Since it is difficult to create a configuration in which the signal does not vary at all, the so-called S/N ratio between the signal and the noise will also decrease.

【0005】 また、実開昭57−57339号、特開昭54
−108687号公報に明示の如く照射光源からの光を
円柱状体である被検査部材の表面にスポツト光と
して、照射し、その反射光を受光素子により受
け、これを検出回路で分析しようとするものが知
られているが、このようなものも、上記従来例と
同じく円柱状体の自転中心が変動してしまつたと
きには正しい検査ができないこととなる。
[0005] Also, Japanese Patent Application Publication No. 57-57339, Japanese Patent Application Publication No. 54
-As specified in Publication No. 108687, light from an irradiation light source is irradiated as a spot light onto the surface of a cylindrical member to be inspected, the reflected light is received by a light receiving element, and this is analyzed by a detection circuit. As with the conventional example described above, correct inspection cannot be carried out if the center of rotation of the cylindrical body changes.

【0006】[0006]

【考案が解決しようとする課題】 本考案は上記
の如き難点に鑑み検討されたものであつて、その
請求項1では上記検出器として受光軸心線に沿つ
て入射された光線にだけ感受する一次元受光素子
を用いるようにすると共に、被検査体である円柱
状体の周側面における照射曲面照射の平行光軸
を、上記一次受光素子の受光軸心線と直交状にす
ることで、円柱状体の軸心変位によるノイズの発
生を抑止可能となし、調整も容易で、しかも信頼
性の高い検査結果を得ようとするのが、その目的
である。
[Problem to be solved by the invention] The present invention has been studied in view of the above-mentioned difficulties, and claim 1 of the invention states that the detector is sensitive only to light rays incident along the light receiving axis. In addition to using a one-dimensional light receiving element, the parallel optical axis of the irradiation curved surface irradiation on the circumferential side of the cylindrical body to be inspected is made perpendicular to the light receiving axis center line of the primary light receiving element, thereby making it possible to achieve a circular The purpose is to make it possible to suppress the generation of noise due to the displacement of the axis of the columnar body, to facilitate adjustment, and to obtain highly reliable test results.

【0007】 そして、さらに請求項2では、上記請
求項1の考案に加えて円柱状体の自転装置を、適
切に配設した搬送用ベルトと位置決め用ガイド板
とにより構成することで、当該円柱状体の軸心振
れが生じ難い自転と進行を行わせ得るようにし
て、より一層そのS/N比をすぐれたものとな
し、かつ円柱状体の検査能率を向上させようとし
ている。
[0007] Furthermore, in claim 2, in addition to the invention of claim 1, the rotation device of the cylindrical body is configured by a conveyance belt and a positioning guide plate that are appropriately arranged, so that the rotation of the cylindrical body is An attempt is being made to allow the columnar body to rotate and advance without causing any axial runout, to further improve the S/N ratio, and to improve the inspection efficiency of the columnar body.

【0008】[0008]

【課題を解決するための手段】 本考案は上記の
目的を達成するため、請求項1にあつては、核燃
料ペレツト等の円柱状体が、軸心線を中心として
所望方向へ回転されるよう構成した自転装置と、
当該自転装置により回転する上記円柱状体の周側
面に向けて、所定の領域内に平行光線を照射する
投光機と、当該平行光線による上記円柱状体の照
射曲面側にあつて、上記平行光線と略直交状にし
て同円柱状体の軸心を実質的に通過する仮想線
に、受光軸心線が実質的に合致するよう配置した
一次元受光素子とからなることを特徴とする核燃
料ペレツト等円柱状体の周側面欠陥部自動検査装
置を提供しようとするものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method for rotating a cylindrical body such as a nuclear fuel pellet in a desired direction around an axial center line. The configured rotation device,
A projector that irradiates parallel light within a predetermined area toward the peripheral side of the cylindrical body rotated by the rotation device; A nuclear fuel comprising a one-dimensional light-receiving element arranged so that its light-receiving axis substantially coincides with an imaginary line that is substantially orthogonal to the light beam and passes substantially through the axis of the cylindrical body. It is an object of the present invention to provide an automatic inspection device for defects on the circumferential side of a cylindrical object such as a pellet.

