JPH05164765A - Automatic chemical analysis device - Google Patents

Automatic chemical analysis device

Info

Publication number
JPH05164765A
JPH05164765A JP32755391A JP32755391A JPH05164765A JP H05164765 A JPH05164765 A JP H05164765A JP 32755391 A JP32755391 A JP 32755391A JP 32755391 A JP32755391 A JP 32755391A JP H05164765 A JPH05164765 A JP H05164765A
Authority
JP
Japan
Prior art keywords
sample
liquid drop
droplet
drop
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32755391A
Other languages
Japanese (ja)
Inventor
Morihito Inoue
守人 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32755391A priority Critical patent/JPH05164765A/en
Publication of JPH05164765A publication Critical patent/JPH05164765A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform highly accurate chemical analysis based on the accurate volume of each liquid drop actually dropping down from a nozzle by photoelectrically measuring the projected shapes of the liquid drops and highly accurately calculating the volume of each liquid drop from its shape. CONSTITUTION:A light source section 11a is composed of a semiconductor laser and cylindrical lens and emits a line beam upon the route of the liquid drop of a sample 1 discharged from a nozzle 2a to a reaction tube 5a in the direction perpendicular to the route. A photodetector 11b composed of a lens and line sensor detects a change in light quantity produced when the liquid drop of the sample 1 intercepts the line beam. The signal of the photodetector 11b is sent to an arithmetic and control device 10 after the signal is digitized by means of a signal processing circuit 11c composed of an amplifier, binarization circuit, etc. The device 10 detects the start and end of line beam interception by each liquid drop and stores data at every scanning time after each liquid drop starts to intercept the beam by performing arithmetic processing on the input data and finds the dispensed amount of the sample 1 by finding the volume of each drop by performing spherical approximation based on the data collected while each drop crosses the line beam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は臨床検査の分野におい
て用いられる自動化学分析装置に関し、特に、体液試料
を微量づつ分注する際にその液料を正確に定量する技術
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic chemical analyzer used in the field of clinical examination, and more particularly to a technique for accurately quantifying a liquid amount when a small amount of a body fluid sample is dispensed.

【0002】[0002]

【従来の技術】近年、医療診断に際して各種の医療検
査、例えば血液や尿などの検査が不可欠な要因となって
きている。また、抗原抗体反応を用いた免疫測定法の検
査の自動化など、検査項目の多様化に伴い一検体で分析
する項目数が増加している。患者よりの採血回復力低下
にもつながり兼ねない。そこで、分析装置で使用する試
料量を微量化する必要があった。従来このような要求に
対し、分注シリンジを精密ネジとステッピングモータで
駆動制御し分取分注の定量性を確保する(パルスカウン
ト定量)方式を採用しており、機構上の性能は満足され
ていた。
2. Description of the Related Art In recent years, various medical tests such as blood and urine tests have become indispensable factors for medical diagnosis. In addition, the number of items to be analyzed in one sample is increasing with the diversification of test items such as automation of immunoassay tests using antigen-antibody reaction. It may also lead to lower recovery of blood collection from the patient. Therefore, it is necessary to reduce the amount of sample used in the analyzer. Conventionally, to meet such demands, we have adopted a method that controls the dispensing syringe with a precision screw and a stepping motor to ensure the quantitativeness of the dispensing and dispensing (pulse count quantitative) method, and the mechanical performance is satisfied. Was there.

【0003】[0003]

【発明が解決しようとする課題】しかるに、分注試料の
微量化がノズルなどへの付着などで最終的に反応管に分
注される試料量が、駆動部の定量性があるにもかかわら
ず誤差を生じ、分析精度の低下につながる結果となる。
このことが微量化の促進を妨げていた。
However, the amount of the sample finally dispensed to the reaction tube due to the adhesion of the sample to the nozzle or the like due to the miniaturization of the dispensed sample is quantified by the drive unit. This results in an error, resulting in a decrease in analysis accuracy.
This has hindered the promotion of miniaturization.

【0004】この発明は前述した従来の問題点に鑑みな
されたもので、その目的は、分注ノズルからの吐出供給
される微量な試料や試薬の量を正確に計測できるよう
に、その正確な液量に基づいて高精度に化学分析を行え
るようにすることにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to accurately measure the amount of a small amount of sample or reagent discharged and supplied from a dispensing nozzle. It is to enable highly accurate chemical analysis based on the liquid volume.

【0005】[0005]

【課題を解決するための手段】試料や試薬をノズルの先
端から微小な液滴として供給する分注吐出手段と、前記
液滴の落下経路に交差するようにほぼ水平にライン状光
ビームを発射するビーム発生手段と、このビーム発生手
段に対して前記落下経路を挾んで対向配置され、前記ラ
イン状光ビームを受光する2次元撮像手段と、前記液滴
が前記ライン状光ビームを横切って落下する際の前記2
次元撮像手段の出力信号から前記液滴の投影形状を認識
してその液滴量を演算する液滴定量処理手段とを自動化
学分析装置に付加した。
[Means for Solving the Problems] Dispensing and discharging means for supplying a sample or a reagent as fine droplets from the tip of a nozzle, and a line-shaped light beam is emitted substantially horizontally so as to intersect the drop path of the droplets. Beam generating means, a two-dimensional imaging means that is arranged to face the beam generating means so as to sandwich the drop path, and receives the linear light beam, and the droplet drops across the linear light beam. 2 when doing
A droplet quantitative processing means for recognizing the projected shape of the droplet from the output signal of the three-dimensional imaging means and calculating the amount of the droplet is added to the automatic chemical analyzer.

【0006】[0006]

【作用】前記分注吐出手段の定量精度に依存するのでは
なく、前記ノズルから実際に滴下してくる液滴の投影形
状を光電的に計測し、その形状から液滴量を高精度に算
出することができる。
Operation: The projected shape of the droplet actually dropped from the nozzle is photoelectrically measured, and the droplet amount is calculated with high accuracy, without depending on the quantitative accuracy of the dispensing and discharging means. can do.

【0007】[0007]

【実施例】図1は本発明の一実施例による自動化学分析
装置の概略斜視図を示す。人体から採取した血清などの
サンプル1を受け入れている複数のサンプル容器1aを
配置したサンプルディスク(サンプル部)2と、試験項
目に対応する試薬3を種類毎にいれた試薬容器3aを有
する試薬部4と、サンプル1と試薬3を混合、反応させ
る複数の反応管5aを有する反応部5を有している。ま
た、試験項目等の情報を入力する操作部6と、測光部7
により測定された結果を表示する表示装置8、プリンタ
9と、装置全体を制御ならびに測定データの演算処理を
行う演算制御装置10とを有している。
1 is a schematic perspective view of an automatic chemical analyzer according to an embodiment of the present invention. A sample part (sample part) 2 in which a plurality of sample containers 1a for receiving a sample 1 such as serum collected from a human body are arranged, and a reagent part having a reagent container 3a containing a reagent 3 corresponding to a test item for each type. 4 and a reaction part 5 having a plurality of reaction tubes 5a for mixing and reacting the sample 1 and the reagent 3. In addition, an operation unit 6 for inputting information such as test items and a photometry unit 7
It has a display device 8 and a printer 9 for displaying the results measured by the above, and an arithmetic and control unit 10 for controlling the entire device and arithmetically processing the measurement data.

【0008】前記サンプル部2において、サンプル容器
1aのサンプル1を吸引分注するサンプル吸引分注機構
2bは、演算制御装置10の制御のもとに所望のサンプ
ルを選択し、所定量のサンプルをサンプルノズル2aよ
り吸引した後、反応部9の所定の反応管5aに、本発明
に関わるセンサ11を介して分注されるように構成され
ている。
In the sample section 2, the sample suction / dispensing mechanism 2b for sucking and dispensing the sample 1 in the sample container 1a selects a desired sample under the control of the arithmetic and control unit 10 and selects a predetermined amount of sample. After being sucked from the sample nozzle 2a, it is configured to be dispensed into a predetermined reaction tube 5a of the reaction section 9 via a sensor 11 according to the present invention.

【0009】前記試薬部4は、試薬容器3aの試験項目
に対応して試薬3をノズル4aより吸引分注する。その
手段として試薬吸引分注機構4bを有しており、この試
薬吸引分注機構4bは、演算制御装置10のもとに、所
望の試薬容器3aを選択し、所定量の試薬3を吸引した
後、反応部5の所定の反応管に分注するように構成され
ている。
The reagent section 4 sucks and dispenses the reagent 3 from the nozzle 4a corresponding to the test item of the reagent container 3a. As a means for this, it has a reagent suction / dispensing mechanism 4b, and this reagent suction / dispensing mechanism 4b selects a desired reagent container 3a under the operation control device 10 and sucks a predetermined amount of reagent 3. After that, it is configured to dispense into a predetermined reaction tube of the reaction section 5.

