JPH05165067A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPH05165067A
JPH05165067A JP33480891A JP33480891A JPH05165067A JP H05165067 A JPH05165067 A JP H05165067A JP 33480891 A JP33480891 A JP 33480891A JP 33480891 A JP33480891 A JP 33480891A JP H05165067 A JPH05165067 A JP H05165067A
Authority
JP
Japan
Prior art keywords
glass
refractive index
paths
light
optical switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33480891A
Other languages
Japanese (ja)
Inventor
Masumi Ito
真澄 伊藤
Sumio Hoshino
寿美夫 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP33480891A priority Critical patent/JPH05165067A/en
Publication of JPH05165067A publication Critical patent/JPH05165067A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform high speed changing-over by furnishing two light wave- guide paths intersectingly on a glass board, wherein the paths are made of a glass material having a higher refractive index than the glass board, providing an activation layer of a glass with additives of semiconductor particulates in the middle of the intersection of paths, and impressing a voltage on this activation layer. CONSTITUTION:Two light wave-guide paths 2-1, 2-2 made of a crystal glass to which germanium is added for increasing the refractive index, are provided intersecringly on a base board 1 prepared by laying a crystal glass layer on a silicon wafer. In the middle of the intersection 3 of the two paths, an activation layer 4 is provided consisting of crystal glass to which particles of lead sulphide are added, and thereupon an aluminum electrode 5 is installed to form an optical switch, wherein the particle size is 40Angstrom . The energy gap at this time is 1.5eV, and the wave-length of the light corresponding to this energy is 0.83mum. If an electric field of 10MeV/cm is applied to the activation layer, the refractive index drops by 10% for the light of wave-length 0.8mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光スイッチ、特に、ガ
ラス基板上に導波路と電極を形成し、導波路上の一部に
電圧を印加して光の切替えを行う光スイッチに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical switch, and more particularly to an optical switch in which a waveguide and an electrode are formed on a glass substrate and a voltage is applied to a part of the waveguide to switch light.

【0002】[0002]

【従来の技術】光導波路の中で、石英ガラスを主成分と
した導波路は光伝送損失が低く、また、石英系光ファイ
バとの低損失の接続が可能であることから検討が進めら
れている(特開昭63−175808号)。この分野の
開発の一貫として、ガラス基板上に導波路を形成し、そ
の一部にヒータを設け、導波路の温度依存性を利用して
光スイッチが考案されている(1989年電子情報通信
学会秋季全国大会:C・266,4−206頁)。即
ち、ヒータに電力を投入することにより、この部分のガ
ラス導波路の温度が上昇すると、熱光学効果により一般
に屈折率が低下するものである。
2. Description of the Related Art Among optical waveguides, a waveguide containing silica glass as a main component has a low optical transmission loss and can be connected to a silica-based optical fiber with a low loss. (Japanese Patent Laid-Open No. 63-175808). As part of the development in this field, an optical switch was devised by forming a waveguide on a glass substrate, providing a heater on a part of the waveguide, and utilizing the temperature dependence of the waveguide (1989, Institute of Electronics, Information and Communication Engineers). Autumn National Convention: C. 266, 4-206). That is, when the temperature of the glass waveguide in this portion rises by applying power to the heater, the refractive index is generally lowered due to the thermo-optic effect.

【0003】[0003]

【発明が解決しようとする課題】この熱光学効果を利用
したスイッチの応答速度は、ヒータの加熱速度あるいは
導波路の冷却速度に依存している。これらの温度特性
は、光スイッチを構成する材料の熱容量あるいは伝熱特
性により決ってくるが、その応答速度を高めるには限界
がある。この種の光スイッチの応答速度は数msec〜
数+msec程度である。一方、光通信の分野で光スイ
ッチに要求される速度はμsec〜nsecであり、新
しい発想のスイッチでなければ実用され難いものであっ
た。
The response speed of the switch utilizing the thermo-optic effect depends on the heating speed of the heater or the cooling speed of the waveguide. These temperature characteristics are determined by the heat capacity or heat transfer characteristics of the material forming the optical switch, but there is a limit to increase the response speed. The response speed of this type of optical switch is several msec.
It is about several + msec. On the other hand, the speed required for an optical switch in the field of optical communication is μsec to nsec, and it has been difficult to put it into practical use unless the switch has a new idea.

【0004】[0004]

【課題を解決するための手段】本発明は、上記問題点を
解消するための光スイッチであり、その特徴とするとこ
ろは、ガラス基板上に、交差して設けられた基板より屈
折率の高いガラスからなる2本の光導波路と、該交差部
に配設された半導体微粒子を添加したガラスからなる活
性層と、電場を印加するために活性層に取付けられた電
極とを備えた光スイッチである。ここで、添加される半
導体微粒子のエネルギー・ギャップの大きさは光導波路
を伝送する光の波長に対応するエネルギーの大きさに対
し±10%以内であることが好ましい。
The present invention is an optical switch for solving the above problems, and is characterized in that it has a higher refractive index than a substrate provided on a glass substrate in a crossed manner. An optical switch comprising two optical waveguides made of glass, an active layer made of glass added with semiconductor fine particles disposed at the intersections, and an electrode attached to the active layer for applying an electric field. is there. Here, the size of the energy gap of the added semiconductor fine particles is preferably within ± 10% of the size of the energy corresponding to the wavelength of the light transmitted through the optical waveguide.

【0005】[0005]

【作用】半導体は、そのエネルギー・ギャップよりもエ
ネルギーの大きい光を吸収する性質をもっている。これ
は価電子帯を占める電子が伝導体へ遷移するためであ
る。半導体を高電場内におくと、このエネルギー・ギャ
ップを形成する電子構造が変化する。そのため、エネル
ギー・ギャップよりエネルギーの小さい光を吸収すると
いう現象が現われる。このように半導体では、電場印加
の有無により光吸収の特性が変化し、吸収スペクトルの
変化が起こる。この変化により、電場が印加されていな
い時の半導体のエネルギー・ギャップを基点に、それよ
りも低エネルギー側(長波長側)で吸収が増加し、高エ
ネルギー側(短波長側)では吸収が減少する。光吸収の
特性が変化すると、クラマース・クローニッヒの関係式
に従って屈折率も変化する。
The function of the semiconductor is to absorb light having a larger energy than its energy gap. This is because the electrons occupying the valence band transition to the conductor. Placing a semiconductor in a high electric field changes the electronic structure that forms this energy gap. Therefore, the phenomenon of absorbing light with energy smaller than the energy gap appears. As described above, in the semiconductor, the characteristics of light absorption change depending on whether or not an electric field is applied, and the absorption spectrum changes. Due to this change, absorption increases on the low energy side (long wavelength side) and decreases on the high energy side (short wavelength side) based on the energy gap of the semiconductor when no electric field is applied. To do. When the characteristics of light absorption change, the refractive index also changes according to the Kramers-Kronig relational expression.

【0006】この性質を利用することにより、光変調
器、光スイッチ等を構成することができる。このような
半導体の特性は、従来、バルクの半導体について知られ
ていたが、本発明者等は、半導体を微粒子状にし、ガラ
スに添加した場合においても同様の特性の得られること
を見出した。微粒子状の半導体を添加したガラスは、ガ
ラス本来のもつ優れた光学的特性をも示すため、大型バ
ルクが容易に作製できること、化学的熱的に安定してい
ること、添加する半導体微粒子の量を変えることにより
屈折率を容易に変えられること等光部品を作成する上で
有利である。
By utilizing this property, an optical modulator, an optical switch, etc. can be constructed. The characteristics of such a semiconductor have hitherto been known for a bulk semiconductor, but the present inventors have found that similar characteristics can be obtained even when the semiconductor is made into fine particles and added to glass. The glass to which a fine-particle semiconductor is added also exhibits excellent optical characteristics inherent to glass, so that a large bulk can be easily produced, it is chemically and thermally stable, and the amount of semiconductor particles to be added is The refractive index can be easily changed by changing it, which is advantageous in producing an optical component.

【0007】また、添加する半導体の種類を変えること
により、エネルギー・ギャップの大きさも変えられるの
で、使用する光の波長に応じて選択するとよい。例えば
IV−VI属ではPbS、IV−V属ではGaAs、I
I−VI属ではCdS等が有効である。さらに、エネル
ギー・ギャップの大きさは、添加される半導体微粒子の
粒子径にも依存する。従って、微粒子径を均一にすると
効率のよい特性を得ることができる。ここで、微粒子径
に依存すエネルギー・ギャップは、電場のない状態を基
準に±10%以内であることが望ましい。これ以上の場
合は、印加する電圧に対する屈折率の変化の割合が著し
く低下するからである。以下、実施例を挙げて本発明を
より具体的に説明するが、以下の開示は本発明の一実施
例にすぎず、本発明の技術的範囲を限定するものではな
い。
Further, since the size of the energy gap can be changed by changing the type of the added semiconductor, it is preferable to select it according to the wavelength of the light used. For example, PbS in IV-VI group, GaAs, I in IV-V group
CdS and the like are effective in the genus I-VI. Furthermore, the size of the energy gap also depends on the particle size of the semiconductor particles to be added. Therefore, if the particle diameters are made uniform, efficient characteristics can be obtained. Here, the energy gap depending on the particle diameter is preferably within ± 10% with reference to the absence of an electric field. This is because the ratio of change in the refractive index with respect to the applied voltage is remarkably reduced in the case of more than this. Hereinafter, the present invention will be described more specifically with reference to examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention.

【0008】[0008]

【実施例】図1は、本発明に係わる光スイッチの実施例
を示す図、図2は、図1のX−X断面図、図3は、図1
のY−Y断面図である。図において、シリコンウエハの
上に石英ガラス層を設けた基板1、その上に、ゲルマニ
ウムを添加して屈折率を高くした石英ガラスからなる2
本の光導波路2−1と2−2を交差して配設した。交差
部3の中央には、石英ガラスに硫化鉛の粒子を添加した
活性層4を配置し、その上に、電圧を印加するためのア
ルミニウム電極5を設け、光スイッチを形成した。硫化
鉛の粒子は40Åの微粒子状にした。このときのエネル
ギー・ギャップは1.5eVである。このエネルギーに
対応する光の波長は0.83μmである。この活性層に
10MeV/cmの電界を加えたところ、波長0.8μ
mの光に対して屈折率は約10%低下した。
1 is a view showing an embodiment of an optical switch according to the present invention, FIG. 2 is a sectional view taken along line XX of FIG. 1, and FIG.
3 is a sectional view taken along line YY of FIG. In the figure, a substrate 1 in which a quartz glass layer is provided on a silicon wafer, and a quartz glass 2 on which germanium is added to increase the refractive index 2
The optical waveguides 2-1 and 2-2 of the book are arranged so as to cross each other. At the center of the intersection 3, an active layer 4 made by adding particles of lead sulfide to quartz glass was placed, and an aluminum electrode 5 for applying a voltage was provided thereon to form an optical switch. The particles of lead sulfide were made into 40 Å fine particles. The energy gap at this time is 1.5 eV. The wavelength of light corresponding to this energy is 0.83 μm. When an electric field of 10 MeV / cm was applied to this active layer, the wavelength was 0.8 μm.
The refractive index decreased by about 10% with respect to the light of m.

【0010】図1において、ポート1より0.8μmの
光を入射したところ、光は直進し、ポート2に出射し
た。次いで、電極に10Vの電圧を印加したところ、活
性層の屈折率が低下し光はこの面で全反射してポート3
から出射した。上記活性層に適用する半導体は、硫化鉛
の外に硫化カドニウム、ガリウム砒素等が有効な材料で
ある。以上は、光スイッチについて説明したが、交差
角、活性層を適宜設計することによって変調器を形成す
ることができる。
In FIG. 1, when 0.8 μm of light was made incident from port 1, the light went straight and was emitted to port 2. Then, when a voltage of 10 V was applied to the electrodes, the refractive index of the active layer was lowered, and the light was totally reflected on this surface and the
Emitted from. The semiconductor applied to the active layer is a material in which lead sulfide, cadmium sulfide, gallium arsenide, and the like are effective. Although the optical switch has been described above, the modulator can be formed by appropriately designing the crossing angle and the active layer.

【0011】[0011]

【発明の効果】以上の説明から明らかなように、本発明
によれば、光導波路の交差部に設けた活性層に電圧を印
加することにより、短時間で光路の切替えを行うことが
でき、光ファイバとの接続性にも優れ、低損失で簡単な
構成の光スイッチを提供できる効果がある。
As is apparent from the above description, according to the present invention, the optical path can be switched in a short time by applying a voltage to the active layer provided at the intersection of the optical waveguides. There is an effect that it is possible to provide an optical switch that has excellent connectivity with an optical fiber and has a low loss and a simple configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる光スイッチの実施例を示す図で
ある。
FIG. 1 is a diagram showing an embodiment of an optical switch according to the present invention.

【図2】図1のX−X断面図である。FIG. 2 is a sectional view taken along line XX of FIG.

【図3】図1のY−Y断面図である。FIG. 3 is a sectional view taken along line YY of FIG.

【符号の説明】[Explanation of symbols]

1:基板 2,2−1,2−2:光導波路 3:交差部 4:活性層 5:電極 1: substrate 2, 2-1 and 2-2: optical waveguide 3: intersection part 4: active layer 5: electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板上に、交差して設けられた基
板より屈折率の高いガラスからなる2本の光導波路と、
該交差部に配設された半導体微粒子を添加したガラスか
らなる活性層と、電場を印加するために活性層に取付け
られた電極とを備えた光スイッチ。
1. Two optical waveguides made of glass having a higher refractive index than the substrates provided on the glass substrate so as to cross each other,
An optical switch provided with an active layer made of glass to which semiconductor particles are added, disposed at the intersection, and an electrode attached to the active layer for applying an electric field.
【請求項2】 添加される半導体微粒子のエネルギー・
ギャップの大きさが光導波路を伝送する光の波長に対応
するエネルギーの大きさに対し±10%以内であること
を特徴とする請求項1記載の光スイッチ。
2. The energy of the added semiconductor fine particles
2. The optical switch according to claim 1, wherein the size of the gap is within ± 10% with respect to the size of energy corresponding to the wavelength of light transmitted through the optical waveguide.
JP33480891A 1991-12-18 1991-12-18 Optical switch Pending JPH05165067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33480891A JPH05165067A (en) 1991-12-18 1991-12-18 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33480891A JPH05165067A (en) 1991-12-18 1991-12-18 Optical switch

Publications (1)

Publication Number Publication Date
JPH05165067A true JPH05165067A (en) 1993-06-29

Family

ID=18281458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33480891A Pending JPH05165067A (en) 1991-12-18 1991-12-18 Optical switch

Country Status (1)

Country Link
JP (1) JPH05165067A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317848B2 (en) 2003-08-21 2008-01-08 Yokogawa Electric Corporation Optical switch
US7689069B2 (en) 2007-08-01 2010-03-30 Yokogawa Electric Corporation Semiconductor optical switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317848B2 (en) 2003-08-21 2008-01-08 Yokogawa Electric Corporation Optical switch
US7689069B2 (en) 2007-08-01 2010-03-30 Yokogawa Electric Corporation Semiconductor optical switch

Similar Documents

Publication Publication Date Title
CN102591041B (en) Integrated type online electro-optic modulator with graphene thin film and D-type optical fiber
JP2002277912A (en) Optical switch, transistor, computer system, and method of switching light signal
CN105659450A (en) Coupling-modulated optical resonator
CN105068279B (en) A kind of polarization insensitive optical modulator based on arc graphene
US7418161B2 (en) Photonic crystal-based optical elements for integrated circuits and methods therefor
CN105759467A (en) Intermediate infrared modulator based on black phosphorus chalcogenide glass optical waveguides
JPH04110831A (en) Optical control device
CA2465830C (en) Method and apparatus for phase-shifting an optical beam in a semiconductor substrate
WO2019049681A1 (en) Optical modulator and method for manufacturing same
CN110286439A (en) The method of optical waveguide quantum chip is formed on gradual period poled lithium tantalate using proton exchange method
JPH08166565A (en) Optical control device
Laxmi et al. Nanophotonic modulator based on silicon-ITO heterojunction and slot waveguide with 2D-graphene sheet
US20020093717A1 (en) Method and apparatus for switching an optical beam using a phase array disposed in a higher doped well region
Wei et al. Broadband and sensitive lateral optical phase modulators using 1D-PhC for integrated Si-photonics
JP2780400B2 (en) Light modulator
JPH05165067A (en) Optical switch
Saito et al. Si photonic waveguides with broken symmetries: Applications from modulators to quantum simulations
CN113900280A (en) Polarization independent optical switch
CN104678676B (en) A kind of reciprocal optical logical device based on micro-ring resonator
Yan et al. Efficient thermal tuning employing metallic microheater with slow-light effect
Safinezhad et al. Ultra-compact all-optical reversible Feynman gate based on suspended graphene plasmonic waveguides
CN211669401U (en) Active polarization rotator realized based on mixed surface plasma groove waveguide
JP2018112593A (en) Optical control device and manufacturing method thereof and optical integrated circuit and electromagnetic wave detection device
Shadmani et al. Design and simulation of dual polarization GST-on-silicon nitride optical modulator
JP2018004932A (en) Optical phase-intensity shifter