【0009】 請求項2にあつては、請求項1におけ
る自転装置が、円柱状体を載置し投光機側へ向け
移行させると共に当該投光機側が上位となるよう
傾設された搬送用ベルトと、当該搬送用ベルトの
載置面と交差状に配置され前記円柱状体との回転
摺接面をもつた位置決め用ガイド板とからなり、
かつ当該ガイド板は、その回転摺接面が前記搬送
用ベルトの移行方向と、平面視にて斜交状配置と
なるよう当該ベルトの上位に配設されていること
を、その内容としている。
[0009] In the case of claim 2, the rotation device in claim 1 is a transportation device that places the cylindrical body and moves it toward the projector side, and is tilted so that the projector side is on the upper side. consisting of a belt, and a positioning guide plate disposed intersecting with the mounting surface of the conveying belt and having a rotating sliding contact surface with the cylindrical body,
Further, the guide plate is disposed above the conveyor belt so that its rotating sliding contact surface is obliquely arranged in a plan view with respect to the moving direction of the conveyor belt.

【0010】[0010]

【作用】 請求項1の場合は、投光機からの平行
光線が自転している円柱状の周側面である照射曲
面に入射され、ここでの反射光が、円柱状体の軸
心を通過する仮想線と合致する場合にのみ、一次
元受光素子が、これを受光することとなるので、
円柱状体が同上仮想線方向へ変動してしまうよう
なことがあつても、上記の平行光線と照射曲面と
の相対位置関係は不変であるので、一次元受光素
子にノイズ源となる入光はなく、円柱状体に欠陥
部があつて、はじめて入光があることとなる。
[Operation] In the case of claim 1, the parallel light beam from the projector is incident on the irradiation curved surface which is the circumferential side of the rotating columnar body, and the reflected light here passes through the axis of the columnar body. The one-dimensional light-receiving element will only receive the light if it matches the virtual line.
Even if the cylindrical body moves in the direction of the imaginary line, the relative positional relationship between the parallel rays and the irradiation curved surface remains unchanged. Instead, there is a defect in the cylindrical body, and light enters for the first time.

【0011】 また、円柱状体が上記仮想線と直交す
る方向へ変動してしまつたとしても、前記と同じ
く平行光線と照射曲面との相対位置関係は不変で
あり、従つて、このような場合にも不本意なノイ
ズの発生がなく、円柱状体の変動に拘らず、正し
く欠陥部の検知が行われることとなる。
[0011] Furthermore, even if the cylindrical body moves in a direction perpendicular to the above-mentioned imaginary line, the relative positional relationship between the parallel rays and the irradiation curved surface remains unchanged as described above, so in such a case There is no generation of unwanted noise, and defective portions can be detected correctly regardless of fluctuations in the cylindrical body.

【0012】 請求項2によるときは、搬送用ベルト
が所定の移行方向へ傾斜状体にて稼動し、かつ、
位置決め用ガイドと接しているので、円柱状体の
回転位置が正常状態に保持されるだけでなく、上
記位置決め用ガイドと搬送用ベルトの移行方向と
が斜交状態であることから、円柱状体は自転しな
がら円柱状体の軸心方向へ移行され、これによ
り、円柱状体はその全周側面にわたる欠陥部の有
無を検査され、最終的には搬送ベルトから離脱さ
れることとなるので、その後の処理が行い易くな
る。
[0012] According to claim 2, the conveyor belt operates in a tilted body in a predetermined transition direction, and
Since it is in contact with the positioning guide, the rotational position of the columnar body is not only maintained in a normal state, but also because the positioning guide and the direction of movement of the conveyor belt are in an oblique state, the columnar body is transferred toward the axis of the cylindrical body while rotating, and as a result, the cylindrical body is inspected for defects over its entire circumferential side surface, and is finally separated from the conveyor belt. Subsequent processing becomes easier.

【0013】[0013]

【実施例】 本考案を図1ないし図3によつて詳
記すると、投光機1と一次元受光素子2および自
転装置3を具備しており、投光機1は所定の領域
内にあつて平行光線Lを照射でき、この際、当該
光線Lの種類としては、後述一次元受光素子2の
特性と対応するものであれば、タングステンフイ
ラメント電球からの発光、蛍光灯からの発光、レ
ーザ光、ストロボ光、赤外光、紫外光などを用い
ることができる。 前記請求項1の考案では、核燃料ペレツト等の
円柱状体Aを、その軸心線Bが中心となるよう右
または左回転させ得る適宜の自転装置3によつて
自転させ、当該円柱状体Aの周側面A′にあつて、
図中その上半部へ向け、前記の投光機1から平行
光線Lを照射し、これによつて図1のbに示す如
き照射曲面Sが得られるようにする。
[Example] The present invention will be described in detail with reference to FIGS. 1 to 3. The present invention is equipped with a projector 1, a one-dimensional light receiving element 2, and an autorotation device 3, and the projector 1 is located within a predetermined area. In this case, the type of the light beam L may be light emitted from a tungsten filament light bulb, light emitted from a fluorescent lamp, or laser light, as long as it corresponds to the characteristics of the one-dimensional light receiving element 2 described later. , strobe light, infrared light, ultraviolet light, etc. can be used. In the invention of claim 1, a cylindrical body A such as a nuclear fuel pellet is rotated by an appropriate rotation device 3 that can rotate the cylindrical body A to the right or left so that its axis line B becomes the center. On the circumferential side A′ of
In the figure, parallel light beams L are irradiated from the projector 1 toward the upper half thereof, so that an irradiation curved surface S as shown in b in FIG. 1 is obtained.

【0014】 そして、前記一次元受光素子2は、そ
の受光軸心線Y′が、上記平行光線Lと略直交状
にして、かつ、円柱状体Aの軸心を通過する仮想
線Yと、実質的に合致するよう配置するのであ
る。 ここで、上記一次元受光素子2は、前記平行光
線Lが円柱状体Aの周側面A′における照射曲面
Sより反射した際にあつて、当該反射光が、上記
仮想線Yと実質的に合致するものであつた際に、
この反射光を受光し得る特性を有しており、従つ
て図1、図2の如き状態にあつて、この円柱状体
Aが仮想線Y方向すなわち、実際上は上方へ変移
するようなことがあつても、平行光線Lと照射曲
面Sとの相対関係は不変であるから、周側面
A′に図1のcに示す如き欠陥部Wがない限り、
一次元受光素子2にノイズ源となる入光はない。
[0014] The one-dimensional light-receiving element 2 has a light-receiving axis Y' that is substantially orthogonal to the parallel light beam L and a virtual line Y that passes through the axis of the cylindrical body A. They are arranged so that they substantially match. Here, in the one-dimensional light receiving element 2, when the parallel light ray L is reflected from the irradiation curved surface S on the circumferential surface A' of the cylindrical body A, the reflected light is substantially parallel to the virtual line Y. When there is a match,
It has the characteristic of being able to receive this reflected light, and therefore, in the state shown in FIGS. Even if
Unless there is a defective part W in A' as shown in c in Fig. 1,
No light enters the one-dimensional light-receiving element 2 and becomes a noise source.

【0015】 また図2に示す如く円柱状体Aが上記
仮想線Yと直交のX線方向、実際には左方向へ変
移したとしても、この場合もまた平行光線Lと照
射曲面Sとの相対位置関係は不変であり、従つて
その反射光は全体として左右への位置ずれがある
だけで、反射方向は平行移動となり、この結果ノ
イズの発生はない。
[0015] Furthermore, as shown in FIG. 2, even if the cylindrical body A moves in the X-ray direction perpendicular to the virtual line Y, actually to the left, the relative relationship between the parallel ray L and the irradiation curved surface S in this case also changes. The positional relationship remains unchanged, and therefore, the reflected light as a whole only has a positional shift to the left and right, but the reflection direction is parallel movement, and as a result, no noise is generated.

【0016】 次に請求項2に係る自転装置3は、円
柱状体Aが載置され、かつ投光機1に向け移行さ
れると共に、当該投光機1側が上位となるよう傾
斜して配装の搬送用ベルト3aと、当該ベルト3
aの載置面3bに対して、直角等交差状に配した
円柱状体Aとの回転摺接面3cを具有する位置決
め用ガイド板3dとからなつて、当該ガイド板3
dが前記搬送用ベルト3aの上位に配設されてい
るが、この際、図3にて明示の如く位置決め用ガ
イド板3dの回転摺接面3cと、搬送用ベルト3
aの移行方向Dとは直交ではなく、平面視にて斜
交状となるよう配置してある。
[0016] Next, in the rotation device 3 according to claim 2, the cylindrical body A is placed and moved toward the projector 1, and is arranged at an angle so that the projector 1 side is on the upper side. conveyance belt 3a of the equipment, and the belt 3
The guide plate 3 is composed of a positioning guide plate 3d having a rotating sliding contact surface 3c with the cylindrical body A arranged at right angles to the mounting surface 3b of the cylindrical body A.
d is disposed above the conveyor belt 3a, and in this case, as shown in FIG.
It is arranged so that it is not orthogonal to the transition direction D of a, but obliquely in plan view.

【0017】 従つて上記の装置によれば、搬送用ベ
ルト3aを図示しない動力源、伝動機構により移
行方向Dに稼働すれば、その載置面3b上の円柱
状体Aが矢印E方向に回転するが、この際同ベル
ト3aが傾斜しているので、位置決め用ガイド板
3dの回転摺接面3cと接した回転位置に位置決
めされると共に、図3の矢印Fすなわち円柱状体
Aの軸心線B方向、換言すれば回転摺接面3cに
沿つた方向へ移行することになり、円柱状体Aは
その全周側面にわたる欠陥部の有無につき検査さ
れた後、搬送用ベルト3aを離脱することとな
り、従つて図示しない移送ベルトを、ここに隣設
して、検査済の円柱状体を所望箇所へ送致した
り、また一次元受光素子2による受光信号によ
り、所定の選別作動子などを応動させ、これによ
り欠陥部をもつた円柱状体の排除をも自動化する
ことが可能となる。
[0017] Therefore, according to the above device, when the conveyor belt 3a is operated in the transfer direction D by a power source and a transmission mechanism (not shown), the cylindrical body A on the mounting surface 3b rotates in the direction of the arrow E. However, since the belt 3a is inclined at this time, it is positioned at a rotational position in contact with the rotational sliding contact surface 3c of the positioning guide plate 3d, and is also aligned with the arrow F in FIG. 3, that is, the axis of the cylindrical body A. It will move in the direction of line B, in other words, in the direction along the rotating sliding contact surface 3c, and after the cylindrical body A is inspected for the presence or absence of defects over its entire circumferential side, it leaves the conveyor belt 3a. Therefore, a transfer belt (not shown) is installed next to this to transport the inspected cylindrical body to a desired location, and also to move a predetermined sorting actuator etc. by the light reception signal from the one-dimensional light receiving element 2. This makes it possible to automate the removal of cylindrical bodies with defective parts.

【0018】[0018]

【考案の効果】 本考案は上記のようにして構成
されるものであるから、請求項1によるときは、
円柱状体が核燃料ペレツトである場合は、欠陥部
の目視検査の場合に比し作業者の被爆を防止でき
ることとなり、人間の疲労などによる検査ミスな
どもなくなると共に、判定基準の標準化も可能と
なるだけでなく、円柱状体の検査時における変位
に対して、ノイズ発生のおそれがなくなり、S/
N比のすぐれた高精度の検査を、平易な調整操作
で保証できる。
[Effect of the invention] Since the present invention is constructed as described above, according to claim 1,
If the cylindrical body is a nuclear fuel pellet, it is possible to prevent worker exposure to radiation compared to visual inspection of defective parts, eliminate inspection errors due to human fatigue, and standardize judgment criteria. In addition, there is no risk of noise generation due to displacement during inspection of cylindrical objects, and S/
Highly accurate inspection with excellent N ratio can be guaranteed with simple adjustment operations.

【0019】 さらに、請求項2によるときは、円柱
状体の自転は、傾斜状の搬送用ベルトの駆動と、
位置決め用ガイド板の配在により、その軸心線変
動を来すことなく行わせることができ、このため
一層信頼性の高い検査結果が得られると共に、当
該ガイド板と上記ベルトとの斜交状配置により円
柱状体の進行も円滑に行われ、検査済の円柱状体
処理を自動化するにも至便となり、能率的な装置
を安価に提供することができる。
[0019] Furthermore, according to claim 2, the rotation of the cylindrical body is caused by driving an inclined conveyance belt,
Due to the arrangement of the positioning guide plate, it is possible to perform the inspection without causing any axial center line fluctuation, which makes it possible to obtain more reliable inspection results and to improve the oblique shape of the guide plate and the belt. The arrangement allows the cylindrical body to advance smoothly, making it convenient to automate the processing of inspected cylindrical bodies, and making it possible to provide an efficient device at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】aは請求項1に係る検査装置の正面説明
図で、bとcは同装置の円柱状体照射態様を示す
夫々欠陥部有無別の各平面図である。
FIG. 1A is a front explanatory view of an inspection apparatus according to a first aspect of the present invention, and FIGS. 1B and 1C are plan views showing how the apparatus irradiates a cylindrical object with and without a defect, respectively.

【図2】請求項2に係る検査装置の正面説明図で
ある。
FIG. 2 is an explanatory front view of the inspection device according to claim 2.

【図3】一次元受光素子を除去した図2の装置の
平面図である。
FIG. 3 is a plan view of the device of FIG. 2 with the one-dimensional light receiving element removed.

【図4】従来の円柱状体における周側面欠陥部検
査手段を示し、aは正常調整状態、bは不正調整
状態における夫々の原理説明図である。
FIG. 4 shows a conventional circumferential side defect inspection means for a cylindrical body, in which a is a normally adjusted state and b is an explanatory diagram of the principle in an incorrectly adjusted state.

【符号の説明】[Explanation of symbols]

1……投光機 2……一次元受光素子 3……自転装置 3a……搬送用ベルト 3b……載置面 3c……回転摺接面 3d……位置決め用ガイド板 A……円柱状体 A′……周側面 B……軸心線 D……移行方向 L……平行光線 S……照射曲面 Y……仮想線 Y′……受光軸心線。 1... Floodlight 2...One-dimensional light receiving element 3...Rotation device 3a...Transportation belt 3b...Placement surface 3c...Rotating sliding contact surface 3d... Positioning guide plate A...Cylindrical body A′……peripheral side B...Axis center line D...Transition direction L...parallel rays S...irradiation curved surface Y...Virtual line Y′...Light receiving axis center line.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 核燃料ペレツト等の円柱状体が、
軸心線を中心として所望方向へ回転されるよう構
成した自転装置と、当該自転装置により回転する
上記円柱状体の周側面に向けて、所定の領域内に
平行光線を照射する投光機と、当該平行光線によ
る上記円柱状体の照射曲面側にあつて、上記平行
光線と略直交状にして同円柱状体の軸心を実質的
に通過する仮想線に、受光軸心線が実質的に合致
するよう配置した一次元受光素子とからなること
を特徴とする核燃料ペレツト等円柱状体の周側面
欠陥部自動検査装置。
[Claim 1] A cylindrical body such as a nuclear fuel pellet is
A rotation device configured to rotate in a desired direction about an axis, and a floodlight that irradiates a parallel beam of light within a predetermined area toward the circumferential side of the cylindrical body rotated by the rotation device. , on the side of the irradiated curved surface of the cylindrical body by the parallel rays, the light receiving axis line is substantially on an imaginary line that is substantially orthogonal to the parallel rays and substantially passes through the axis of the cylindrical body. 1. An automatic inspection device for defects on the circumferential side of a cylindrical object such as a nuclear fuel pellet, characterized by comprising a one-dimensional light-receiving element arranged so as to match the above.
【請求項2】 核燃料ペレツト等の円柱状体が、
軸心線を中心として所望方向へ回転されるよう構
成した自転装置と、当該自転装置により回転する
上記円柱状体の周側面に向けて、所定の領域内に
平行光線を照射する投光機と、当該平行光線によ
る上記円柱状体の照射曲面側にあつて、上記平行
光線と略直交状にして同円柱状体の軸心を実質的
に通過する仮想線に、受光軸心線が実質的に合致
するよう配置した一次元受光素子とを具備し、前
記自転装置は、上記円柱状体を載置し投光機側へ
向け移行させると共に当該投光機側が上位となる
よう傾設された搬送用ベルトと、当該搬送用ベル
トの載置面と交差状に配置され前記円柱状体との
回転摺接面をもつた位置決め用ガイド板とからな
り、かつ当該ガイド板は、その回転摺接面が前記
搬送用ベルトの移行方向と、平面視にて斜交状配
置となるよう当該ベルトの上位に配設されている
ことを特徴とする核燃料ペレツト等円柱状体の周
側面欠陥部自動検査装置。
[Claim 2] A cylindrical body such as a nuclear fuel pellet,
A rotation device configured to rotate in a desired direction about an axis, and a floodlight that irradiates a parallel beam of light within a predetermined area toward the circumferential side of the cylindrical body rotated by the rotation device. , on the side of the irradiated curved surface of the cylindrical body by the parallel rays, the light receiving axis line is substantially on an imaginary line that is substantially orthogonal to the parallel rays and substantially passes through the axis of the cylindrical body. and a one-dimensional light-receiving element arranged to match the above, and the rotating device is configured to place the cylindrical body and move it toward the projector side, and the device is tilted so that the projector side is on the upper side. It consists of a conveyor belt, and a positioning guide plate that is arranged to intersect with the mounting surface of the conveyor belt and has a rotational sliding contact surface with the cylindrical body, and the guide plate has a rotational sliding contact surface with the cylindrical body. Automatic inspection for defects on the circumferential side of a cylindrical object such as a nuclear fuel pellet, characterized in that the surface is disposed above the conveying belt so that its surface is obliquely arranged in a plan view with respect to the transfer direction of the conveying belt. Device.
JP1992016583U 1992-02-20 1992-02-20 Automatic inspection device for defects on the circumferential side of cylindrical objects such as nuclear fuel pellets Granted JPH04106751U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992016583U JPH04106751U (en) 1992-02-20 1992-02-20 Automatic inspection device for defects on the circumferential side of cylindrical objects such as nuclear fuel pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992016583U JPH04106751U (en) 1992-02-20 1992-02-20 Automatic inspection device for defects on the circumferential side of cylindrical objects such as nuclear fuel pellets

Publications (2)

Publication Number Publication Date
JPH04106751U JPH04106751U (en) 1992-09-14
JPH0516526Y2 true JPH0516526Y2 (en) 1993-04-30

Family

ID=31903566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992016583U Granted JPH04106751U (en) 1992-02-20 1992-02-20 Automatic inspection device for defects on the circumferential side of cylindrical objects such as nuclear fuel pellets

Country Status (1)

Country Link
JP (1) JPH04106751U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006062152B3 (en) * 2006-12-22 2008-05-29 Areva Np Gmbh Fuel rod cladding tube pretreatment method, involves partially coating tube with ferrous oxide layer by coating device by immersing medium with ferrous oxide particles, which are produced by anodic oxidation of working electrode

Also Published As

Publication number Publication date
JPH04106751U (en) 1992-09-14

Similar Documents

Publication Publication Date Title
US5777729A (en) Wafer inspection method and apparatus using diffracted light
CA1210472A (en) Optical inspection system
US3814946A (en) Method of detecting defects in transparent and semitransparent bodies
US4716299A (en) Apparatus for conveying and inspecting a substrate
US4583854A (en) High resolution electronic automatic imaging and inspecting system
JP4641143B2 (en) Surface inspection device
JPS6352696B2 (en)
JP2002328094A (en) Led ring lighting and image inspecting device with it
JPH0516526Y2 (en)
JP3302466B2 (en) End inspection system for cylindrical objects
JP3344275B2 (en) Imaging device for welds at the end of large diameter steel pipes
JPS60209151A (en) Automatic apparatus for inspecting defect on peripheral side of cylindrical body such as nuclear fuel pellet
JP4866029B2 (en) Wafer circumference inspection system
JP2503919B2 (en) Foreign matter inspection device
JPS5917248A (en) Inspection system for foreign matter
JPH0254494B2 (en)
JPH01295421A (en) Peripheral exposure apparatus
JPH03226696A (en) Inspection device for circumferential surfaces of nuclear fuel pellet
JP2525846B2 (en) Surface defect inspection equipment
JPH04297858A (en) Defect detector
JPS6352766B2 (en)
KR200155173Y1 (en) Semiconductor wafer array apparatus
JP2903361B2 (en) Wafer positioning mechanism
JPH0545303A (en) Defect inspecting apparatus
JPH04247Y2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19940405