JPH05164731A - Manufacture of oxygen sensor - Google Patents

Manufacture of oxygen sensor

Info

Publication number
JPH05164731A
JPH05164731A JP3353256A JP35325691A JPH05164731A JP H05164731 A JPH05164731 A JP H05164731A JP 3353256 A JP3353256 A JP 3353256A JP 35325691 A JP35325691 A JP 35325691A JP H05164731 A JPH05164731 A JP H05164731A
Authority
JP
Japan
Prior art keywords
oxygen sensor
platinum electrode
porous
stabilized zirconia
porous platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3353256A
Other languages
Japanese (ja)
Inventor
Masato Itami
正登 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP3353256A priority Critical patent/JPH05164731A/en
Publication of JPH05164731A publication Critical patent/JPH05164731A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To manufacture a solid electrolyte oxygen sensor capable of developing fast response. CONSTITUTION:A porous platinum electrode 2, a stabilized zirconia layer 3 and a porous platinum electrode 4 are successively formed on an Ni substrate 1 by an in-line continuous sputtering method. Subsequently, paste consisting of an alumina powder, a Na2O/B2O3/SiO2 type glass powder, an acrylic resin and dimethylformamide is applied thereto and baked to form a porous ceramics layer 5. Finally, the part of the Ni substrate 1 is etched and removed by an equal amount liquid mixture of nitric acid, acetic acid and acetone to obtain a solid electrolyte oxygen sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸素センサの製造方法
に関する。更に詳しくは、固体電解質酸素センサの製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an oxygen sensor. More specifically, it relates to a method for manufacturing a solid electrolyte oxygen sensor.

【0002】[0002]

【従来の技術】従来、固体電解質酸素センサは、例えば
安定化ジルコニア(ジルコニアZrO2にCaO、Y2O3、ThO2
どのアルカリ金属酸化物、稀土類金属酸化物を固溶させ
たもの)の焼結体の両面に多孔質白金電極を形成させ、
更にその片側に多孔質セラミックス層を形成させること
により製造されている。
2. Description of the Related Art Conventional solid oxide oxygen sensors are, for example, stabilized zirconia (zirconia ZrO 2 in which alkali metal oxides such as CaO, Y 2 O 3 and ThO 2 and rare earth metal oxides are solid-dissolved). Form porous platinum electrodes on both sides of the sintered body of
Further, it is manufactured by forming a porous ceramic layer on one side thereof.

【0003】この場合、酸素センサの応答速度は、安定
化ジルコニア層の厚さに支配され、換言すればガスの拡
散律速に支配される。従って、安定化ジルコニア層の厚
さが薄い程応答速度が早くなるが、既に形成されている
安定化ジルコニアの両面に白金電極を形成させるという
方法では、安定化ジルコニア層の厚さを薄くしても高々
約50μm程度であり、この場合の応答時間は約0.2秒程度
にとどまっている。そのため、エンジン制御用などの更
に高速応答が必要な用途には、十分に対応できないのが
現状である。
In this case, the response speed of the oxygen sensor is governed by the thickness of the stabilized zirconia layer, in other words, by the gas diffusion rate controlling. Therefore, the smaller the thickness of the stabilized zirconia layer, the faster the response speed, but in the method of forming platinum electrodes on both sides of the already formed stabilized zirconia, the thickness of the stabilized zirconia layer is reduced. Is about 50 μm at most, and the response time in this case is about 0.2 seconds. Therefore, it is the current situation that it cannot be adequately applied to applications such as engine control that require a higher speed response.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、高速
応答性を発揮し得る固体電解質酸素センサの製造方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a solid electrolyte oxygen sensor which can exhibit high-speed response.

【0005】[0005]

【課題を解決するための手段】かかる本発明の目的は、
金属基板上に多孔質白金電極、安定化ジルコニア層、多
孔質白金電極およびこれらを覆う多孔質セラミックス層
を順次形成させた後、金属基板をエッチング除去して酸
素センサを製造することにより達成される。
The object of the present invention is as follows.
This is achieved by sequentially forming a porous platinum electrode, a stabilized zirconia layer, a porous platinum electrode and a porous ceramic layer covering these on a metal substrate, and then etching away the metal substrate to produce an oxygen sensor. ..

【0006】図1には、本発明方法の一態様が示されて
おり、金属基板1上に多孔質白金電極2、安定化ジルコ
ニア層3、多孔質白金電極4およびこれらを覆っている
多孔質セラミックス層5を順次形成させた後、金属基板
1の部分をエッチング除去し、両多孔質白金電極に接点
6,6´を設けることにより、固体電解質酸素センサが
製造される。
FIG. 1 shows one embodiment of the method of the present invention, in which a porous platinum electrode 2, a stabilized zirconia layer 3, a porous platinum electrode 4 and a porous layer covering them are provided on a metal substrate 1. After the ceramic layers 5 are sequentially formed, the portion of the metal substrate 1 is removed by etching, and the contacts 6, 6'are provided on both porous platinum electrodes, whereby the solid electrolyte oxygen sensor is manufactured.

【0007】金属基板としては、最終工程でウェットエ
ッチングできるNi、Cu、Alなどの基板が用いられる。多
孔質白金電極は、蒸着法またはスパッタリング法によ
り、約10nm程度の厚さに成膜する方法、あるいはメッシ
ュ状の金属マスクでカバーした上で、蒸着またはスパッ
タリングすることにより任意の厚さで成膜する方法など
により形成される。
As the metal substrate, a substrate made of Ni, Cu, Al or the like that can be wet-etched in the final step is used. A porous platinum electrode is formed by vapor deposition or sputtering to a film thickness of about 10 nm, or by covering with a mesh-shaped metal mask and then vapor-depositing or sputtering to form an arbitrary thickness. And the like.

【0008】安定化ジルコニア層の形成は、ZrO2に対し
て約5〜10モル%のCaO、約9〜15モル%のMgOまたは約6〜8
モル%のY2O3のパウダーを混合したものを用いて行われ
る。具体的には、上記混合物のペレットまたはパウダー
を用いての蒸着法、イオンプレーティング法、または上
記混合物を焼成したものをターゲットとしてスパッタリ
ングする方法あるいはそれぞれの単体のタ−ゲットを同
時にスパッタリングする方法などを適用することによっ
て行われる。
The formation of the stabilized zirconia layer is carried out with about 5-10 mol% CaO, about 9-15 mol% MgO or about 6-8 mol% with respect to ZrO 2 .
It is carried out using a mixture of powders of mol% Y 2 O 3 . Specifically, a vapor deposition method using pellets or powders of the above mixture, an ion plating method, a method of sputtering a fired mixture of the above mixture as a target, or a method of simultaneously sputtering each individual target, etc. Is done by applying.

【0009】この安定化ジルコニア層上への多孔質白金
電極の形成は、前記と同様にして行われる。これらを覆
う多孔質セラミックス層は、低融点ガラスパウダー、セ
ラミックスパウダーなどとアクリル樹脂、ポリエステル
樹脂、ポリウレタン樹脂、エチルセルロ−ズ、セルロ−
スアセテ−トブチレ−トなどの重合体パウダ−とをキシ
レン、ケトン類、グリコ−ルエ−テル類、グリコ−ルエ
ステル類、アルキルアミド類などの有機溶剤中に分散さ
せてペースト状とし、これを塗布した後焼成することに
より形成される。
The formation of the porous platinum electrode on the stabilized zirconia layer is carried out in the same manner as described above. The porous ceramics layer covering these is made of low melting point glass powder, ceramics powder, etc. and acrylic resin, polyester resin, polyurethane resin, ethyl cellulose, cellulose.
A polymer powder such as suacetate butyrate was dispersed in an organic solvent such as xylene, ketones, glycol ethers, glycol esters and alkylamides to form a paste, which was applied. It is formed by post-baking.

【0010】これらを順次形成させた後の金属基板のエ
ッチングは、用いられた基板金属の種類に応じ、例えば
ニッケルの場合には、硝酸-酢酸-アセトンの等量混合液
などをエッチング液として用いて行われる。
The etching of the metal substrate after these are sequentially formed depends on the type of the substrate metal used. For example, in the case of nickel, an equal volume mixture of nitric acid-acetic acid-acetone is used as an etching solution. Is done.

【0011】酸素センサとしての使用に際しては、安定
化ジルコニア層の両面側に形成された多孔質白金電極か
ら取り出されたリード線によって、電圧の変化が測定さ
れる。
In use as an oxygen sensor, a change in voltage is measured by a lead wire taken out from a porous platinum electrode formed on both sides of the stabilized zirconia layer.

【0012】[0012]

【発明の効果】基板にエッチング除去できる金属を用
い、その金属基板上に多孔質白金電極、安定化ジルコニ
ア層、多孔質白金電極およびこれらを覆う多孔質セラミ
ックス層を順次形成させた後、金属基板をエッチング除
去することにより、安定化ジルコニア層を薄くすること
ができ、これによって固体電解質酸素センサとしての応
答性の改善が図られる。
EFFECTS OF THE INVENTION A metal that can be removed by etching is used for a substrate, and a porous platinum electrode, a stabilized zirconia layer, a porous platinum electrode, and a porous ceramic layer covering these are sequentially formed on the metal substrate. By etching away, the stabilized zirconia layer can be thinned, thereby improving the responsiveness of the solid electrolyte oxygen sensor.

【0013】[0013]

【実施例】次に、実施例について本発明を説明する。EXAMPLES The present invention will now be described with reference to examples.

【0014】実施例 ニッケル基板上に、インライン連続スパッタリング法に
より、多孔質白金電極(膜厚100Å)、安定化ジルコニア
層(ZrO2に対して7モル%のY2O3添加した混合物を焼結し
たタ-ゲットをスパッタリングすることにより、膜厚2μ
mに形成)および多孔質白金電極(膜厚100Å)を形成さ
せ、次いでアルミナパウダ−、Na2O・B2O3・SiO2系ガラス
パウダ−、アクリル樹脂およびジメチルホルムアミドよ
りなるペーストをそこに塗布、乾燥させた後、650℃で
焼成して多孔質セラミックス層を形成させた。最後に、
硝酸-酢酸-アセトンの等量混合液によるエッチングが行
われ、ニッケル基板層を除去した。
Example A mixture of a porous platinum electrode (film thickness 100Å) and a stabilized zirconia layer (7 mol% Y 2 O 3 based on ZrO 2 ) was sintered on a nickel substrate by an in-line continuous sputtering method. By sputtering the target, the film thickness 2μ
m)) and a porous platinum electrode (film thickness 100 Å) are formed, and then a paste consisting of alumina powder, Na 2 O ・ B 2 O 3・ SiO 2 glass powder, acrylic resin and dimethylformamide is placed there. After coating and drying, it was baked at 650 ° C. to form a porous ceramic layer. Finally,
Etching with an equal volume mixture of nitric acid-acetic acid-acetone was performed to remove the nickel substrate layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の一態様を示す断面図である。FIG. 1 is a cross-sectional view showing one embodiment of the method of the present invention.

【符号の説明】[Explanation of symbols]

1 金属基板 2 多孔質白金電極 3 安定化ジルコニア層 4 多孔質白金電極 5 多孔質セラミックス層 1 Metal Substrate 2 Porous Platinum Electrode 3 Stabilized Zirconia Layer 4 Porous Platinum Electrode 5 Porous Ceramic Layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属基板上に、多孔質白金電極、安定化
ジルコニア層、多孔質白金電極およびこれらを覆う多孔
質セラミックス層を順次形成させた後、金属基板をエッ
チング除去することを特徴とする酸素センサの製造方
法。
1. A metal substrate is formed by sequentially forming a porous platinum electrode, a stabilized zirconia layer, a porous platinum electrode, and a porous ceramic layer covering these, and then etching the metal substrate. Oxygen sensor manufacturing method.
JP3353256A 1991-12-17 1991-12-17 Manufacture of oxygen sensor Pending JPH05164731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3353256A JPH05164731A (en) 1991-12-17 1991-12-17 Manufacture of oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3353256A JPH05164731A (en) 1991-12-17 1991-12-17 Manufacture of oxygen sensor

Publications (1)

Publication Number Publication Date
JPH05164731A true JPH05164731A (en) 1993-06-29

Family

ID=18429607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3353256A Pending JPH05164731A (en) 1991-12-17 1991-12-17 Manufacture of oxygen sensor

Country Status (1)

Country Link
JP (1) JPH05164731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214135A (en) * 2010-03-15 2011-10-27 Mitsubishi Materials Corp Vapor deposition material for forming thin film, thin film sheet having the thin film, and laminated sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214135A (en) * 2010-03-15 2011-10-27 Mitsubishi Materials Corp Vapor deposition material for forming thin film, thin film sheet having the thin film, and laminated sheet

Similar Documents

Publication Publication Date Title
AU749566B2 (en) Platinum temperature sensor and method for producing same
JPS6126022B2 (en)
JPH05164731A (en) Manufacture of oxygen sensor
JPH043407A (en) Electronic part and manufacture thereof
US20060164204A1 (en) Magnetoresistance effect element and production method and application method therefor same
JPS61181104A (en) Platinum temperature measuring resistor
JP2004093273A (en) Limiting current oxygen sensor
JP2926912B2 (en) Oxygen sensor
JP2514591B2 (en) Limit current type oxygen sensor
JP2679811B2 (en) Gas detector
JP2516122B2 (en) Method of joining metal and solid electrolyte
JPH07110315A (en) Oxygen concentration sensor and formation method for trap layer thereof
JPH0599758A (en) Manufacturing of platinum temperature sensor using zirconia base plate
JPH08162686A (en) Piezoelectric sensor element and manufacture thereof
JPH05105536A (en) Bonding between metal and solid electrolyte
JP2004170230A (en) Co2 sensor and its manufacturing method
JP2565897B2 (en) Limiting current type gas sensor
JPH033180B2 (en)
KR0123748B1 (en) Low temperature operating oxygen detecting sensor based on fluoride material
JPH05157726A (en) Oxygen sensor
JPH0338809A (en) Tantalum thin-film capacitor
JP2527456B2 (en) Humidity sensor
JPS63263702A (en) Manufacture of platinum thin film temperature sensor
JPH06102231A (en) Manufacture of ion conductor device
JPH03179670A (en) Manufacture of solid electrolyte for fuel cell