【0010】前記反応部5は、反応管5aに分注された
サンプル1と試薬3との混合液を撹拌する撹拌部12
と、撹拌された混合液の比色測定を行う測光部7と、分
析の前後に反応管5a内を洗浄する洗浄部13と、安定
な測定を行えるように反応管5a内の混合液を一定温度
に保つ恒温部14とを有している。
The reaction section 5 is a stirring section 12 for stirring the mixed liquid of the sample 1 and the reagent 3 dispensed in the reaction tube 5a.
A photometric section 7 for colorimetric measurement of the stirred mixed solution, a cleaning section 13 for cleaning the inside of the reaction tube 5a before and after the analysis, and a fixed mixture solution in the reaction tube 5a for stable measurement. It has a constant temperature part 14 for keeping the temperature.

【0011】前記測光部7は、光源7aと、光源からの
光を反応管5a内のサンプルと試薬の混合液に透過さ
せ、透過した光を波長毎に分散させる回析格子7bと、
分散後の波長毎の吸光度を検出する検出器7cとを含む
検出系を有し、この混合液の反応状態を吸光度として検
出するようにしている。
The photometric unit 7 includes a light source 7a, a diffraction grating 7b that transmits the light from the light source to the mixed liquid of the sample and the reagent in the reaction tube 5a, and disperses the transmitted light for each wavelength.
It has a detection system including a detector 7c for detecting the absorbance of each wavelength after dispersion, and detects the reaction state of this mixed solution as the absorbance.

【0012】図2に基づいてサンプル分注に本発明を適
用した実施例を述べる。
An embodiment in which the present invention is applied to sample dispensing will be described with reference to FIG.

【0013】図のように、試料の吸引、吐出用のシリン
ジ15に対して試料の希釈や洗浄用の希釈液を収納する
希釈容器16が送液ポンプ17、電磁バルブ18を径由
して連結されている。シリンジ15は、ステッピングモ
ータ19、駆動ネジ20でピストン15aを上下に摺動
するように構成されている。ピストン15aの摺動は、
演算制御装置10でピストン15aの上死点の位置検出
器21の検出信号を基準点として駆動制御される。シリ
ンジ15aのもう一方の吐出側は、サンプルノズル2a
にいたる。
As shown in the drawing, a diluting container 16 for accommodating a diluting liquid for diluting or washing the sample is connected to a syringe 15 for sucking and discharging the sample via a liquid feed pump 17 and an electromagnetic valve 18. Has been done. The syringe 15 is configured to slide the piston 15a up and down by a stepping motor 19 and a drive screw 20. The sliding of the piston 15a
The arithmetic and control unit 10 drives and controls the detection signal of the position detector 21 at the top dead center of the piston 15a as a reference point. The other discharge side of the syringe 15a is connected to the sample nozzle 2a.
Up to

【0014】液滴定量センサ11は、光源に半導体レー
ザを用い、シリンドリカルレンズでライン状光ビーム
(以下ラインビームと言う)を発する光源部11aと、
光源部11aから発せられたラインビームを対向位置で
検出する光検出器11bと、信号処理回路から構成され
ている。
The droplet quantitative sensor 11 uses a semiconductor laser as a light source, and a light source section 11a which emits a linear light beam (hereinafter referred to as a line beam) by a cylindrical lens.
It is composed of a photodetector 11b that detects the line beam emitted from the light source unit 11a at an opposed position, and a signal processing circuit.

【0015】図3に液滴定量センサ11の検出系の詳細
を示している。光源部11aは、半導体レーザとシリン
ドリカルレンズより構成され、ノズル2aから吐出され
るサンプル1の液滴の反応管5aに至る経路に直角方向
にラインビームを発射する。レンズとラインセンサより
構成される光検出器11bでは、サンプル1の液滴がラ
インビームを遮ることにより光量変化を検出する。光検
出器11bからの信号は、増幅器、2値化回路などから
なる信号処理回路11cで、デジタル化された演算制御
装置10に送られる。演算制御装置10では、入力され
たデータを演算処理し、液滴の通過開始検出、ビームを
遮りはじめてからの走査時間ごとのデータの記憶、通過
終了検出を行い、通過中収集したデータをもとに球面近
似を行い体積を求めサンプル1の分注量とする。
FIG. 3 shows the details of the detection system of the droplet quantitative sensor 11. The light source unit 11a includes a semiconductor laser and a cylindrical lens, and emits a line beam in a direction perpendicular to a path of the droplet of the sample 1 ejected from the nozzle 2a to the reaction tube 5a. The photodetector 11b including a lens and a line sensor detects a change in the light amount by the droplet of the sample 1 blocking the line beam. The signal from the photodetector 11b is sent to the digitized arithmetic and control unit 10 by a signal processing circuit 11c including an amplifier and a binarization circuit. The arithmetic and control unit 10 performs arithmetic processing on the input data to detect the start of droplet passage, store the data for each scanning time from when the beam starts to be blocked, and detect the end of passage, and based on the data collected during passage. Spherical approximation is performed to determine the volume, and use this as the dispensing amount for Sample 1.

【0016】サンプル1の液滴と、それがラインビーム
を横切る時の光検出器11bからの信号の関係を図4に
示している。Aは、液滴通過前の状態でデータはすべて
“0“である。Bは、液滴の先端部による光量変化が検
出された状態を示す。図中の斜線部が、液滴による遮断
“1”を表す。液滴の通過開始検出は、次のデータがA
のデータ、つまりノイズによる検出信号でない事を確認
後に有効とし記憶をはじめる。CからEは、各走査時間
毎のデータの説明図であり、随時記憶される。FGは、
通過終了検出でGの検出で通過終了とし、この検出をも
って、記憶しているデータの演算処理を開始する。ま
た、分注量が数滴行われる場合、そのインターバルは、
演算制御装置10により制御される。
The relationship between the droplet of sample 1 and the signal from photodetector 11b as it traverses the line beam is shown in FIG. In A, all the data are “0” in the state before passing the droplet. B shows a state in which a change in the light amount due to the tip of the droplet is detected. The shaded area in the figure represents the interruption "1" by the droplet. The following data is used to detect the start of droplet passage.
After confirming that it is not a detection signal due to noise, that is, it is validated and storage is started. C to E are explanatory diagrams of data for each scanning time and are stored at any time. FG is
When the passage end is detected, the passage is ended when G is detected, and the arithmetic processing of the stored data is started with this detection. Also, when a few drops are dispensed, the interval is
It is controlled by the arithmetic and control unit 10.

【0017】図5は、自動化学分析装置の信号処理系の
概略構成を示している。演算制御装置10は、装置全体
の動作と測定データの演算処理を行う手段としてCPU
10aと、操作部6に入力された試験項目およびこの試
験項目情報に対応する試薬情報を記憶するメモリ10b
と、この試験項目情報に基づく分析を実行するための一
連の動作指令をプログラムとして記憶しているプログラ
ムメモリ10cとから構成されている。演算制御装置1
0には、操作部6、表示部8、プリンタ9、試薬吸引分
注機構4b、サンプル吸引分注機構2b、液滴定量セン
サ11、反応部9が、電気的に接続されている。
FIG. 5 shows a schematic configuration of a signal processing system of the automatic chemical analyzer. The arithmetic and control unit 10 includes a CPU as a means for performing the operation of the entire apparatus and the arithmetic processing of measurement data.
10a and a memory 10b for storing test items input to the operation unit 6 and reagent information corresponding to the test item information.
And a program memory 10c in which a series of operation commands for executing the analysis based on the test item information are stored as a program. Arithmetic control device 1
An operation unit 6, a display unit 8, a printer 9, a reagent suction / dispensing mechanism 4b, a sample suction / dispensing mechanism 2b, a droplet quantitative sensor 11, and a reaction unit 9 are electrically connected to 0.

【0018】次に、図6のフローチャートにしたがって
本装置の全体的動作を説明する。操作部6のスタートキ
ー(図示せず)を押すと、スタート信号が、CPU10
aに送出され、CPU10aは、プログラムメモリ10
cに記憶されているプログラムを読みだし、準備完了と
なる。次に、この操作部6に試験項目等の情報を入力す
ると、CPU10aは、この試験項目情報をメモリ10
bに記憶させ、次に、洗浄部13を制御し、反応管5a
内を洗浄させる。そして、CPU10aは、洗浄部13
を制御して純水を反応管に分注させ、測光部7に水ブラ
ンク測定を行わせ、測定終了後測定に用いた純水を排出
させる。
Next, the overall operation of this apparatus will be described with reference to the flowchart of FIG. When a start key (not shown) of the operation unit 6 is pressed, a start signal is sent to the CPU 10
a to the program memory 10
The program stored in c is read and the preparation is completed. Next, when information such as a test item is input to the operation unit 6, the CPU 10a stores the test item information in the memory 10.
b, then the cleaning unit 13 is controlled and the reaction tube 5a
Clean the inside. Then, the CPU 10a uses the cleaning unit 13
Is controlled to dispense pure water into the reaction tube, the photometric unit 7 is subjected to water blank measurement, and the pure water used for measurement is discharged after the measurement is completed.

【0019】CPU10aは、メモリ10bに記憶され
ている試験項目情報を検索し、サンプル吸引分注機構2
bにサンプル部2のサンプル1を吸引させ、吸引したサ
ンプル1を洗浄後の反応管に分注する。反応管に吐出す
る時、シリンジ駆動機構を制御して液滴状にし、その液
滴が液滴定量センサ11を通過する時に前記のように形
状計測し、その結果から吐出した液滴を定量する。定量
されたサンプル量は、演算制御装置10のメモリ10b
に、反応管1Dと共に記憶される。
The CPU 10a searches the test item information stored in the memory 10b, and the sample suction / dispensing mechanism 2
The sample 1 of the sample part 2 is sucked into b, and the sucked sample 1 is dispensed into the cleaned reaction tube. When ejecting to the reaction tube, the syringe drive mechanism is controlled to form a droplet, and when the droplet passes through the droplet quantification sensor 11, the shape is measured as described above, and the ejected droplet is quantified from the result. . The quantified sample amount is stored in the memory 10b of the arithmetic and control unit 10.
Are stored together with the reaction tube 1D.

【0020】次に、CPU10aは、メモリ10bに記
憶されている試験項目情報を検索し試薬吸引分注機構4
bを制御して、操作部6から入力された試験項目の情報
に対応する試薬4を吸引する。試薬吸引分注機構4b
は、CPU10aの制御の基に、吸引した試薬3を反応
部9の反応管5aに分注する。サンプル1と試薬3が分
注された反応管5aは、撹拌部12にて撹拌混合され
る。つづいて、撹拌混合された反応液を収納する反応管
5aは、測光部にて測光され、測光結果情報がCPU1
0aに送られる。CPU10aは、受け取った測光結果
情報と、サンプル分注時に計量しメモリ10bに記憶し
てあるサンプル量を用いて、サンプル量補正演算を行
う。酸素活性測定における演算式は、以下となってい
る。
Next, the CPU 10a retrieves the test item information stored in the memory 10b and retrieves the reagent suction / dispensing mechanism 4.
By controlling b, the reagent 4 corresponding to the information of the test item input from the operation unit 6 is sucked. Reagent suction and dispensing mechanism 4b
Dispenses the aspirated reagent 3 to the reaction tube 5a of the reaction section 9 under the control of the CPU 10a. The reaction tube 5a into which the sample 1 and the reagent 3 have been dispensed is agitated and mixed by the agitation unit 12. Subsequently, the reaction tube 5a containing the reaction liquid mixed with stirring is subjected to photometry by the photometry section, and the photometry result information is stored in the CPU 1
Sent to 0a. The CPU 10a performs the sample amount correction calculation using the received photometric result information and the sample amount measured at the time of sample dispensing and stored in the memory 10b. The calculation formula in the oxygen activity measurement is as follows.

【0021】 IU/L=(ΔE/min)×(ε)×(1/L) ×(VT /Vs )×(T.C) IU/L:活性値 ΔE/min:1分間当りの吸光度値 ε :分子吸光係数 L :セル長 VT /Vs :最終反応液量{(試薬量+試料量)/試料
量} T.C : 温度係数 上式のVT /Vs の項を検体ごとに補正すればよい。以
上のように演算処理された結果を画面表示させ、またプ
リンタ9にて印字出力させる。
IU / L = (ΔE / min) × (ε) × (1 / L) × (V T / V s ) × (TC) IU / L: Activity value ΔE / min: per minute Absorbance value ε: Molecular extinction coefficient L: Cell length V T / V s : Final reaction solution volume {(reagent amount + sample amount) / sample amount} T.I. C: Temperature coefficient The term of V T / V s in the above equation may be corrected for each sample. The result of the arithmetic processing as described above is displayed on the screen and printed out by the printer 9.

【0022】洗浄部13は、CPU10aの制御によっ
て、分析が終了した反応管5a内の反応液を排出し、反
応管5aの洗浄を行い、測定が終了する。
Under the control of the CPU 10a, the cleaning unit 13 discharges the reaction liquid in the reaction tube 5a whose analysis has been completed, cleans the reaction tube 5a, and completes the measurement.

【0023】[0023]

【発明の効果】以上詳述した本発明によれば、真に反応
に寄与した試料量や試薬量を吐出される液滴の形状計測
により正確に定量することができるので、精度の高い微
量分注を可能とし、項目の増加を採血量を増やすことな
く実現することができる。その結果、多項目にわたる有
効な臨床データを得て、より確度の高い診断が可能とな
る。
According to the present invention described in detail above, since the sample amount and the reagent amount that truly contributed to the reaction can be accurately quantified by measuring the shape of the ejected liquid droplet, the trace amount with high accuracy can be obtained. It enables pouring, and the increase in items can be realized without increasing the blood collection amount. As a result, it is possible to obtain effective clinical data over multiple items and make more accurate diagnosis.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による自動化学分析装置の
全体図。
FIG. 1 is an overall view of an automatic chemical analyzer according to an embodiment of the present invention.

【図2】同上装置におけるサンプル分注機構の構成図。FIG. 2 is a configuration diagram of a sample dispensing mechanism in the same apparatus.

【図3】同上装置における液滴定量センサの詳細図。FIG. 3 is a detailed view of a droplet quantitative sensor in the same apparatus.

【図4】同上センサの動作説明図。FIG. 4 is an operation explanatory diagram of the same sensor.

【図5】同上装置の信号処理系のブロック図。FIG. 5 is a block diagram of a signal processing system of the same apparatus.

【図6】同上装置の全体的な動作を示すフローチャー
ト。
FIG. 6 is a flowchart showing the overall operation of the above apparatus.

【符号の説明】[Explanation of symbols]

1 サンプル 1a サンプル容器 2 サンプル部 2a サンプルノズル 3 試薬 3a 試薬容器 4 試薬ノズル 4a 試薬吸引分注機構 5 反応部 5a 反応管 6 操作部 11 液滴定量センサ 11a 光源部 11b 光検出器 11c 信号処理回路 12 撹拌部 13 洗浄部 14 恒温部 15 シリンジ 15a ピストン 16 希釈容器 17 送液ポンプ 18 電磁バルブ 19 ステッピングモータ 1 sample 1a sample container 2 sample part 2a sample nozzle 3 reagent 3a reagent container 4 reagent nozzle 4a reagent aspirating and dispensing mechanism 5 reaction part 5a reaction tube 6 operation part 11 droplet quantitative sensor 11a light source part 11b photodetector 11c signal processing circuit 12 Stirring Section 13 Washing Section 14 Constant Temperature Section 15 Syringe 15a Piston 16 Dilution Container 17 Liquid Transfer Pump 18 Electromagnetic Valve 19 Stepping Motor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料や試薬をノズルの先端から微小な液
滴として供給する分注吐出手段と、前記液滴の落下経路
に交差するようにほぼ水平にライン状光ビームを発射す
るビーム発生手段と、このビーム発生手段に対して前記
落下経路を挾んで対向配置され、前記ライン状光ビーム
を受光する2次元撮像手段と、前記液滴が前記ライン状
光ビームを横切って落下する際の前記2次元撮像手段の
出力信号から前記液滴の投影形状を認識してその液滴量
を演算する液滴定量処理手段とを備えたことを特徴とす
る自動化学分析装置。
1. Dispensing and ejecting means for supplying a sample or reagent from the tip of a nozzle as minute droplets, and beam generating means for emitting a linear light beam substantially horizontally so as to intersect the drop path of the droplets. And a two-dimensional image pickup means that is arranged to face the beam generation means across the fall path and receives the linear light beam; and the two-dimensional image pickup means when the droplet drops across the linear light beam. An automatic chemical analyzer comprising: a droplet quantitative processing means for recognizing the projected shape of the droplet from the output signal of the two-dimensional image pickup means and calculating the amount of the droplet.
JP32755391A 1991-12-11 1991-12-11 Automatic chemical analysis device Pending JPH05164765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32755391A JPH05164765A (en) 1991-12-11 1991-12-11 Automatic chemical analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32755391A JPH05164765A (en) 1991-12-11 1991-12-11 Automatic chemical analysis device

Publications (1)

Publication Number Publication Date
JPH05164765A true JPH05164765A (en) 1993-06-29

Family

ID=18200354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32755391A Pending JPH05164765A (en) 1991-12-11 1991-12-11 Automatic chemical analysis device

Country Status (1)

Country Link
JP (1) JPH05164765A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333231A (en) * 1994-06-10 1995-12-22 Aloka Co Ltd Automatic dispenser
JP2003121452A (en) * 2001-10-12 2003-04-23 Olympus Optical Co Ltd Liquid dispenser
JP2019512677A (en) * 2016-02-29 2019-05-16 ベンタナ メディカル システムズ, インコーポレイテッド System and method for dispensing characterization
JP2019533167A (en) * 2016-10-28 2019-11-14 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Certain dispensing verification sensor
US11959931B2 (en) 2021-05-21 2024-04-16 Ventana Medical Systems, Inc. System and method for dispense characterization

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333231A (en) * 1994-06-10 1995-12-22 Aloka Co Ltd Automatic dispenser
JP2003121452A (en) * 2001-10-12 2003-04-23 Olympus Optical Co Ltd Liquid dispenser
JP2019512677A (en) * 2016-02-29 2019-05-16 ベンタナ メディカル システムズ, インコーポレイテッド System and method for dispensing characterization
US11073529B2 (en) 2016-02-29 2021-07-27 Ventana Medical Systems, Inc. System and method for dispense characterization
JP2019533167A (en) * 2016-10-28 2019-11-14 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Certain dispensing verification sensor
AU2017347830B2 (en) * 2016-10-28 2022-04-07 Becton Dickinson And Company Positive dispense verification sensor
US11498065B2 (en) 2016-10-28 2022-11-15 Becton Dickinson And Company Positive dispense verification sensor
US11759776B2 (en) 2016-10-28 2023-09-19 Becton, Dickinson And Company Positive dispense verification sensor
US11959931B2 (en) 2021-05-21 2024-04-16 Ventana Medical Systems, Inc. System and method for dispense characterization

Similar Documents

Publication Publication Date Title
US4420566A (en) Method and apparatus for detecting sample fluid on an analysis slide
US8911685B2 (en) Automated analyzer
US8894948B2 (en) Cleaning device, method for detecting suction nozzle clogging, and automatic analyzer
US8252593B2 (en) Sample analyzer and calibration method of sample analyzer
US20060073606A1 (en) Measurement result correction method, urine analysis system, urine analyzer, and storage medium
US9134333B2 (en) Sample processing apparatus and sample processing method
US8894949B2 (en) Cleaning device, method for cleaning nozzle clogging, and automatic analyzer
JP2006343163A (en) Autoanalyzer
EP2587250A1 (en) Automatic analysis device
JP2000105248A (en) Method for handling organism sample and analyzer
JPH0433386B2 (en)
JPH05164765A (en) Automatic chemical analysis device
JPS6327661B2 (en)
JP2001272409A (en) Analysis device of organism sample
JPH07333231A (en) Automatic dispenser
JP6121743B2 (en) Automatic analyzer
US20220203352A1 (en) Reaction vessel and automatic analyzing device
JP2503751Y2 (en) Automatic analyzer
JPH11304799A (en) Reagent sampling shortage detection mechanism in whole blood globule immunity measuring device
JP2604043B2 (en) Automatic analyzer
JP2001264344A (en) Analyzing device
JP2001208762A (en) Analysis method of bio-sample
JPH06273403A (en) Automatic measuring apparatus for liquid-chromatography
JP2783596B2 (en) Automatic chemical analyzer
JPH0121465B2 (en)