JPH05164974A - Stereoscopic microscope - Google Patents

Stereoscopic microscope

Info

Publication number
JPH05164974A
JPH05164974A JP32877991A JP32877991A JPH05164974A JP H05164974 A JPH05164974 A JP H05164974A JP 32877991 A JP32877991 A JP 32877991A JP 32877991 A JP32877991 A JP 32877991A JP H05164974 A JPH05164974 A JP H05164974A
Authority
JP
Japan
Prior art keywords
observation
stereoscopic
pair
reflecting mirror
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32877991A
Other languages
Japanese (ja)
Other versions
JP3216896B2 (en
Inventor
Shigeo Tokunaga
繁男 徳永
Hiroshi Fujiwara
宏 藤原
Takashi Fukaya
孝 深谷
Tomonori Ishikawa
朝規 石川
Masami Hamada
雅巳 浜田
Masahiko Kinukawa
正彦 絹川
Toyoji Hanzawa
豊治 榛澤
Shinichi Nakamura
信一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP32877991A priority Critical patent/JP3216896B2/en
Priority to DE4212924A priority patent/DE4212924C2/en
Publication of JPH05164974A publication Critical patent/JPH05164974A/en
Priority to US08/411,929 priority patent/US5552929A/en
Application granted granted Critical
Publication of JP3216896B2 publication Critical patent/JP3216896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make an observation with the same height, the same visual field, and the same magnifications without increasing the size, weight, and price of the microscope, to select mutual observation angles of plural observers, and to obtain a bright observation image. CONSTITUTION:A 1st or 2nd detachable intermediate lens barrel 14 or 27 is mounted between a power varying lens system 12 and a 1st stereoscopic observation part 20, and partial luminous flux is guided to the 2nd stereoscopic observation part 25 mounted on the lens barrel and observed by plural observers at the same time. When the 1st or 2nd intermediate lens barrel 14 or 27 is replaced, the angle of the 1st stereoscopic observation part 20 is changed by 90 deg. to enable the observers to make observations at 180 deg. and 90 deg. observation angles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複数の観察者が同時に物
体を観察できるようにした実体顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereomicroscope in which a plurality of observers can observe an object at the same time.

【0002】[0002]

【従来の技術】実体顕微鏡を用いて行う作業が複雑で精
密さを要求される作業である場合、複数の作業者が共同
で作業を行うことが望ましい場合が多い。特に実体顕微
鏡が手術用顕微鏡で、手術用顕微鏡観察下で、主として
手術を行う主術者とその補助を行う副術者とが共同で手
術を行う場合、両者はできるだけ同じ状態で術部を観察
できることが要望されている。即ち、主術者と副術者は
同一の観察点高さから同一の観察視野が得られ、しかも
観察倍率が同一であることが望まれる。又、手術におい
て、術部が深い場合、術部に到達するための長い手術具
を挿入するとき等深い術部の入口から対物レンズまでの
距離を長く設定する必要があるが、手で作業をしている
と術部から観察点までの距離は変えることができないた
め、対物レンズから観察点までの長さを短く設定するこ
とが望まれる。更に、術技によっては、主術者と副術者
の観察方向を代える必要性が生じるので、両者の観察方
向を変化できる実体顕微鏡が要求されている。
2. Description of the Related Art When the work performed using a stereoscopic microscope is complicated and requires precision, it is often desirable for a plurality of workers to work together. In particular, when the stereoscopic microscope is a surgical microscope, and under the observation of the surgical microscope, when the main surgeon who mainly performs the surgery and the sub-surgeon who assists the surgeon jointly perform surgery, both observe the surgical site in the same state as much as possible. There is a desire to be able to. That is, it is desired that the main operator and the sub-operator obtain the same observation visual field from the same observation point height and have the same observation magnification. Also, in surgery, if the surgical site is deep, it is necessary to set a long distance from the deep surgical site entrance to the objective lens when inserting a long surgical tool to reach the surgical site. If so, the distance from the surgical site to the observation point cannot be changed. Therefore, it is desirable to set the length from the objective lens to the observation point to be short. Further, depending on the surgical technique, it is necessary to change the observation directions of the main operator and the sub-operator, so that a stereomicroscope capable of changing the observation directions of both is required.

【0003】従来、このような要望を実現する実体顕微
鏡として、例えば特開昭47−41473号公報に記載
のものがあり、これを図13により説明する。尚、図1
3(A)は正面断面図、(B)は側面図である。この実
体顕微鏡は、術部Oの上方に位置する単一の対物レンズ
1の後方に一対の変倍光学系2が配置され、この変倍光
学系2を通過した光束は光路分割部材3によって分割さ
れ、対向して配置された各一対の観察光学系4に導かれ
る。そのため、二人の観察者が向かい合って同じ状態の
術部を立体観察できるようになっている。
Conventionally, as a stereoscopic microscope which realizes such a demand, there is a stereoscopic microscope disclosed in, for example, Japanese Patent Application Laid-Open No. 47-41473, which will be described with reference to FIG. Incidentally, FIG.
3A is a front sectional view, and FIG. 3B is a side view. In this stereoscopic microscope, a pair of variable power optical systems 2 is arranged behind a single objective lens 1 located above the surgical site O, and a light beam passing through the variable power optical system 2 is split by an optical path splitting member 3. Then, the light is guided to the pair of observation optical systems 4 arranged so as to face each other. Therefore, two observers can face each other and stereoscopically observe the surgical site in the same state.

【0004】又、他の手段として、図14(A),
(B)及び(C)に示すように、実公昭55−3936
4号公報に記載されたものがある。この実体顕微鏡は、
対物レンズ1の後方に位置する変倍光学系5を3本以
上、図では夫々一対の変倍光学系5を90°異なる角度
に交差して配置し、2つの観察光学系4へ夫々導くよう
になっている。そのため、主術者と副術者が直角をなす
方向から観察しても術部を同じ状態で立体観察できるよ
うになっている。
As another means, as shown in FIG.
As shown in (B) and (C), Jpn.
There is one described in Japanese Patent No. 4 publication. This stereomicroscope
Three or more variable power optical systems 5 located behind the objective lens 1 are arranged so that a pair of variable power optical systems 5 are crossed at 90 ° different angles in the figure so that they are guided to the two observation optical systems 4, respectively. It has become. Therefore, even if the main surgeon and the sub-operator observe from a direction forming a right angle, the surgical site can be stereoscopically observed in the same state.

【0005】更に、別の手段として、図15に示すよう
な、特開平2−143215号公報に記載のものがあ
る。この実体顕微鏡は、単一の対物レンズ6と一対の変
倍光学系7との間の光路に光路分割手段8を設け、この
光路分割手段8で反射されて分割された一部の光束の光
路上に別の一対の変倍光学系9を設けて、夫々観察光学
系4を介して二人の観察者が術部を立体観察できるよう
にしたものである。しかも、変倍光学系9を有する光学
系を回動することで、二人の観察者相互の観察角度を任
意に設定できるというものである。
Further, as another means, there is one described in JP-A-2-143215, as shown in FIG. This stereoscopic microscope is provided with an optical path splitting means 8 in the optical path between a single objective lens 6 and a pair of variable power optical systems 7, and a part of the light flux reflected by the optical path splitting means 8 and split. Another pair of variable power optical systems 9 is provided on the road so that two observers can stereoscopically observe the surgical site through the respective observation optical systems 4. Moreover, by rotating the optical system having the variable power optical system 9, the observation angle between the two observers can be arbitrarily set.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、図13
に示す実体顕微鏡の構成では、二人の観察者相互の観察
角度は180°に限定されており、他の角度位置では観
察することができないという欠点がある。又、一対の変
倍光学系2の光束を二つに分割しているため、各観察光
学系4へ導かれる光束の光量が半減し、観察像が暗くな
るという欠点もある。次に、図14に示す実体顕微鏡の
構成では、光路分割手段がないため各観察像は明るい
が、変倍光学系5の数が多いので、変倍時には多数のレ
ンズを移動させなければならない。そのため、変倍機構
が複雑になる上に調整も難しくなり、顕微鏡の大型化や
重量の増加や高価格化を招くという問題点がある。しか
も、二人の観察者の観察位置が90°の角度に限定され
てしまうという問題もある。
However, as shown in FIG.
In the configuration of the stereoscopic microscope shown in (1), the observation angle between the two observers is limited to 180 °, and there is a drawback that the observation cannot be performed at other angle positions. Further, since the light flux of the pair of variable power optical systems 2 is divided into two, there is a drawback that the light quantity of the light flux guided to each observation optical system 4 is halved and the observed image becomes dark. Next, in the configuration of the stereoscopic microscope shown in FIG. 14, each observation image is bright because there is no optical path splitting means, but since there are many variable-magnification optical systems 5, a large number of lenses must be moved during variable-magnification. Therefore, there is a problem in that the zooming mechanism becomes complicated and adjustment becomes difficult, leading to an increase in size, weight, and cost of the microscope. Moreover, there is a problem that the observation positions of the two observers are limited to the angle of 90 °.

【0007】又、図15に示す実体顕微鏡の構成では、
二人の観察者の観察位置の変更は自由であるが、変倍光
学系を本体側とは別に分岐側にも設けなければならず、
そのため顕微鏡の大型化や重量の増加や高価格化を招く
という欠点がある。しかも、二つの観察像を同一の倍率
にするには、主術者の位置に対して副術者の観察角度が
変化するという条件で、各変倍光学系を連動させるため
の連動機構が必要であり、構成の複雑化や高価格化を招
くという欠点がある。又、対物レンズ後方で光路を分割
しているため、各観察光学系4への光束の光量が半減
し、観察像が暗くなる欠点がある。その上、術部に対す
る両観察者の各観察点の位置を同一の高さにするには、
光路分割部材8の透過光を反射光と平行にするための反
射部材が必要となるが、これによって対物レンズ6から
各観察点までの距離が長くなってしまうという問題があ
る。
In the configuration of the stereoscopic microscope shown in FIG. 15,
The observation positions of the two observers can be changed freely, but the variable-magnification optical system must also be provided on the branch side separately from the main body side.
Therefore, there are drawbacks that the size of the microscope is increased, the weight is increased, and the price is increased. Moreover, in order to make the two observation images have the same magnification, an interlocking mechanism for interlocking each variable-magnification optical system is required under the condition that the observation angle of the sub-operator changes with respect to the position of the main operator. However, there is a drawback in that the configuration is complicated and the price is increased. Further, since the optical path is divided behind the objective lens, there is a drawback that the light quantity of the light flux to each observation optical system 4 is reduced by half and the observation image becomes dark. Moreover, to make the position of each observation point of both observers with respect to the operative site at the same height,
A reflecting member is required to make the transmitted light of the optical path dividing member 8 parallel to the reflected light, but this causes a problem that the distance from the objective lens 6 to each observation point becomes long.

【0008】本発明は、このような課題に鑑み、顕微鏡
の大型化や重量の増加や高価格化を招くことなく、複数
の観察者が同一の高さから同一視野及び同一倍率で観察
でき、しかも観察者同士の観察位置を様々に選択でき
て、明るい観察像が得られるようにした、実体顕微鏡を
提供することを目的とする。
In view of the above problems, the present invention makes it possible for a plurality of observers to observe from the same height in the same field of view and the same magnification without inviting an increase in the size, weight and cost of the microscope. Moreover, it is an object of the present invention to provide a stereoscopic microscope in which the observation positions of the observers can be variously selected and a bright observation image can be obtained.

【0009】[0009]

【課題を解決するための手段】物体側から順に対物光学
系と変倍光学系と複数の立体観察光学系とが備えられ
た、共覧型の実体顕微鏡において、変倍光学系と立体観
察光学系との間に、変倍光学系から出射される光束を各
立体観察光学系に分配する複数の光束偏向部材を有する
光束分配手段を設けると共に、この光束分配手段を交換
可能にするか又は光束偏向部材の配置を変化させる作動
手段を設けて、複数の立体観察光学系相互間の観察角度
を変化させ得るようにしたことを特徴とするものであ
る。
A zoom lens system and a stereoscopic observation optical system in a common viewing type stereomicroscope, which includes an objective optical system, a variable magnification optical system, and a plurality of stereoscopic observation optical systems in order from the object side. A light beam distribution means having a plurality of light beam deflection members for distributing the light beam emitted from the variable power optical system to each stereoscopic observation optical system is provided between the system and the light beam distribution means or the light beam distribution means is replaceable. It is characterized in that an actuating means for changing the arrangement of the deflecting member is provided so that the observation angle between the plurality of stereoscopic observation optical systems can be changed.

【0010】[0010]

【作用】観察物体から発せられた光束は、対物光学系と
変倍光学系を通過した後複数の光束偏向部材によって各
立体観察光学系方向に分割され、夫々の観察者は設定さ
れた観察角度位置の各立体観察光学系を介して観察物体
の像を立体観察でき、そして観察角度を変える場合に
は、光束分配手段を交換するか、又は作動手段で光束偏
向部材の配置を変えることで、位置変更された立体観察
光学系に応じた方向に分割された光束を導くようにす
る。
The light beam emitted from the observing object passes through the objective optical system and the variable power optical system, and is then divided by the plurality of light beam deflecting members into the directions of the three-dimensional observing optical system. When the image of the observation object can be stereoscopically observed through each stereoscopic observation optical system of the position, and when the observation angle is changed, the luminous flux distribution means is exchanged, or the arrangement of the luminous flux deflecting member is changed by the operating means, The light beams divided in the direction corresponding to the position-changed stereoscopic observation optical system are guided.

【0011】[0011]

【実施例】以下、本発明の好適な実施例を添付図面に基
づいて説明する。図1乃至図4は、本発明の第一実施例
を示すものである。図1は実体顕微鏡の光学系の構成
図、図2は図1のA−A線断面図、図3は中間鏡筒を交
換した実体顕微鏡の光学系の構成図、図4は図3のA′
−A′線断面図である。図1において、11は実体顕微
鏡の下部に位置する単一の対物レンズ、12は対物レン
ズ11の後方に配置され対物レンズ11を通過した光束
をアフォーカル光にする単一の変倍レンズ系、13は対
物レンズ11と変倍レンズ系12が収納された鏡体であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the accompanying drawings. 1 to 4 show a first embodiment of the present invention. 1 is a block diagram of the optical system of the stereomicroscope, FIG. 2 is a sectional view taken along the line AA of FIG. 1, FIG. 3 is a block diagram of the optical system of the stereomicroscope in which the intermediate lens barrel is replaced, and FIG. 4 is A of FIG. ′
It is a sectional view taken along the line A-A '. In FIG. 1, 11 is a single objective lens located under the stereomicroscope, 12 is a single variable-magnification lens system that is arranged behind the objective lens 11 and converts the light flux passing through the objective lens 11 into afocal light, Reference numeral 13 is a mirror body in which the objective lens 11 and the variable power lens system 12 are housed.

【0012】14は鏡体13上に着脱可能に配置された
第一中間鏡筒であり、この第一中間鏡筒14内におい
て、15は変倍レンズ系12の後方で紙面に垂直な方向
に一対配列されていて変倍レンズ系12を通過した光束
をこの鏡筒14内の長手方向に折り曲げる第一反射鏡、
16は紙面に垂直な方向に一対配列されていて第一反射
鏡15で曲げられた光束を第一中間鏡筒外部へ折り曲げ
る第二反射鏡である。17は第一中間鏡筒14を挟んで
変倍レンズ系12と反対側で紙面に平行に配列された一
対の第一結像レンズ、18は第一結像レンズ17の後方
に位置する一対の第三反射鏡、19は第三反射鏡18で
反射された結像光束による像を観察する一対の第一接眼
レンズであり、これらは第一立体観察部20に収納され
ている。この第一立体観察部20は第一中間鏡筒14に
対して着脱可能であり、第一中間鏡筒14に対して任意
の水平方向(紙面に垂直な方向)角度で取り付け可能に
なっている。
Reference numeral 14 denotes a first intermediate lens barrel which is detachably arranged on the mirror body 13. In the first intermediate lens barrel 14, 15 is behind the variable power lens system 12 in a direction perpendicular to the plane of the drawing. A first reflecting mirror that is arranged in a pair and that bends the light flux that has passed through the variable power lens system 12 in the longitudinal direction inside the barrel 14.
Reference numeral 16 is a second reflecting mirror which is arranged in a pair in a direction perpendicular to the plane of the drawing and which bends the light beam bent by the first reflecting mirror 15 to the outside of the first intermediate lens barrel. Reference numeral 17 denotes a pair of first imaging lenses arranged in parallel to the plane of the drawing on the side opposite to the variable magnification lens system 12 with the first intermediate lens barrel 14 interposed therebetween, and 18 denotes a pair of rearwardly positioned first imaging lenses 17. The third reflecting mirror 19 is a pair of first eyepieces for observing the image formed by the image-forming light beam reflected by the third reflecting mirror 18, and these are housed in the first stereoscopic observation unit 20. The first stereoscopic observation unit 20 can be attached to and detached from the first intermediate lens barrel 14, and can be attached to the first intermediate lens barrel 14 at an arbitrary horizontal direction (direction perpendicular to the paper surface). ..

【0013】次に、第一中間鏡筒14の第二反射鏡16
による反射光路において、22は第二反射鏡16による
反射光を結像させるべく紙面に直交する方向に配列され
た一対の第二結像レンズ、23は第二結像レンズ22の
後方に位置する一対の第四反射鏡、24は第四反射鏡2
3で反射された結像光束による像を観察する一対の第二
接眼レンズであり、これらは第二立体観察部25に収納
されている。この第二立体観察部25は第一中間鏡筒1
4に対して着脱可能に接続されている。
Next, the second reflecting mirror 16 of the first intermediate lens barrel 14
In the optical path reflected by, the reference numeral 22 denotes a pair of second image forming lenses arranged in a direction orthogonal to the paper surface to form an image of the light reflected by the second reflecting mirror 16, and 23 is located behind the second image forming lens 22. A pair of fourth reflecting mirrors, 24 is a fourth reflecting mirror 2
A pair of second eyepieces for observing an image formed by the image-forming light flux reflected by 3 and housed in the second stereoscopic observation unit 25. The second stereoscopic observation unit 25 is the first intermediate lens barrel 1
4 is detachably connected.

【0014】又、第一及び第二立体観察部20,25内
の光学系には、図示しない像正立光学系が夫々内蔵さ
れ、しかも、これら光学系における夫々一対の観察光路
の間隔は同一に構成されている。又、術部Oから出射し
て対物レンズ11及び変倍レンズ系12を通過する光束
のうち、第一中間鏡筒14を透過して第一立体観察部2
0内の光学系へ至る一対の光束の第一光軸をPで表し、
又第一反射鏡15で反射して第二立体観察部25内の光
学系へ至る一対の光束の第二光軸をQで表すものとす
る。そして、変倍レンズ系12に対する各光軸P,Qの
光束の位置関係を、図1のA−A線水平断面である図2
で表すと、各一対の第一光軸Pと第二光軸Qの光束は互
いに直交する方向に交差して位置するようになってい
る。
The optical systems in the first and second stereoscopic observation units 20 and 25 each have an image erecting optical system (not shown) built therein, and the distance between a pair of observation optical paths in each optical system is the same. Is configured. Further, of the light flux emitted from the operation portion O and passing through the objective lens 11 and the variable power lens system 12, the light flux passes through the first intermediate lens barrel 14 and the first stereoscopic observation portion 2
The first optical axis of the pair of light fluxes reaching the optical system within 0 is represented by P,
Further, the second optical axis of the pair of light beams reflected by the first reflecting mirror 15 and reaching the optical system in the second stereoscopic observation unit 25 is represented by Q. The positional relationship between the light fluxes of the optical axes P and Q with respect to the variable power lens system 12 is shown in FIG.
The light flux of each pair of the first optical axis P and the second optical axis Q is positioned so as to intersect with each other in the directions orthogonal to each other.

【0015】図3は第一中間鏡筒14に代えて第二中間
鏡筒27を実体顕微鏡に離脱可能に装着した構成図であ
る。図中、第二中間鏡筒27において、28は変倍レン
ズ系12の中心光軸に対して紙面上右側に偏心した位置
で紙面に直交する方向に配列された一対の第一反射鏡、
29は第一反射鏡28で反射された光束を第二立体観察
部25方向へ反射させる一対の第二反射鏡である。又、
第二中間鏡筒27を装着した場合、第一立体観察部20
は図1に示す位置から水平方向に90°回転された位置
に保持され、第一立体観察部20の光学系は、光軸Pを
有する光束が第一反射鏡28に光束をけられないよう
に、変倍レンズ系12の中心光軸から紙面上左側に偏心
した位置に配列される。そして、変倍レンズ系12に対
する第一及び第二光軸P,Qの光束の位置関係を、図3
のA′−A′線水平断面である図4で表すと、各一対の
第一光軸Pと第二光軸Qは互いに平行な方向に位置する
ようになっている。
FIG. 3 is a block diagram showing a stereoscopic microscope in which a second intermediate lens barrel 27 is detachably mounted in place of the first intermediate lens barrel 14. In the figure, in the second intermediate lens barrel 27, 28 is a pair of first reflecting mirrors arranged in a direction eccentric to the right side of the drawing with respect to the central optical axis of the variable magnification lens system 12 in a direction orthogonal to the drawing.
Reference numeral 29 is a pair of second reflecting mirrors for reflecting the light flux reflected by the first reflecting mirror 28 toward the second stereoscopic observation unit 25. or,
When the second intermediate lens barrel 27 is attached, the first stereoscopic observation unit 20
Is held at a position rotated by 90 ° in the horizontal direction from the position shown in FIG. 1, and the optical system of the first stereoscopic observation unit 20 prevents the light flux having the optical axis P from passing through the first reflecting mirror 28. Further, they are arranged at positions decentered to the left side on the paper surface from the central optical axis of the variable power lens system 12. The positional relationship of the light fluxes of the first and second optical axes P and Q with respect to the variable power lens system 12 is shown in FIG.
4, which is a horizontal cross section taken along line A′-A ′ in FIG. 4, each pair of the first optical axis P and the second optical axis Q are arranged to be parallel to each other.

【0016】本実施例は上述のように構成されているか
ら、図1に示すように実体顕微鏡に第一中間鏡筒14が
装着された場合、第一立体観察部20は各一対の光学系
が第一反射鏡15の配列方向と直交するように配置され
ている。この状態で、術部Oから発せられた光束は対物
レンズ11から変倍レンズ系12を通過することでアフ
ォーカル光となり、この光束の内、紙面に平行な一対の
第一光軸Pを含む一対の平行光束は、第一中間鏡筒14
の第一反射鏡15の両側を通過して第一立体観察部20
内に進入する。そして、一対の第一結像レンズ17によ
って結像され、第三反射鏡18で反射されて、一対の第
一接眼レンズ19で術部Oの像が立体観察される。
Since this embodiment is constructed as described above, when the stereoscopic microscope is equipped with the first intermediate lens barrel 14 as shown in FIG. 1, the first stereoscopic observation unit 20 has a pair of optical systems. Are arranged so as to be orthogonal to the arrangement direction of the first reflecting mirrors 15. In this state, the light beam emitted from the surgical site O becomes afocal light by passing from the objective lens 11 to the variable power lens system 12, and includes a pair of first optical axes P parallel to the paper surface of this light beam. The pair of parallel luminous fluxes is the first intermediate lens barrel 14
The first three-dimensional observation unit 20 passing through both sides of the first reflecting mirror 15 of
Enter inside. Then, the image of the surgical site O is stereoscopically observed by the pair of first eyepieces 19 after being imaged by the pair of first imaging lenses 17 and reflected by the third reflecting mirror 18.

【0017】又、変倍レンズ系12を通過したアフォー
カル光のうち、紙面に垂直な一対の第二光軸Qを含む一
対の光束は、第一中間鏡筒14内の一対の第一反射鏡1
5によって折り曲げられ、一対の第二反射鏡16で再び
反射されて第二立体観察部25内に進入する。そして、
一対の第二結像レンズ22で結像され、第四反射鏡23
を介して第二接眼レンズ24で術部の像が立体観察され
る。これにより、主術者と副術者は互いに90°異なる
角度位置(図2参照)から、術部の像を同一視野及び同
一倍率で立体観察できる。
Of the afocal light that has passed through the variable power lens system 12, a pair of light fluxes including a pair of second optical axes Q perpendicular to the plane of the paper are a pair of first reflections inside the first intermediate lens barrel 14. Mirror 1
It is bent by 5, is reflected again by the pair of second reflecting mirrors 16, and enters the second stereoscopic observation unit 25. And
An image is formed by the pair of second imaging lenses 22, and the fourth reflecting mirror 23
The image of the surgical site is stereoscopically observed by the second eyepiece lens 24 via the. As a result, the main operator and the sub-operator can stereoscopically observe the image of the operation site with the same field of view and the same magnification from different angular positions (see FIG. 2).

【0018】次に、主術者と副術者の観察方向を変える
ために、第一中間鏡筒14を第二中間鏡筒27に取り替
えて実体顕微鏡に装着し、第一立体観察部20を90°
回動させて変倍レンズ系12の中心光軸から紙面上左側
に偏心させた図3の状態に保持する。この状態で術部O
を発して変倍レンズ系12でアフォーカル光となった光
束は、その内の紙面に垂直な一対の第一光軸Pを含む光
束が、第二中間鏡筒27を透過して第一立体観察部20
内に進入する。そして、第一結像レンズ17で結像され
た術部の像は、第三反射鏡18を介して第一接眼レンズ
19で立体観察できる。
Next, in order to change the observation directions of the main operator and the sub-operator, the first intermediate lens barrel 14 is replaced with the second intermediate lens barrel 27 and mounted on the stereomicroscope, and the first stereoscopic observation unit 20 is attached. 90 °
It is rotated and held in the state of FIG. 3 which is decentered from the central optical axis of the variable power lens system 12 to the left side on the paper surface. In this state, the surgical site O
Of the light flux that has become afocal light in the variable power lens system 12 and includes a pair of first optical axes P that are perpendicular to the paper surface of the light flux. Observation section 20
Enter inside. Then, the image of the surgical site formed by the first imaging lens 17 can be stereoscopically observed by the first eyepiece lens 19 via the third reflecting mirror 18.

【0019】又、アフォーカル光のうち、第二中間鏡筒
27内の第一反射鏡28で反射された一対の第二光軸Q
を含む光束は、第二反射鏡29で再度反射されて第二立
体観察部25内に進入し、第二結像レンズ22で結像さ
れ、この一対の像を第四反射鏡23を介して第二接眼レ
ンズ24で立体観察することができる。この構成の場
合、主術者と副術者は互いに180°異なる角度位置
(図4参照)から、術部の像を立体観察することができ
る。
Of the afocal light, a pair of second optical axes Q reflected by the first reflecting mirror 28 in the second intermediate lens barrel 27.
The light flux including is reflected again by the second reflecting mirror 29, enters the second stereoscopic observation unit 25, and is imaged by the second imaging lens 22, and this pair of images is passed through the fourth reflecting mirror 23. Stereoscopic observation can be performed with the second eyepiece lens 24. In the case of this configuration, the main operator and the sub-operator can stereoscopically observe the image of the operation site from angular positions different from each other by 180 ° (see FIG. 4).

【0020】上述のように本実施例によれば、第一及び
第二中間鏡筒14,27のいづれかを選択して装着する
ことにより、複数の観察者同士の観察角度位置を90°
と180°とに変更することができ、しかも二つの立体
観察部14,27の各一対の光軸P,Qの間隔は同一で
あるから、同一の立体感を得ることができる。又、本実
施例は構造が比較的簡単であり、小型且つ軽量であるか
ら、製造コストを低廉にすることができる。又、変倍レ
ンズ系12後方の光束をハーフミラー等で分割する構成
ではないから、各観察像が暗くなることはない。更に、
中間鏡筒14,27内の反射鏡の数を適宜増加すれば、
3人以上による同時観察が可能になることはいうまでも
ない。又、複数観察者による互いの観察方向は、90°
や180°に限らず他の適宜角度での観察も可能である
ことはいうまでもない。
As described above, according to this embodiment, by selecting and mounting either of the first and second intermediate lens barrels 14 and 27, the viewing angle position between the plurality of viewers is 90 °.
Can be changed to 180 ° and the distance between the pair of optical axes P and Q of the two stereoscopic observation units 14 and 27 is the same, so that the same stereoscopic effect can be obtained. In addition, since the structure of this embodiment is relatively simple, small and lightweight, the manufacturing cost can be reduced. Further, since the light flux behind the variable power lens system 12 is not divided by a half mirror or the like, each observed image does not become dark. Furthermore,
If the number of reflecting mirrors in the intermediate lens barrels 14 and 27 is appropriately increased,
Needless to say, simultaneous observation by three or more people is possible. Also, the mutual observation directions of multiple observers are 90 °.
It is needless to say that the observation is not limited to 180 ° or other suitable angles.

【0021】次に、図5乃至図8に基づいて、本発明の
第二実施例を説明する。図5は第二実施例による実体顕
微鏡の概略構成図、図6は図5のB−B線断面図、図7
は第一立体観察部20を90°回転させた場合の実体顕
微鏡の概略構成図、図8は図7のB′−B′線断面図で
ある。図5において、31は第一実施例の第一及び第二
中間鏡筒14,27に代えて固定配置された中間鏡筒で
あり、この中間鏡筒31において、32は第一立体観察
部20の光学系の第一光軸Pを含む一対の光束を通過さ
せるための一対の円筒を有する水平断面が小判型(図6
参照)の回転筒であり、変倍レンズ系12の中心光軸に
対して紙面上左側に偏心して配置され、且つ一対の円筒
の中間位置である軸V(図6参照)を中心に第一立体観
察部20と一体に水平方向(図5で紙面に垂直な方向)
に回動可能になっている。
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a schematic configuration diagram of a stereoscopic microscope according to the second embodiment, FIG. 6 is a sectional view taken along line BB of FIG. 5, and FIG.
8 is a schematic configuration diagram of a stereoscopic microscope when the first stereoscopic observation unit 20 is rotated by 90 °, and FIG. 8 is a sectional view taken along the line B′-B ′ of FIG. 7. In FIG. 5, 31 is an intermediate lens barrel fixedly arranged in place of the first and second intermediate lens barrels 14 and 27 of the first embodiment. In this intermediate lens barrel 31, 32 is the first stereoscopic observation unit 20. The horizontal section having a pair of cylinders for passing a pair of light beams including the first optical axis P of the optical system of FIG.
(Refer to FIG. 6), which is a rotating cylinder of (see FIG. 6), which is eccentrically arranged on the left side of the drawing with respect to the central optical axis of the variable power lens system 12, and is centered on an axis V (see FIG. 6) which is an intermediate position between the pair of cylinders. Horizontal direction with the stereoscopic observation unit 20 (direction perpendicular to the paper surface in FIG. 5)
It can be rotated.

【0022】又、中間鏡筒31内で、33は一対の第一
反射鏡15を保持すると共に回転筒32に隣接配置され
ていて水平方向に摺動可能なスライド筒であり、回転筒
32が隣接する壁面中央部(一対の第一反射鏡15の
間)に回転筒32の小判型断面の半円周部が嵌合し得る
弧状の溝33aが形成されている。34は中間鏡筒31
内でスライド筒33と第二反射鏡16との間に固定され
た光束通過用孔を有する壁面、35はスライド筒33と
壁面34との間に介装されていてスライド筒33を回転
筒32方向に弾圧する一対のバネ、36はスライド筒3
3の領域でスライド筒33の摺動をガイドする中間鏡筒
31内周壁(図6参照)である。又、第二立体観察部2
5は中間鏡筒31に対して固定配置されている。
Further, in the intermediate lens barrel 31, reference numeral 33 is a slide barrel which holds the pair of first reflecting mirrors 15 and is arranged adjacent to the rotary barrel 32 and is slidable in the horizontal direction. An arc-shaped groove 33a into which the semicircular portion of the oval-shaped cross section of the rotary cylinder 32 can be fitted is formed in the central portion of the adjacent wall surface (between the pair of first reflecting mirrors 15). 34 is the intermediate lens barrel 31
A wall surface having a light flux passage hole fixed between the slide cylinder 33 and the second reflecting mirror 16 therein, 35 is interposed between the slide cylinder 33 and the wall surface 34, and the slide cylinder 33 is rotated by the rotary cylinder 32. A pair of springs for elastically pressing in the direction, 36 is the slide cylinder 3
3 is an inner peripheral wall of the intermediate lens barrel 31 (see FIG. 6) that guides the sliding of the slide barrel 33 in the region 3. In addition, the second stereoscopic observation unit 2
5 is fixedly arranged with respect to the intermediate lens barrel 31.

【0023】本実施例は上述のように構成されているか
ら、図5及び図6に示すように、回転筒32及び第一立
体観察部20が紙面に対して直交する方向に配置されて
いる場合、スライド筒33はバネ35によってこれに圧
接されることになるから、中間鏡筒33の第一反射鏡1
5は変倍レンズ系12の中心光軸に対して図上右側に偏
心して保持される。従って、術部Oから発せられて変倍
レンズ系12を通過したアフォーカル光は、その一部が
一対の第一光軸Pを含む一対の光束として中間鏡筒31
内の回転筒32の一対の円筒部を通過し、一対の第一結
像レンズ17で結像されて第三反射鏡18を介して一対
の第一接眼レンズ19で術部の像が立体観察される。
Since the present embodiment is constructed as described above, as shown in FIGS. 5 and 6, the rotary cylinder 32 and the first stereoscopic observation section 20 are arranged in a direction orthogonal to the paper surface. In this case, the slide cylinder 33 is pressed against the slide cylinder 33 by the spring 35.
Reference numeral 5 is eccentrically held on the right side of the drawing with respect to the central optical axis of the variable power lens system 12. Therefore, the afocal light emitted from the operation site O and passing through the variable power lens system 12 is partially converted into a pair of light fluxes including the pair of first optical axes P, and the intermediate lens barrel 31.
The image of the surgical site is stereoscopically observed by the pair of first eyepieces 19 through the pair of first imaging lenses 17 after passing through the pair of cylindrical portions of the rotating barrel 32 inside. To be done.

【0024】又、アフォーカル光のうち中間鏡筒31内
の第一反射鏡15で反射された第二光軸Qを含む一対の
光束は、第二反射鏡16で反射された後一対の第二結像
レンズ22で結像されて第四反射鏡22を介して第二接
眼レンズ24で術部の像が立体観察される。従って、こ
の構成によれば、主術者と副術者は互いに180°異な
る角度方向から術部を立体観察することができる。
Of the afocal light, a pair of light fluxes including the second optical axis Q reflected by the first reflecting mirror 15 in the intermediate lens barrel 31 are reflected by the second reflecting mirror 16 and then a pair of light beams. An image of the surgical site is stereoscopically observed by the second eyepiece lens 24 through the fourth reflecting mirror 22 after being imaged by the dual imaging lens 22. Therefore, according to this configuration, the main operator and the sub-operator can stereoscopically observe the surgical site from the angle directions different from each other by 180 °.

【0025】次に、両観察者の観察方向を変えるため
に、第一立体観察部20を水平方向に90°回転させる
と、回転筒32も軸Vを中心に90°一体に回転する。
すると、スライド筒33はバネ35の弾力に抗して第二
反射鏡16方向に押動され、回転する回転筒32の小判
型半円筒部の外形に沿って右方に押動された後再び左方
に若干移動して、スライド筒33の溝33aが回転筒3
2の小判型半円筒部に嵌合して停止する(図8参照)。
このようにして回転筒32及びスライド筒33が第一立
体観察部20と共に位置決めされ、図7及び図8に示す
位置に保持される。
Next, when the first stereoscopic observation section 20 is rotated by 90 ° in the horizontal direction in order to change the observation directions of both observers, the rotary cylinder 32 also integrally rotates by 90 ° about the axis V.
Then, the slide cylinder 33 is pushed in the direction of the second reflecting mirror 16 against the elastic force of the spring 35, and is pushed rightward along the outer shape of the oval semi-cylindrical portion of the rotating rotary cylinder 32, and then again. Move slightly to the left, and the groove 33a of the slide cylinder 33 will be
It fits into the oval semi-cylindrical part 2 and stops (see FIG. 8).
In this way, the rotary cylinder 32 and the slide cylinder 33 are positioned together with the first stereoscopic observation unit 20 and held at the positions shown in FIGS. 7 and 8.

【0026】このような状態において、術部Oから発せ
られた光束は変倍レンズ系12を介してアフォーカル光
となり、中間鏡筒31の回転筒32を通過する一対の第
一光軸Pの光束は紙面と平行な状態で第一結像レンズ1
7で結像され、第一接眼レンズ19で立体観察される。
又、中間鏡筒31内の第一反射鏡15で反射された一対
の第二光軸Qの光束は紙面と直交する状態で第二反射鏡
16で反射され、第二結像レンズ22で結像されて第二
接眼レンズ24で立体観察される。このようにして、主
術者と副術者は90°異なる角度位置で同一の術部Oを
同一倍率で立体観察することができる。
In such a state, the light beam emitted from the operating portion O becomes afocal light through the variable power lens system 12, and passes through the rotary barrel 32 of the intermediate lens barrel 31 and has a pair of first optical axes P. The first imaging lens 1 with the light flux parallel to the paper surface
The image is formed at 7, and is stereoscopically observed by the first eyepiece lens 19.
Further, the pair of light fluxes of the second optical axis Q reflected by the first reflecting mirror 15 in the intermediate lens barrel 31 are reflected by the second reflecting mirror 16 in a state orthogonal to the paper surface, and are combined by the second imaging lens 22. The image is stereoscopically observed by the second eyepiece lens 24. In this way, the main operator and the sub-operator can stereoscopically observe the same operation site O at different angular positions by 90 ° at the same magnification.

【0027】上述のように本実施例は、観察者同士の観
察角度位置を90°や180°に変える場合、第一立体
観察部20を回転させるだけで位置調整することがで
き、第一実施例のように複数の中間鏡筒を備える必要が
ないから、手術中であっても角度位置の変更操作をする
ことができ、便利である上に、構成が一層簡単になって
製造コストをより低廉にすることができる。又、第一実
施例と同様に、2つの立体観察部の夫々の光軸間隔を同
一にすることで、同一の立体視ができることはいうまで
もない。
As described above, in the present embodiment, when the observation angle position between the observers is changed to 90 ° or 180 °, the position can be adjusted simply by rotating the first stereoscopic observation unit 20, and Since it is not necessary to provide a plurality of intermediate lens barrels as in the example, it is possible to change the angular position even during surgery, which is convenient, and the configuration is simpler to reduce the manufacturing cost. It can be cheap. Further, it is needless to say that the same stereoscopic vision can be achieved by making the optical axis intervals of the two stereoscopic observation units the same as in the first embodiment.

【0028】次に図9乃至図12により、本発明の第三
実施例を説明する。図9は実体顕微鏡の概略構成図、図
10は図9のC−C線断面図、図11は図9の状態から
第一アーム部を90°回動させた状態の実体顕微鏡の概
略構成図、図12は図11のC′−C′線断面図であ
る。図9において、37は変倍レンズ系12の中心光軸
に対して水平方向に例えば図示の位置から90°回動可
能に配置された第一アーム部、38は第一アーム部37
内を進行する光束を第一アーム部37に固定された第一
立体観察部20方向に曲げる一対の第五反射鏡である。
39は鏡体13に対して固定配置され且つ第一アーム部
37が接続された第二アーム部、40は第二アーム部3
9内を進行する光束を第二アーム部39に固定された第
二立体観察部25方向に曲げる一対の第六反射鏡であ
り、図に示す位置で第一及び第二アーム部37,39は
角度180°の位置に配設されている。
Next, a third embodiment of the present invention will be described with reference to FIGS. 9 is a schematic configuration diagram of the stereomicroscope, FIG. 10 is a sectional view taken along the line CC of FIG. 9, and FIG. 11 is a schematic configuration diagram of the stereomicroscope in a state in which the first arm portion is rotated by 90 ° from the state of FIG. FIG. 12 is a sectional view taken along line C′-C ′ of FIG. 11. In FIG. 9, reference numeral 37 denotes a first arm portion horizontally rotatably arranged with respect to the central optical axis of the variable power lens system 12, for example, 90 ° from the illustrated position, and 38 denotes a first arm portion 37.
It is a pair of fifth reflecting mirrors that bend the light flux traveling inside in the direction of the first stereoscopic observation unit 20 fixed to the first arm unit 37.
Reference numeral 39 denotes a second arm portion fixedly arranged to the mirror body 13 and connected to the first arm portion 37, and 40 denotes the second arm portion 3.
9 is a pair of sixth reflecting mirrors that bend the light flux traveling in 9 toward the second stereoscopic observation unit 25 fixed to the second arm unit 39, and the first and second arm units 37 and 39 are arranged at the positions shown in the drawing. It is disposed at an angle of 180 °.

【0029】又、41は鏡体13との間に第一及び第二
アーム部37,39が接続保持された連動部材であり、
変倍レンズ系12を通過したアフォーカル光を、夫々一
対の第一光軸Pと第二光軸Qを含む各一対の光束として
分割し、第一及び第二アーム部37,39内の第五反射
鏡38及び第六反射鏡40方向へ夫々折り曲げるべく、
図10に示すような回動可能な四つの反射鏡が設けられ
ている。又、連動部材41は第一アーム部37の90°
の回動に連動して、同一方向、同一面内で45°回転す
るようになっており、しかも四つの反射鏡を構成する第
七反射鏡42,第八反射鏡43,第九反射鏡44,第十
反射鏡45は連動部材41の45°回転に連動して、夫
々軸K,L,M,Nを中心に所定角度だけ所定方向に回
転するように設定されている。
Reference numeral 41 is an interlocking member in which the first and second arm portions 37 and 39 are connected and held between the mirror body 13 and
The afocal light that has passed through the variable power lens system 12 is split into a pair of light fluxes each including a pair of a first optical axis P and a second optical axis Q. To bend in the directions of the fifth reflecting mirror 38 and the sixth reflecting mirror 40,
Four rotatable mirrors as shown in FIG. 10 are provided. Further, the interlocking member 41 is 90 ° of the first arm portion 37.
Is rotated by 45 ° in the same direction and in the same plane in conjunction with the rotation of No. 7, and the seventh reflecting mirror 42, the eighth reflecting mirror 43, and the ninth reflecting mirror 44 which compose four reflecting mirrors. The tenth reflecting mirror 45 is set to rotate in a predetermined direction about the axes K, L, M, and N in a predetermined direction in association with the 45 ° rotation of the interlocking member 41.

【0030】即ち、図9に示すように第一及び第二アー
ム部37,39が互いに180°離れた角度位置に配置
されている場合、第七反射鏡42及び第九反射鏡44は
変倍レンズ系12を通過した光束の一部を、第一アーム
部37内の第五反射鏡38へ向けるように同一角度に傾
斜されており、第八反射鏡43と第十反射鏡45は変倍
レンズ系12を通過した光束の一部を、第二アーム部3
9内の第六反射鏡40へ向けるように同一角度に傾斜さ
れている。又、図11に示すように第一及び第二アーム
部37,39が互いに90°離れた角度位置に配置され
ている場合、第七反射鏡42及び第十反射鏡45は変倍
レンズ系12を通過した光束の一部を、第一アーム部3
7内の第五反射鏡38へ向けるように同一角度に傾斜さ
れており、第八反射鏡43と第九反射鏡44は変倍レン
ズ系12を通過した光束の一部を、第二アーム部39内
の第六反射鏡40へ向けるように同一角度に傾斜されて
いる。
That is, as shown in FIG. 9, when the first and second arm portions 37, 39 are arranged at angular positions 180 ° apart from each other, the seventh reflecting mirror 42 and the ninth reflecting mirror 44 are scaled. A part of the light flux that has passed through the lens system 12 is tilted at the same angle so as to be directed to the fifth reflecting mirror 38 in the first arm portion 37, and the eighth reflecting mirror 43 and the tenth reflecting mirror 45 vary the magnification. A part of the light flux that has passed through the lens system 12 is transferred to the second arm unit 3
It is inclined at the same angle so as to face the sixth reflecting mirror 40 in 9. Further, as shown in FIG. 11, when the first and second arm portions 37, 39 are arranged at angular positions separated from each other by 90 °, the seventh reflecting mirror 42 and the tenth reflecting mirror 45 are arranged in the variable magnification lens system 12. Part of the light flux that has passed through the first arm part 3
7 is inclined at the same angle so as to be directed to the fifth reflecting mirror 38, and the eighth reflecting mirror 43 and the ninth reflecting mirror 44 partly part of the light flux passing through the variable power lens system 12 into the second arm portion. It is inclined at the same angle so as to face the sixth reflecting mirror 40 in 39.

【0031】尚、連動部材41と各反射鏡42,43,
44,45とを第一アーム部37の回動に連動させる機
構は、特定の比を有するギア等を用いて公知の技術によ
り構成されるが、その説明は省略する。
The interlocking member 41 and the reflecting mirrors 42, 43,
The mechanism for interlocking 44 and 45 with the rotation of the first arm portion 37 is configured by a known technique using a gear or the like having a specific ratio, but the description thereof will be omitted.

【0032】本実施例は上述のように構成されているか
ら、図9に示すように第一及び第二アーム部37,39
が互いに180°離れた角度位置にある場合、術部Oか
ら発せられた光束は、変倍レンズ系12を通過してアフ
ォーカル光となり、その一部である一対の第一光軸Pを
含む一対の光束は、第七反射鏡42及び第九反射鏡44
で反射されて第一アーム部37内を進行する。そして、
第五反射鏡38で折り曲げられて第一立体観察部20内
へ進み、一対の第一接眼レンズ19によって術部Oの像
が立体観察できる。又、アフォーカル光のうち、一対の
第二光軸Qを含む一対の光束は、第八反射鏡43及び第
十反射鏡45で反射されて第二アーム部39内を進行
し、第六反射鏡40で再び反射させられて第二立体観察
部25内へ進み、一対の第二接眼レンズ24で像を立体
観察できる。
Since this embodiment is constructed as described above, as shown in FIG. 9, the first and second arm portions 37, 39 are formed.
Are 180 degrees apart from each other, the light beam emitted from the surgical site O passes through the variable power lens system 12 to become afocal light, and includes a pair of first optical axes P that are a part thereof. The pair of luminous fluxes are the seventh reflecting mirror 42 and the ninth reflecting mirror 44.
Is reflected by and travels inside the first arm portion 37. And
It is bent by the fifth reflecting mirror 38 and advances into the first stereoscopic observation unit 20, and the image of the operation site O can be stereoscopically observed by the pair of first eyepieces 19. Further, of the afocal light, a pair of light fluxes including a pair of second optical axes Q is reflected by the eighth reflecting mirror 43 and the tenth reflecting mirror 45, travels in the second arm section 39, and then undergoes the sixth reflection. The light is reflected again by the mirror 40 and advances into the second stereoscopic observation unit 25, where the image can be stereoscopically observed by the pair of second eyepiece lenses 24.

【0033】次に、主術者と副術者の観察方向を変える
ために第一アーム部37を図9の位置から水平方向紙面
手前側に90°回転させる。すると、連動部材41が連
動して同一方向に45°回転すると共に、第七反射鏡4
2も軸Kを中心に同一方向に45°回転するため、第七
反射鏡42は90°回転したことになり、第一アーム部
37の第五反射鏡38方向に傾斜する位置に至る(図1
1参照)。又、第十反射鏡45は軸Nを中心に連動部材
41と反対方向に135°回転するため、第七反射鏡4
2と平行な方向に同一角度傾斜した状態になる(図11
参照)。従って、第七及び第十反射鏡42,45で反射
された一対のアフォーカル光は、第一アーム部37の第
五反射鏡38で反射されて、第一立体観察部20で像を
立体観察できる。
Next, in order to change the observation directions of the main operator and the sub-operator, the first arm portion 37 is rotated 90 ° in the horizontal direction from the position shown in FIG. Then, the interlocking member 41 interlocks and rotates 45 ° in the same direction, and at the same time, the seventh reflecting mirror 4
Since 2 also rotates 45 ° in the same direction about the axis K, the seventh reflecting mirror 42 has rotated 90 °, and reaches a position where the first arm portion 37 is tilted toward the fifth reflecting mirror 38 (Fig. 1
1). Further, since the tenth reflecting mirror 45 rotates about the axis N in the opposite direction to the interlocking member 41 by 135 °, the seventh reflecting mirror 4
2 is tilted in the same direction in a direction parallel to the direction 2 (see FIG. 11).
reference). Therefore, the pair of afocal lights reflected by the seventh and tenth reflecting mirrors 42 and 45 are reflected by the fifth reflecting mirror 38 of the first arm section 37 and the image is stereoscopically observed by the first stereoscopic observation section 20. it can.

【0034】又、連動部材41の45°回転に連動し
て、第八反射鏡43は軸Mを中心にして連動機構41と
逆方向に45°回転するため、この反射鏡43は第二ア
ーム部39の第六反射鏡40方向に傾斜した状態に維持
される。そして、第九反射鏡44は軸Mを中心に連動機
構41と同一方向に135°回転するため、図9の状態
と反対方向即ち第八反射鏡43と平行に第二アーム部3
9の第六反射鏡40方向に傾斜することになる(図11
参照)。従って、第八及び第九反射鏡43,44で反射
された一対のアフォーカル光は第六反射鏡40で反射さ
れて、第二立体観察部25で像を立体観察できる。
Also, since the eighth reflecting mirror 43 rotates about the axis M in the opposite direction of the interlocking mechanism 41 by 45 ° in conjunction with the rotation of the interlocking member 41 by 45 °, the reflecting mirror 43 is the second arm. The portion 39 is maintained in a state of being inclined toward the sixth reflecting mirror 40. Since the ninth reflecting mirror 44 rotates about the axis M in the same direction as the interlocking mechanism 41 by 135 °, the second arm portion 3 is in the opposite direction from the state of FIG. 9, that is, parallel to the eighth reflecting mirror 43.
It will be tilted in the direction of the sixth reflecting mirror 40 of 9 (see FIG. 11).
reference). Therefore, the pair of afocal lights reflected by the eighth and ninth reflecting mirrors 43 and 44 are reflected by the sixth reflecting mirror 40 and the image can be stereoscopically observed by the second stereoscopic observation unit 25.

【0035】従って、主術者と副術者は互いに90°観
察角度が離れた方向で立体観察することができる。尚、
第七乃至第十反射鏡42,43,44,45は、観察角
度が180°離れた場合と90°離れた場合のいづれで
も十分な像の観察を行えるように、2つの立体観察部2
0,25へ向かう像観察に必要な光束よりも大きな反射
面積を有する反射部材を使用するものとする。
Therefore, the main operator and the sub-operator can stereoscopically observe in directions in which the observation angles are 90 ° apart from each other. still,
The seventh to tenth reflecting mirrors 42, 43, 44, 45 are provided with two stereoscopic observation units 2 so that sufficient observation of an image can be performed regardless of whether the observation angle is 180 ° or 90 °.
It is assumed that a reflection member having a reflection area larger than the luminous flux necessary for observing an image toward 0, 25 is used.

【0036】このように本実施例は、複数の観察光学系
について、観察者の眼の位置から術部Oまでの距離を、
対物レンズ11と一方の観察点までの長さを増すことな
く、同一距離に設定することができるから、主術者と副
術者とが同一条件下で作業ができる上に、長い手術具の
使用も可能になり、手術の効率が上がるという利点があ
る。
As described above, in the present embodiment, the distance from the position of the observer's eyes to the surgical site O is calculated for a plurality of observation optical systems.
Since it is possible to set the same distance without increasing the length between the objective lens 11 and one of the observation points, the main operator and the sub-operator can work under the same conditions, and in addition, a long surgical tool can be used. It has the advantage that it can be used and the efficiency of surgery increases.

【0037】[0037]

【発明の効果】上述のように本発明に係る実体顕微鏡
は、顕微鏡の大型化、重量の増加及び高価格化を招くこ
となく、複数の観察者が同一高さから同一視野及び同一
倍率で観察対象物を観察でき、しかも観察者同士の観察
方向のなす角度を様々に選択できる。又、変倍光学系後
方の観察用光束をハーフミラー等で分割することもない
から、明るい観察像が得られるという利点もある。又、
複数の立体観察部の各一対の光軸間隔を同一にすること
で、複数の観察者の立体感も同一にすることができ、更
に対物レンズと各観察点との長さを短い状態に維持した
ままで、術部と観察者の位置までの長さを複数の観察者
間で同一にすることができ、複数の観察者による観察条
件をより一層同一にすることができる。このように、本
発明によれば、手術時に副術者は従来以上に十分な補助
を行うことができ、手術の安全性の向上と手術時間の短
縮化を図ることができ、その結果として手術の成功率を
向上させることができる。又、副術者側からの指導によ
り手術の教育を十分に行うこともできる。
As described above, the stereomicroscope according to the present invention allows a plurality of observers to observe from the same height in the same field of view and at the same magnification without inviting an increase in size, weight and cost of the microscope. The object can be observed, and the angle between the observation directions of the observers can be variously selected. Further, there is also an advantage that a bright observation image can be obtained because the observation light flux behind the variable power optical system is not divided by a half mirror or the like. or,
By making the pair of optical axis intervals of the plurality of stereoscopic observation units the same, the stereoscopic effect of the plurality of observers can be made the same, and the length of the objective lens and each observation point can be kept short. As it is, the lengths up to the position of the operative site and the observer can be made the same among the plurality of observers, and the observation conditions by the plurality of observers can be made even more identical. As described above, according to the present invention, the sub-operator can provide more sufficient assistance during surgery than ever before, and it is possible to improve the safety of the surgery and shorten the surgery time, resulting in surgery. The success rate can be improved. In addition, it is possible to fully teach surgery by the instruction from the side surgeon.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例による実体顕微鏡の概略構
成図である。
FIG. 1 is a schematic configuration diagram of a stereoscopic microscope according to a first embodiment of the present invention.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】本発明の第一実施例による実体顕微鏡につい
て、中間鏡筒を取り替えた状態の概略構成図である。
FIG. 3 is a schematic configuration diagram of the stereoscopic microscope according to the first embodiment of the present invention with an intermediate lens barrel being replaced.

【図4】図3のA′−A′線断面図である。FIG. 4 is a sectional view taken along the line A′-A ′ of FIG.

【図5】本発明の第二実施例による実体顕微鏡の概略構
成図である。
FIG. 5 is a schematic configuration diagram of a stereoscopic microscope according to a second embodiment of the present invention.

【図6】図1のB−B線断面図である。6 is a cross-sectional view taken along the line BB of FIG.

【図7】本発明の第二実施例による実体顕微鏡につい
て、第一立体観察部の角度を90°回転させた状態の概
略断面図である。
FIG. 7 is a schematic cross-sectional view of the stereoscopic microscope according to the second embodiment of the present invention in a state where the angle of the first stereoscopic observation unit is rotated by 90 °.

【図8】図7のB′−B′線断面図である。8 is a cross-sectional view taken along the line B'-B 'of FIG.

【図9】本発明の第三実施例による実体顕微鏡につい
て、2つのアーム部の角度を180°に配置した概略構
成図である。
FIG. 9 is a schematic configuration diagram of a stereoscopic microscope according to a third embodiment of the present invention in which two arms are arranged at an angle of 180 °.

【図10】図9のC−C線断面図である。10 is a cross-sectional view taken along the line CC of FIG.

【図11】本発明の第三実施例による実体顕微鏡につい
て、2つのアーム部の角度を90°に配置した概略断面
図である。
FIG. 11 is a schematic sectional view of a stereoscopic microscope according to a third embodiment of the present invention, in which two arms are arranged at an angle of 90 °.

【図12】図11のC′−C′線断面図である。12 is a sectional view taken along the line C′-C ′ of FIG.

【図13】従来の実体顕微鏡を示すものであり、(A)
は概略正面断面図、(B)は概略側面図である。
FIG. 13 shows a conventional stereomicroscope, (A)
Is a schematic front sectional view, and (B) is a schematic side view.

【図14】従来の他の実体顕微鏡の光学系を示すもので
あり、(A)は正面図、(B)は側面図、(C)は変倍
光学系と対物レンズの平面図である。
FIG. 14 shows an optical system of another conventional stereoscopic microscope, in which (A) is a front view, (B) is a side view, and (C) is a plan view of a variable power optical system and an objective lens.

【図15】従来の他の実体顕微鏡の概略構成図である。FIG. 15 is a schematic configuration diagram of another conventional stereoscopic microscope.

【符号の説明】[Explanation of symbols]

11 対物レンズ 12 変倍レンズ系 14 第一中間鏡筒 20 第一立体観察部 25 第二立体観察部 27 第二中間鏡筒 31 中間鏡筒 32 回転筒 33 スライド筒 37 第一アーム部 39 第二アーム部 41 連動部材 11 Objective Lens 12 Variable Magnification Lens System 14 First Intermediate Lens Tube 20 First Stereoscopic Observation Section 25 Second Stereoscopic Observation Section 27 Second Intermediate Lens Tube 31 Intermediate Lens Tube 32 Rotating Tube 33 Slide Tube 37 First Arm Section 39 Second Arm 41 Interlocking member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 朝規 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 浜田 雅巳 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 絹川 正彦 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 榛澤 豊治 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 中村 信一 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Asahi Ishikawa 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd. (72) Inventor Masami Hamada 2-43-2 Hatagaya, Shibuya-ku, Tokyo No. Olympus Optical Co., Ltd. (72) Inventor Masahiko Kinukawa 2-43-2 Hatagaya, Shibuya-ku, Tokyo No. 2 Olympus Optical Co., Ltd. (72) Inventor Toyoharu Harasawa 2-43-2 Hatagaya, Shibuya-ku, Tokyo No. Olympus Optical Co., Ltd. (72) Inventor Shin-ichi Nakamura 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】物体側から順に対物光学系と変倍光学系と
複数の立体観察光学系とが備えられた、共覧型の実体顕
微鏡において、前記変倍光学系と立体観察光学系との間
に、変倍光学系から出射される光束を各立体観察光学系
に分配する複数の光束偏向部材を有する光束分配手段を
設けると共に、該光束分配手段を交換可能にするか又は
該光束偏向部材の配置を変化させる手段を設けて、前記
複数の立体観察光学系相互間の観察角度を変化させ得る
ようにしたことを特徴とする実体顕微鏡。
1. A common view type stereoscopic microscope comprising an objective optical system, a variable magnification optical system and a plurality of stereoscopic observation optical systems in order from the object side, wherein the variable magnification optical system and the stereoscopic observation optical system are combined. A light beam distribution means having a plurality of light beam deflection members for distributing the light beam emitted from the variable power optical system to each stereoscopic observation optical system is provided between the light beam distribution means and the light beam distribution means is replaceable or the light beam deflection member. A stereomicroscope, characterized in that a means for changing the arrangement is provided to change the observation angle between the plurality of stereoscopic observation optical systems.
JP32877991A 1991-07-23 1991-12-12 Stereo microscope Expired - Fee Related JP3216896B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32877991A JP3216896B2 (en) 1991-12-12 1991-12-12 Stereo microscope
DE4212924A DE4212924C2 (en) 1991-07-23 1992-04-21 Stereo microscope
US08/411,929 US5552929A (en) 1991-07-23 1995-03-28 Stereomicroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32877991A JP3216896B2 (en) 1991-12-12 1991-12-12 Stereo microscope

Publications (2)

Publication Number Publication Date
JPH05164974A true JPH05164974A (en) 1993-06-29
JP3216896B2 JP3216896B2 (en) 2001-10-09

Family

ID=18214036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32877991A Expired - Fee Related JP3216896B2 (en) 1991-07-23 1991-12-12 Stereo microscope

Country Status (1)

Country Link
JP (1) JP3216896B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668661A (en) * 1993-12-07 1997-09-16 Nikon Corporation Microscope
JP2001142003A (en) * 1999-11-16 2001-05-25 Olympus Optical Co Ltd Microscope for operation
US6546208B1 (en) 1999-11-22 2003-04-08 Sl3D, Inc. Stereoscopic telescope with camera
JP2004361962A (en) * 2003-06-05 2004-12-24 Leica Microsystems (Schweiz) Ag Microscope

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668661A (en) * 1993-12-07 1997-09-16 Nikon Corporation Microscope
JP2001142003A (en) * 1999-11-16 2001-05-25 Olympus Optical Co Ltd Microscope for operation
US6546208B1 (en) 1999-11-22 2003-04-08 Sl3D, Inc. Stereoscopic telescope with camera
JP2004361962A (en) * 2003-06-05 2004-12-24 Leica Microsystems (Schweiz) Ag Microscope
JP4542377B2 (en) * 2003-06-05 2010-09-15 ライカ インストルメンツ(シンガポール)プライベート リミテッド microscope

Also Published As

Publication number Publication date
JP3216896B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
JPS62287213A (en) Variable tilt angle binocular lens barrel
US5668661A (en) Microscope
JPH0554087B2 (en)
US4704012A (en) Stereoscopic microscope
JP2004185004A (en) Stereoscopic microscope
JPH085923A (en) Stereomicroscope
US5287219A (en) Microscope for two or more operators
JP3290467B2 (en) Binocular stereo microscope
JP3672350B2 (en) Stereo microscope binocular tube
JP3216896B2 (en) Stereo microscope
JPH02311812A (en) Dual stereoscopic microscope
JP2004109488A (en) Stereoscopic microscope
JP4343509B2 (en) Stereo microscope
JP2945118B2 (en) Stereo microscope
JPH07140395A (en) Stereomicroscope
US7088504B2 (en) Surgical microscope
JP3645655B2 (en) Stereo microscope
JPH0876030A (en) Solid endoscope having curved peeping direction
JP2008292513A (en) Variable power optical system
JPH05107481A (en) Stereoscopic microscope
JP4398003B2 (en) Surgical microscope
JP2001117014A (en) Stereomicroscope
JP2958096B2 (en) Stereo microscope
JPH105244A (en) Microscope for operation
JP4847095B2 (en) Stereo microscope binocular tube

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees