JP2516122B2 - Method of joining metal and solid electrolyte - Google Patents

Method of joining metal and solid electrolyte

Info

Publication number
JP2516122B2
JP2516122B2 JP3294923A JP29492391A JP2516122B2 JP 2516122 B2 JP2516122 B2 JP 2516122B2 JP 3294923 A JP3294923 A JP 3294923A JP 29492391 A JP29492391 A JP 29492391A JP 2516122 B2 JP2516122 B2 JP 2516122B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
metal
layer
joining
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3294923A
Other languages
Japanese (ja)
Other versions
JPH05105539A (en
Inventor
孝文 鹿嶋
克明 中村
功成 石橋
嘉則 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Fujikura Ltd
Original Assignee
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO, Fujikura Ltd filed Critical CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Priority to JP3294923A priority Critical patent/JP2516122B2/en
Publication of JPH05105539A publication Critical patent/JPH05105539A/en
Application granted granted Critical
Publication of JP2516122B2 publication Critical patent/JP2516122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Ceramic Products (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、金属と固体電解質と
の接合方法に関し、とくにスパッタリングや蒸着などの
薄膜技術を用いて作製する酸素センサなどの薄膜型セン
サの製造に適用するのに好適な金属と固体電解質との接
合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for joining a metal and a solid electrolyte, and is particularly suitable for application to the manufacture of thin film type sensors such as oxygen sensors manufactured by using thin film technology such as sputtering and vapor deposition. The present invention relates to a method for joining a metal and a solid electrolyte.

【0002】[0002]

【従来の技術】従来より、酸素センサなどの薄膜型セン
サを製造する際、ジルコニア等の固体電解質(基板、
層)の上に白金などの電極となる金属をスパッタリング
あるいは蒸着することにより、固体電解質の上に金属を
接合している。また、固体電解質の上に金属ペーストを
塗布した後、非常に高い温度の雰囲気中で焼成を行なっ
て固体電解質と金属との界面で反応を生じさせてこれら
を接合することもある。
2. Description of the Related Art Conventionally, when manufacturing a thin film sensor such as an oxygen sensor, a solid electrolyte such as zirconia (substrate,
The metal to be an electrode such as platinum is sputtered or vapor-deposited on the (layer) to bond the metal to the solid electrolyte. In addition, after the metal paste is applied on the solid electrolyte, firing may be performed in an atmosphere of a very high temperature to cause a reaction at the interface between the solid electrolyte and the metal to bond them.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
金属と固体電解質との接合方法では、一般に接合強度が
弱いという問題がある。とくに、単にスパッタリングに
より固体電解質の上に金属層を形成する場合には、コン
タクト強度が非常に乏しく、そのため、電気抵抗が大き
くなり、電極としての能力が極端に低下する。この現象
は、熱サイクルが存在する場合には顕著である。この場
合の解決策として、スパッタリングされる側の固体電解
質の表面を粗くし、それによって生じる表面の凹凸を利
用することも考えられなくはないが、根本的な解決策と
はいえない。
However, the conventional method for joining a metal and a solid electrolyte has a problem that the joining strength is generally weak. In particular, when the metal layer is formed on the solid electrolyte simply by sputtering, the contact strength is very poor, so that the electric resistance is increased and the ability as an electrode is extremely reduced. This phenomenon is prominent in the presence of thermal cycling. As a solution in this case, it may be considered that the surface of the solid electrolyte on the side to be sputtered is made rough and the resulting unevenness of the surface is utilized, but it cannot be said to be a fundamental solution.

【0004】また、加熱、焼成により固体電解質と金属
との界面で反応を生じさせてこれらを接合する方法で
は、雰囲気を非常に高温とする必要があり、他の材料の
耐熱性の観点から困難な場合があるし、コスト的にも不
利である。さらに、金属層の表面や固体電解質自体の変
性が生じる危険もある。
Further, in the method of joining the solid electrolyte and the metal by causing a reaction at the interface between them by heating and firing, it is necessary to raise the atmosphere to a very high temperature, which is difficult from the viewpoint of heat resistance of other materials. In some cases, there is a cost disadvantage. Further, there is a risk that the surface of the metal layer or the solid electrolyte itself may be modified.

【0005】この発明は、上記に鑑み、とくに高温雰囲
気の必要なしに固体電解質と金属との間の接合強度を高
めることができる、金属と固体電解質との接合方法を提
供することを目的とする。
In view of the above, it is an object of the present invention to provide a method for joining a metal and a solid electrolyte capable of increasing the joining strength between the solid electrolyte and the metal without the need for a high temperature atmosphere. .

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、この発明による金属と固体電解質との接合方法で
は、ジルコニウム、イットリウム系の固体電解質に銅あ
るいはビスマスの両方又は一方を含ませた上で、この固
体電解質と金属とを接合し、その接合体を高温雰囲気に
入れることによって、固体電解質中のこれら銅またはビ
スマスを高温雰囲気中で酸化させることが特徴となって
おり、それらの酸化物層が固体電解質と金属との間の界
面にバッファー層として形成されることにより、それほ
ど高い温度の雰囲気に晒す必要なしに、金属と固体電解
質との間の接合強度を増大させることができる。その結
果、固体電解質に対する金属の電気的コンタクト特性も
良好となる。
In order to achieve the above object, in the method of joining a metal and a solid electrolyte according to the present invention, a zirconium-yttrium-based solid electrolyte is coated with copper.
Ru or bismuth is included, and then the solid electrolyte and the metal are joined, and the joined body is placed in a high temperature atmosphere to oxidize the copper or bismuth in the solid electrolyte in the high temperature atmosphere. The oxide layer is formed as a buffer layer at the interface between the solid electrolyte and the metal, so that the metal and the solid electrolyte can be separated from each other without being exposed to an atmosphere of a high temperature. The joint strength between the two can be increased. As a result, the electrical contact property of the metal to the solid electrolyte is also improved.

【0007】[0007]

【実施例】以下、この発明の一実施例について図面を参
照しながら詳細に説明する。この実施例ではこの発明の
接合方法を適用して酸素センサを製造することとする。
まず、図1に示すように、アルミナやジルコニアあるい
は多孔質結晶化ガラスなどの厚さ0.1mmの多孔質基
板1を用意し、この表面に図2に示すように電極となる
多孔質金属層2を形成する。ここでは、スパッタリング
により白金(Pt)を主成分とした厚さ1μmの多孔質
金属層2を形成した。その上に、図3で示すように、同
じくスパッタリングにより固体電解質層(具体的には安
定化ジルコニア:Zr−8Y)3を厚さ2μmを形成し
た。この固体電解質層3は、ジルコニウム(Zr)及び
イットリウム(Y)を主成分とし、それに銅(Cu)及
びビスマス(Bi)を重量比でそれぞれ3%ずつ含むも
のである。さらに図4のように、この固体電解質層3の
上に、上記の金属層2と同様に、スパッタリングにより
白金の多孔質金属層4を厚さ0.1μmに形成した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. In this embodiment, the oxygen sensor is manufactured by applying the bonding method of the present invention.
First, as shown in FIG. 1, a porous substrate 1 having a thickness of 0.1 mm, such as alumina, zirconia, or porous crystallized glass, is prepared, and a porous metal layer serving as an electrode is formed on this surface as shown in FIG. Form 2. Here, the porous metal layer 2 having a thickness of 1 μm and containing platinum (Pt) as a main component was formed by sputtering. As shown in FIG. 3, a solid electrolyte layer (specifically, stabilized zirconia: Zr-8Y) 3 having a thickness of 2 μm was formed thereon by sputtering as well. The solid electrolyte layer 3 contains zirconium (Zr) and yttrium (Y) as main components, and contains copper (Cu) and bismuth (Bi) at 3% by weight. Further, as shown in FIG. 4, a platinum porous metal layer 4 having a thickness of 0.1 μm was formed on the solid electrolyte layer 3 by sputtering similarly to the metal layer 2 described above.

【0008】その後、このようにして金属層2、固体電
解質層3及び金属層4が積層された多孔質基板1を、1
000℃の雰囲気中に8時間晒して焼成を行なった。す
ると、この焼成工程により、固体電解質層3の、金属層
2、4に接する界面付近において、 Zr→ZrO2 Y→Y23 Cu→CuO Bi→BiO(Bi23) のようにジルコニウム、イットリウム、銅、ビスマスが
酸化してそれらの酸化物層5が形成されることになる。
この酸化物層5は、金属層2と固体電解質層3との間の
界面、及び金属層4と固体電解質層3との間の界面に存
在してそれらの間のバッファー層として機能し、金属層
2、4と固体電解質層3との間の接合強度を高める。す
なわち、ZrO2−Y23とPtとの間にCuO、Bi
O(Bi23)が形成され、このCuO、BiO(Bi
23)等がZr−8YとPtとのバッファー層として寄
与することによるものと思われる。
Thereafter, the porous substrate 1 on which the metal layer 2, the solid electrolyte layer 3 and the metal layer 4 are laminated in this manner is
Firing was performed by exposing it to an atmosphere of 000 ° C. for 8 hours. Then, by this firing step, zirconium such as Zr → ZrO 2 Y → Y 2 O 3 Cu → CuO Bi → BiO (Bi 2 O 3 ) is formed near the interface of the solid electrolyte layer 3 in contact with the metal layers 2 and 4. , Yttrium, copper, and bismuth are oxidized to form the oxide layer 5 thereof.
The oxide layer 5 is present at the interface between the metal layer 2 and the solid electrolyte layer 3 and at the interface between the metal layer 4 and the solid electrolyte layer 3 and functions as a buffer layer between them. The bonding strength between the layers 2 and 4 and the solid electrolyte layer 3 is increased. That is, CuO and Bi are provided between ZrO 2 —Y 2 O 3 and Pt.
O (Bi 2 O 3 ) is formed, and CuO, BiO (Bi
It seems that 2 O 3 ) and the like contribute to the buffer layer of Zr-8Y and Pt.

【0009】こうして作られた酸素センサでは上記のよ
うな酸化物層(バッファー層)5により固体電解質層3
と金属層2、4との接合強度が高められているが、その
接合強度は、粘着テープを貼り付けた後はがすことによ
り行なわれる剥離テストにより確認できた。すなわち、
上記のようにして作ったサンプルを10個用意し、それ
らの表面の金属層4に2mm×2mmの正方形の切り込
みを入れて、その部分を含む表面に粘着テープを貼り付
け、その後粘着テープをはがす。すると、接合強度が弱
いと粘着テープとともにその正方形の部分の金属層4が
剥がれてくるが、この実施例で作ったサンプルについて
は1個として剥がれるものがなかった。ちなみに固体電
解質層3に銅やビスマスを含ませないで作った従来の酸
素センサでは、同様に10個のサンプルについて剥離テ
ストを行なった結果、10個全部に何等かの剥離が発生
した。
In the oxygen sensor thus manufactured, the solid electrolyte layer 3 is formed by the oxide layer (buffer layer) 5 as described above.
Although the bonding strength between the metal layers 2 and 4 is increased, the bonding strength can be confirmed by a peeling test performed by peeling after the adhesive tape is attached. That is,
10 samples prepared as described above are prepared, a 2 mm × 2 mm square cut is made in the metal layer 4 on the surface thereof, an adhesive tape is attached to the surface including the portion, and then the adhesive tape is peeled off. . Then, if the bonding strength is weak, the metal layer 4 in the square portion peels off together with the adhesive tape, but none of the samples made in this example peeled off. By the way, in the conventional oxygen sensor made without containing copper or bismuth in the solid electrolyte layer 3, the peeling test was similarly performed on 10 samples, and as a result, some peeling occurred in all 10 samples.

【0010】この酸素センサでは固体電解質層3のイオ
ン導電性を利用して酸素濃度を測定する。この酸素セン
サは限界電流式酸素センサとも呼ばれており、金属層2
に負の電圧を、金属層4に正の電圧を加えて酸素イオン
をキャリアとする電流を固体電解質層3中に金属層2側
から金属層4側へと流す。これにより、酸素が、多孔質
基板1の下面から、この基板1、多孔質金属層2、固体
電解質層3及び多孔質金属層4を通って上方へと流れる
ことになる。この多孔質基板1を通る酸素量は、多孔質
基板1自体の空孔率や孔径等により定まる空気抵抗によ
って、一定のものに制限される。そこで、金属層4、2
間に流れる電流値は流入空気の酸素濃度に対応して一定
の値に収束していくことになる。この電流特性が限界電
流特性と呼ばれる。多孔質基板1の下面側を酸素濃度測
定雰囲気とすれば、その雰囲気中の酸素の濃度を測定す
ることができる。
In this oxygen sensor, the oxygen concentration is measured by utilizing the ionic conductivity of the solid electrolyte layer 3. This oxygen sensor is also called a limiting current type oxygen sensor.
A negative voltage is applied to the metal layer 4, and a positive voltage is applied to the metal layer 4 to cause a current having oxygen ions as carriers to flow in the solid electrolyte layer 3 from the metal layer 2 side to the metal layer 4 side. As a result, oxygen flows upward from the lower surface of the porous substrate 1 through the substrate 1, the porous metal layer 2, the solid electrolyte layer 3 and the porous metal layer 4. The amount of oxygen passing through the porous substrate 1 is limited to a constant amount by the air resistance determined by the porosity and the pore diameter of the porous substrate 1 itself. Therefore, the metal layers 4, 2
The current value flowing during that time converges to a constant value corresponding to the oxygen concentration of the inflowing air. This current characteristic is called the limiting current characteristic. When the lower surface side of the porous substrate 1 is used as an oxygen concentration measurement atmosphere, the oxygen concentration in the atmosphere can be measured.

【0011】上記のように固体電解質層3と金属層2、
4と接合強度が良好となるため、固体電解質層3と金属
層2、4との電気的コンタクトも良好なものとなり、酸
素センサとして動作させたときの限界電流特性が良好な
ものとなった。すなわち、この実施例で作製された限界
電流式酸素センサの限界電流特性は図6に示すようにな
り、良好なものあることが分かる。
As described above, the solid electrolyte layer 3 and the metal layer 2,
4 has good bonding strength, the electric contact between the solid electrolyte layer 3 and the metal layers 2 and 4 has also been good, and the limiting current characteristics when operating as an oxygen sensor have been good. That is, the limiting current characteristics of the limiting current type oxygen sensor manufactured in this example are as shown in FIG.

【0012】なお、上記では固体電解質層3に銅とビス
マスの両方を添加したが、銅あるいはビスマスのいずれ
か一方のみでもたとえば重量比で3%程度含ませること
により、同様の効果を得ることができる。また、上記で
はスパッタリングを採用しているが、蒸着などの他のド
ライプロセスにより金属層2、4や固体電解質層3を形
成することもできる。
Although both copper and bismuth are added to the solid electrolyte layer 3 in the above, the same effect can be obtained by including only one of copper and bismuth, for example, about 3% by weight. Can be obtained. Although sputtering is adopted in the above, the metal layers 2 and 4 and the solid electrolyte layer 3 can also be formed by another dry process such as vapor deposition.

【0013】[0013]

【発明の効果】以上実施例について説明したように、こ
の発明の金属と固体電解質との接合方法によれば、固体
電解質に銅またはビスマスの両方あるいは一方を数%添
加して、その後工程で焼成等の酸化を行なうという簡単
な工程で、固体電解質と金属層との間の界面の接合強度
を大幅に向上させることができる。接合強度が向上する
ことにより、機械的信頼性が高まり、とくにヒートサイ
クルが繰り返された場合などにおける剥離などの問題を
解消することができる。固体電解質と金属層との間の界
面の接合強度の向上により、界面の電気的コンタクト性
が改善されて電気抵抗が低下し、非常に良好な電気特性
を得ることができる。
As described in the above embodiments, according to the method for joining a metal and a solid electrolyte of the present invention, several percent of copper and / or bismuth is added to the solid electrolyte, followed by firing in the subsequent step. It is possible to greatly improve the bonding strength at the interface between the solid electrolyte and the metal layer by a simple process such as oxidation. By improving the bonding strength, mechanical reliability is improved, and problems such as peeling can be solved especially when a heat cycle is repeated. By improving the bonding strength at the interface between the solid electrolyte and the metal layer, the electrical contact property at the interface is improved and the electrical resistance is lowered, and very good electrical characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例にかかる金属と固体電解質
との接合方法における最初の製造工程を示す断面図。
FIG. 1 is a sectional view showing a first manufacturing step in a method for joining a metal and a solid electrolyte according to an embodiment of the present invention.

【図2】同実施例における第2の製造工程を示す断面
図。
FIG. 2 is a sectional view showing a second manufacturing process in the example.

【図3】同実施例における第3の製造工程を示す断面
図。
FIG. 3 is a sectional view showing a third manufacturing step in the same example.

【図4】同実施例における第4の製造工程を示す断面
図。
FIG. 4 is a sectional view showing a fourth manufacturing process in the embodiment.

【図5】同実施例における第5の製造工程を示す断面
図。
FIG. 5 is a sectional view showing a fifth manufacturing step in the same example.

【図6】同実施例で製造された酸素センサの電流特性を
示すグラフ。
FIG. 6 is a graph showing current characteristics of the oxygen sensor manufactured in the same example.

【符号の説明】[Explanation of symbols]

1 多孔質基板 2、4 多孔質金属層 3 固体電解質層 5 酸化物層 1 Porous Substrate 2, 4 Porous Metal Layer 3 Solid Electrolyte Layer 5 Oxide Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石橋 功成 東京都江東区木場一丁目5番1号藤倉電 線株式会社内 (72)発明者 加藤 嘉則 東京都江東区木場一丁目5番1号藤倉電 線株式会社内 (56)参考文献 特開 平3−140860(JP,A) 特開 昭56−100353(JP,A) 特開 昭49−60310(JP,A) 特開 平2−252682(JP,A) ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Issei Ishibashi 1-5-1, Kiba, Koto-ku, Tokyo Within Fujikura Electric Wire Co., Ltd. (72) Yoshinori Kato 1-1-5, Kiba, Koto-ku, Tokyo Fujikura Electric Wire Co., Ltd. (56) Reference JP-A-3-140860 (JP, A) JP-A-56-100353 (JP, A) JP-A-49-60310 (JP, A) JP-A-2-252682 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属と、銅を含む固体電解質とを接合す
る工程と、この金属と固体電解質との接合体を高温雰囲
気中に置いて固体電解質中の上記の銅を酸化させる工程
とを有することを特徴とする金属と固体電解質との接合
方法。
1. A step of joining a metal and a solid electrolyte containing copper, and a step of placing a joined body of the metal and the solid electrolyte in a high temperature atmosphere to oxidize the copper in the solid electrolyte. A method for joining a metal and a solid electrolyte, comprising:
【請求項2】 金属と、ビスマスを含む固体電解質とを
接合する工程と、この金属と固体電解質との接合体を高
温雰囲気中に置いて固体電解質中の上記のビスマスを酸
化させる工程とを有することを特徴とする金属と固体電
解質との接合方法。
2. A step of joining a metal and a solid electrolyte containing bismuth, and a step of placing the joined body of the metal and the solid electrolyte in a high temperature atmosphere to oxidize the bismuth in the solid electrolyte. A method for joining a metal and a solid electrolyte, comprising:
JP3294923A 1991-10-15 1991-10-15 Method of joining metal and solid electrolyte Expired - Fee Related JP2516122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3294923A JP2516122B2 (en) 1991-10-15 1991-10-15 Method of joining metal and solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3294923A JP2516122B2 (en) 1991-10-15 1991-10-15 Method of joining metal and solid electrolyte

Publications (2)

Publication Number Publication Date
JPH05105539A JPH05105539A (en) 1993-04-27
JP2516122B2 true JP2516122B2 (en) 1996-07-10

Family

ID=17814014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3294923A Expired - Fee Related JP2516122B2 (en) 1991-10-15 1991-10-15 Method of joining metal and solid electrolyte

Country Status (1)

Country Link
JP (1) JP2516122B2 (en)

Also Published As

Publication number Publication date
JPH05105539A (en) 1993-04-27

Similar Documents

Publication Publication Date Title
US7233226B2 (en) Method of producing a platinum temperature sensor
JPH0475460B2 (en)
JP2516122B2 (en) Method of joining metal and solid electrolyte
JP2516123B2 (en) Method of joining metal and solid electrolyte
JP2516121B2 (en) Method of joining metal and solid electrolyte
JP2004093273A (en) Limiting current oxygen sensor
JP2501856B2 (en) Electrochemical sensor
JPH0781975B2 (en) Moisture sensitive element
JPS63139241A (en) Diode type humidity sensor
JP2504675B2 (en) Method for manufacturing ionic conductor device
JPH0816668B2 (en) Manufacturing method of oxygen sensor
JP2679811B2 (en) Gas detector
JP2514591B2 (en) Limit current type oxygen sensor
JPS5842965A (en) Oxygen sensor element
JP3855776B2 (en) Oxygen pump element
JPH03124075A (en) Superconducting element
JPH0599758A (en) Manufacturing of platinum temperature sensor using zirconia base plate
KR840001464B1 (en) Semiconductor device
JPH0827254B2 (en) Thin film gas sensor
JPH06317555A (en) Manufacture of ceramic oxygen sensor
JP2003222607A (en) Gas sensor
JPH0599893A (en) Oxygen sensor
JPH076941B2 (en) PH sensor
JPH05164731A (en) Manufacture of oxygen sensor
JP2005098798A (en) Membrane gas sensor and its manufacturing method

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees