JPH05164558A - Full-range stationary type sight apparatus - Google Patents

Full-range stationary type sight apparatus

Info

Publication number
JPH05164558A
JPH05164558A JP3328996A JP32899691A JPH05164558A JP H05164558 A JPH05164558 A JP H05164558A JP 3328996 A JP3328996 A JP 3328996A JP 32899691 A JP32899691 A JP 32899691A JP H05164558 A JPH05164558 A JP H05164558A
Authority
JP
Japan
Prior art keywords
equation
plane
line
sensors
axes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3328996A
Other languages
Japanese (ja)
Inventor
Takao Yamaguchi
隆男 山口
Hajime Nishizawa
一 西沢
Toshiki Kumakura
俊己 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3328996A priority Critical patent/JPH05164558A/en
Publication of JPH05164558A publication Critical patent/JPH05164558A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a full-range type measurement without limit to inclination of a target by arranging gravity detection sensors and earth magnetism detection sensors on three axes X, Y and Z respectively to calculate azimuth and by sending the output from a measuring section to a computer. CONSTITUTION:Gravity detection sensors IX, IY and IZ and earth magnetism detection sensors MX, MY and MZ are mounted on three orthogonal axes X, Y and Z of a measuring device body are mounted in such a manner that the center line of each thereof aligns with the three axes separately. In the sensors IX, IY and IZ, when the weight (m) of a diaphragm S receives a force P in the center line Z to displace, a difference is generated between inductances of coils L1 and L2 to generate an output current. The sensors MX, MY and MZ are Hall element type sensors and when a constant current I flows along a pair of electrodes 6-1 and 6-2 to apply a magnetic flux B, a voltage VH is generated. Then, the visual axis of this measuring section is directed to a space target and the output is sent to a computer attached to calculate the azimuth from the angle of inclination with respect to the horizontal plane of the visual axis and a magnetic meridian plane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空間目標線の方位角、傾
斜角の測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring the azimuth and inclination of a spatial target line.

【0002】[0002]

【従来の技術】従来の空間目標線の方位角、傾斜角の測
定には磁気コンパスと傾斜計とを使用しており、これら
の計器はともに可動部をもち、耐久性に欠ける難点があ
り且つ俯仰角の大きな目標物には測定の困難となる欠点
もあった。
2. Description of the Related Art Conventionally, a magnetic compass and an inclinometer are used to measure an azimuth angle and an inclination angle of a spatial target line. Both of these instruments have moving parts and have a drawback that they lack durability. Targets with a large depression angle also had the drawback of making measurement difficult.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上述の点に
鑑み、可動部のない固体化され且つ、方位、傾斜の機能
が複合された全範囲型の空間目標線の方位、傾斜測定装
置を得ようとするものである。
SUMMARY OF THE INVENTION In view of the above points, the present invention is a solid-state solid-state azimuth / inclination measuring device having no moving parts and having a combined azimuth / inclination function. Is what you are trying to get.

【0004】[0004]

【課題を解決するための手段】本発明は、3軸の中の1
軸を視線軸とする観測器筺XYZ3軸にそれぞれ固体型
の磁束センサ、重力センサ計6個よりなる測定部を装着
した観測器の照準装置において、この視線軸を空間目標
に指向し、測定部よりの出力を附属コンピュータに導入
し、視線軸の水平面に対する傾斜角及び磁気子午面より
の方位角を算定し、これを表示部に表示する全範囲固体
型照準装置である。
The present invention provides one of three axes.
In the sighting device of the observation instrument, in which the observation unit housing XYZ having three axes as the line-of-sight axis is equipped with the measurement units each including the solid-state magnetic flux sensor and the gravity sensor meter 6, the line-of-sight axis is directed to the spatial target, and the measurement unit This is a full-range solid-state aiming device in which the output of the above is introduced into the attached computer, the tilt angle of the line-of-sight axis with respect to the horizontal plane and the azimuth angle from the magnetic meridian plane are calculated, and this is displayed on the display unit.

【0005】[0005]

【実施例】図1は、本発明の一実施例による計測部に用
いる重力検出センサの例を示す一部断面図である。図に
おいて、OSCは高周波電源、C1 及びC2 はコンデン
サ、D1 及びD2 はダイオード、L1 及びL2 はそれぞ
れダストコアを芯に持つコイル、Sは円形ダイヤフラ
ム、mは例えば真鍮製の重り、1はケース、2及び3は
出力端子である。重りmはダイヤフラムSの中心に設け
られ、ダイヤフラムSの周縁はケース1の円壁に支持固
定される。コイルL1 及びL2 は、高周波電源OSCを
持つブリッジ回路の隣接する1対のインダクタンス・ア
ームを構成する。これら2つのインダクタンスに対向す
るブリッジ・アームに、電源OSCからみて単方向性を
もつ、2つの整流器D1 及びD2 が接続される。
1 is a partial sectional view showing an example of a gravity detecting sensor used in a measuring section according to an embodiment of the present invention. In the figure, OSC is a high frequency power source, C 1 and C 2 are capacitors, D 1 and D 2 are diodes, L 1 and L 2 are coils having dust cores as cores, S is a circular diaphragm, and m is a brass weight, for example. 1 is a case, 2 and 3 are output terminals. The weight m is provided at the center of the diaphragm S, and the peripheral edge of the diaphragm S is supported and fixed to the circular wall of the case 1. Coils L 1 and L 2 form a pair of adjacent inductance arms of a bridge circuit having a high frequency power supply OSC. Two rectifiers D 1 and D 2, which are unidirectional when viewed from the power supply OSC, are connected to the bridge arm facing these two inductances.

【0006】このような構成において、ダイヤフラムS
の重りmが中心線Z方向の力Pを受けて、変位すると、
各コイルL1 及びL2 と重りmの真鍮金属面との間の間
隙に差を生じ、コイルL1 及びL2のインダクタンスに
差を生じて、出力端子2、3間に出力電流を発生する。
すなわち、本例は変位計型のセンサである。この場合、
図2に示すようにセンサの中心線Zが重力Gの方向と角
度φをなすときは、cosφが荷重Pとして重りmに加
わるので、出力電流は荷重Gcosφによる間隙変化に
対応するものとなる。
In such a structure, the diaphragm S
When the weight m of is displaced by receiving the force P in the direction of the center line Z,
A gap is generated between each coil L 1 and L 2 and the brass metal surface of the weight m, a difference is generated in the inductance of the coils L 1 and L 2 , and an output current is generated between the output terminals 2 and 3. ..
That is, this example is a displacement meter type sensor. in this case,
As shown in FIG. 2, when the center line Z of the sensor forms an angle φ with the direction of gravity G, cosφ is added to the weight m as the load P, so that the output current corresponds to the gap change due to the load Gcosφ.

【0007】図3は、本例の計測部に用いる地磁気検出
センサの例を示す斜視図である。本例は既知のホール素
子型のセンサである。図において、5は半導体ホール素
子、6−1、6−2、7は電極を示す。1対の電極6−
1、6−2に沿って定電流Iを流しておき、主面と直角
の方向に磁束Bを加えると、電流I及び磁束Bの両方に
直角な軸方向に電圧VH を発生する。この電圧VHを電
極7より取出す。この場合、次の関係が成り立つ。
FIG. 3 is a perspective view showing an example of a geomagnetic sensor used in the measuring section of this example. This example is a known Hall element type sensor. In the figure, 5 is a semiconductor Hall element, 6-1, 6-2 and 7 are electrodes. A pair of electrodes 6-
When a constant current I is made to flow along 1 and 6-2 and a magnetic flux B is applied in a direction perpendicular to the main surface, a voltage V H is generated in an axial direction perpendicular to both the current I and the magnetic flux B. This voltage V H is taken out from the electrode 7. In this case, the following relationship holds.

【0008】[0008]

【数1】VH =KH IB ただし、KH はホール常数である。## EQU1 ## V H = K H IB where K H is the Hall constant.

【0009】よって図4に示すようにホール素子5の直
角軸線Zが局所の地球磁場の磁束Fの方向となす角度を
φとすると、Fcosφの磁束(上記磁束Bに相当す
る。)に比例する電圧が得られる。
Therefore, as shown in FIG. 4, when the angle formed by the perpendicular axis Z of the Hall element 5 and the direction of the magnetic flux F of the local earth magnetic field is φ, it is proportional to the magnetic flux of Fcosφ (corresponding to the magnetic flux B). The voltage is obtained.

【0010】なお、上述においては、重力検出センサと
して高周波変位検出方式の中央に重錘をもつダイヤフラ
ム型重力計を、地磁気検出センサとして、ホール素子型
のものを説明したが、必要とする精度と出力が得られる
ものであれば、他の型の重力計、磁束計を使用すること
が出来る。
In the above description, the diaphragm type gravimeter having a weight in the center of the high frequency displacement detection system as the gravity detection sensor and the hall element type as the geomagnetism detection sensor have been described. Other types of gravimeters and magnetometers can be used as long as the output can be obtained.

【0011】図5は、本例の計測部の斜視図である。本
例においては、上述の如き重力検出センサ及び磁束検出
センサを計測器本体の直交3軸X,Y,Zにそれぞれ1
個づつ各中心線を3軸の軸線に一致させて取付ける。図
において、IX ,IY ,IZ は重力検出センサ、MX
Y ,MZ は地磁気検出センサを示す。このように取り
付けられた各種重力計及び地磁気磁束の方向と運行体の
X,Y,Z3軸とがなす角の余弦値に相当する重力分力
及び磁束分力をそれぞれ出力する。
FIG. 5 is a perspective view of the measuring section of this example. In the present example, the gravity detection sensor and the magnetic flux detection sensor as described above are respectively attached to the three orthogonal axes X, Y and Z of the measuring instrument body.
Mount each one so that their center lines coincide with the three axes. In the figure, I X , I Y , and I Z are gravity detection sensors, M X ,
M Y and M Z are geomagnetic detection sensors. The gravitational force component and the magnetic flux component force corresponding to the cosine values of the angles formed by the gravimeters and the directions of the geomagnetic flux attached in this way and the X, Y, and Z axes of the moving body are output, respectively.

【0012】図6(ロ)はXYZ観測体のZ軸を任意の
空間目標Pに指向した状態を示す。この場合にXOY面
は任意の傾斜面Sと一致している。
FIG. 6B shows a state in which the Z axis of the XYZ observing body is directed to an arbitrary spatial target P. In this case, the XOY surface coincides with the arbitrary inclined surface S.

【0013】図6(ロ)中のO−ξηζ座標表示を抽出
して図6(イ)に示してあるOζ軸は鉛直線ξOη面は
水平面Hで示している。又H面上に北位線Nが示されて
いる。本実施例においては視軸OZベクトルが目標物P
を指向すると同時に計測部の6センサの出力により計算
部にてOZベクトルの水平面に対する傾斜角及び磁気子
午面に対する方位角が算定される。
An O-ξηζ coordinate display in FIG. 6B is extracted and the Oζ axis shown in FIG. 6A is represented by a vertical line ξOη plane by a horizontal plane H. Also, the north line N is shown on the H-plane. In the present embodiment, the visual axis OZ vector is the target P.
At the same time as pointing to, the calculation unit calculates the tilt angle of the OZ vector with respect to the horizontal plane and the azimuth angle with respect to the magnetic meridian plane by the output of the six sensors of the measurement unit.

【0014】はしめにこの計算の手順について説明する
に、図9は本算定に用いる説明図であり、図中のO−X
YZは観測器座標、OZは目標Pを指向するO−ξηζ
は空間座標、XOY面はS面、ξOη面はH面と称す
る。H面上に北位線ONが示されている。上記以外の符
号は本文の計算手続説明の進行にともなって説明され
る。
FIG. 9 is an explanatory diagram used for this calculation in order to explain the procedure of this calculation as a rule.
YZ is the observer coordinate, OZ is O-ξηζ that points the target P
Is the spatial coordinate, the XOY plane is the S plane, and the ξOη plane is the H plane. The north line ON is shown on the H-plane. Codes other than the above will be explained as the calculation procedure in this text is explained.

【0015】手順の要約は初めにXOY面のOXに関す
る観測器の方位角θの算出が行われる。続いてS面とH
面との間の最大傾斜角MとS面上の最大傾斜角方向とO
X線のなす角σ1 を算出する。上記MよりはOZベクト
ルの水平面との傾角LDが算出され、σはS面上の角度
であるがこれをH面上の角度に修正され、この修正角と
先に算出されたH面上の方位角θとの代数和にてOZベ
クトルの磁気子午面よりの方位角LAが算出される。
To summarize the procedure, first, the azimuth θ of the observer for the OX on the XOY plane is calculated. Then S surface and H
The maximum inclination angle M between the surface and the maximum inclination angle direction on the S surface and O
The angle σ 1 formed by the X-rays is calculated. The tilt angle LD of the OZ vector with respect to the horizontal plane is calculated from the above M, and σ is the angle on the S plane, but this is corrected to the angle on the H plane. This correction angle and the previously calculated H plane The azimuth angle LA from the magnetic meridian plane of the OZ vector is calculated by the algebraic sum with the azimuth angle θ.

【0016】尚中心Oに観測点をおき水平面の外周円を
赤道とし、天頂点及びこれに対向する地底点をN−S極
とする地球座標系において磁気子午面を経度の基準と
し、水平面を緯度の基準とした緯度表示にて目標点Pの
座標を表すことができる。この場合のP点の経緯度は算
出された傾斜角Lo、方位角Laと一致する。すなわち
本実施例にてはOZベクトルの地球座標系の経緯算出を
行うものである。
In the earth coordinate system with the observation point at the center O, the outer circle of the horizontal plane as the equator, and the zenith and the ground point opposite to it as the NS pole, the magnetic meridian plane is used as the longitude reference, and the horizontal plane is The coordinates of the target point P can be represented by the latitude display which is the reference of the latitude. In this case, the latitude and longitude of point P coincide with the calculated tilt angle Lo and azimuth angle La. That is, in this embodiment, the history of the OZ vector in the earth coordinate system is calculated.

【0017】さきに述べたように、初めにX,Y,Z3
軸に各装備された重力センサ及び磁束センサの出力によ
り先ず観測器のOX軸に関する水平面上の磁気方位を算
出する。図6(イ)(ロ)に於いて、O−XYZは既に
説明した如く計測器本体の3軸である。O−ξηζは空
間の直交3軸であり、ξOη面は水平面、Oζ線は鉛直
線である。又図中ONは磁気方位線を示す。最初に計測
器がその3軸OXYZを図6(イ)に(X)(Y)
(Z)に示すと空間3軸O−ξηζに一致させて計測器
の底面XOYを水平に保つ。この状態よりO−XYZ座
標系においてOXを軸として、XYZ座標を時計方向に
α回転して生じた座標系をO−X′Y′Z′系とし、続
いてOY′軸を中心に時計方向にβ角回転し、生じた標
示がO−XYZとなる。
As mentioned above, first, X, Y, Z3
First, the magnetic azimuth on the horizontal plane with respect to the OX axis of the observer is calculated from the outputs of the gravity sensor and the magnetic flux sensor provided on each axis. In FIGS. 6A and 6B, O-XYZ are the three axes of the measuring instrument main body, as already described. O-ξηζ is the three orthogonal axes of space, the ξOη plane is the horizontal plane, and the Oζ line is the vertical line. In the figure, ON indicates a magnetic azimuth line. First, the measuring instrument displays the three axes OXYZ in (X) (Y) in FIG.
As shown in (Z), the bottom surface XOY of the measuring instrument is kept horizontal by matching the three spatial axes O-ξηζ. From this state, in the O-XYZ coordinate system, the coordinate system generated by rotating the XYZ coordinates by α in the clockwise direction about the OX axis is set as the O-X'Y'Z 'system, and then the OY' axis is centered in the clockwise direction. It is rotated by β angle, and the resulting sign becomes O-XYZ.

【0018】このO−XYZは図6(ロ)に示す如く傾
斜面S面にXOY面を接触させている。またこの場合の
両者の関係図は図7に示している。この場合の座標転換
式は次の〔数2〕式で示される。
In this O-XYZ, as shown in FIG. 6B, the XOY surface is in contact with the inclined surface S surface. A relationship diagram between the two in this case is shown in FIG. The coordinate conversion formula in this case is expressed by the following formula (2).

【0019】[0019]

【数2】 [Equation 2]

【0020】これを整理して、次の〔数3〕式となる。By rearranging this, the following equation (3) is obtained.

【0021】[0021]

【数3】 [Equation 3]

【0022】従ってXYZ系、ξηζ系の各軸相互間の
方向余弦表は表1の通りになる。
Therefore, Table 1 shows the direction cosine table between the axes of the XYZ system and the ξηζ system.

【0023】[0023]

【表1】 [Table 1]

【0024】又図7には水平面ξOη面上に方位角θを
もつ方位線FH が示されており又鉛直線Oζ上に重力線
OW、垂直磁束FV が示されている。
In FIG. 7, an azimuth line F H having an azimuth angle θ is shown on the horizontal plane ξOη plane, and a gravity line OW and a vertical magnetic flux F V are shown on the vertical line Oζ.

【0025】XYZ系とξηζ系の重力センサ、磁束セ
ンサ間の関係は、XYZ系の各軸重力センサ出力を
1 ,W2 ,W3 とする。
The relationship between the XYZ system and ξηζ system gravity sensors and magnetic flux sensors is that the outputs of the XYZ system gravity sensors are W 1 , W 2 and W 3 .

【0026】[0026]

【数4】W1 =Wcosα・sinβ[Equation 4] W 1 = W cos α · sin β

【0027】[0027]

【数5】W2 =−Wsinα[Equation 5] W 2 = -Wsin α

【0028】[0028]

【数6】W3 =Wcosα・cosβ[Equation 6] W 3 = W cos α · cos β

【0029】又、XYZ各軸磁束センサの出力値を
1 ,N2 ,N3 とすれば、
If the output values of the magnetic flux sensors for the XYZ axes are N 1 , N 2 and N 3 ,

【0030】[0030]

【数7】 N1 =FH cosθ・cosβ+(FH sinθ・sinα+FV cosα)sinβ[Equation 7] N 1 = F H cos θ · cos β + (F H sin θ · sin α + F V cos α) sin β

【0031】[0031]

【数8】N2 =FH sinθ・cosα−FV sinα[Equation 8] N 2 = F H sin θ · cos α-F V sin α

【0032】[0032]

【数9】 N3 =−FH cosθ・sinβ+(FH・sinθ・sinα+FH ・cosα)・cosβ ここで、重力系3軸出力W1 ,W2 ,W3 及び磁束系3
軸出力N1 ,N2 ,N 3 にはそれぞれ〔数4〕,〔数
5〕,〔数6〕式及び〔数7〕,〔数8〕,〔数9〕式
の座標変換の関係が含まれているので重力系3軸出力と
磁束系3軸出力の相互間に特定の演算を行うことによ
り、ξηζ系のα磁束3軸の値FH cosθ,FH si
nθ,FV を算出し、続いて水平2軸FH cosθ、F
H cosθよりθを等出することができる。
[Formula 9] N3= -FHcos θ / sin β + (FH・ Sinθ ・ sinα + FH・ Cosα) ・ cosβ Where, gravity system triaxial output W1, W2, W3And magnetic flux system 3
Axis output N1, N2, N 3[Number 4], [Number]
5], [Equation 6] and [Equation 7], [Equation 8], [Equation 9]
Since the relation of coordinate conversion of is included,
By performing a specific calculation between the three outputs of the magnetic flux system
And the value F of three axes of α magnetic flux of ξηζ systemHcos θ, FHsi
nθ, FVAnd then the horizontal 2-axis FHcos θ, F
Hθ can be output from cos θ.

【0033】初めにFV 値の算出を行う。これに当たっ
て重力及び磁束各軸分力値よりそれぞれの各軸方向余弦
を求める。
First, the F V value is calculated. At this time, each cosine in the axial direction is obtained from the force component values of each axis of gravity and magnetic flux.

【0034】重力3分力W1 ,W2 ,W3 において、In the gravity three-component force W 1 , W 2 , W 3 ,

【0035】[0035]

【数10】 [Equation 10]

【0036】Wは定数であるのでここでW=1にすれ
ば、W1 ,W2 ,W3 はそれぞれ重力ベクトルの3軸方
向余弦値となる。
Since W is a constant, if W = 1 here, W 1 , W 2 and W 3 respectively become the triaxial cosine values of the gravity vector.

【0037】各軸磁束センサについては、For each axis magnetic flux sensor,

【0038】[0038]

【数11】 [Equation 11]

【0039】においてTは一定ではないが、Tベクトル
の各軸方向余弦値をn1 ,n2 ,n 3 とすれば、
In T is not constant, but T vector
The axial cosine value of n1, N2, N 3given that,

【0040】[0040]

【数12】 [Equation 12]

【0041】が成立する。Is satisfied.

【0042】又空間ベクトルW(ベクトル)とT(ベク
トル)とのなす角度をδとすれば、
If the angle between the space vector W (vector) and T (vector) is δ,

【0043】[0043]

【数13】W1 1 +W2 2 +W3 3 =cosδ[Formula 13] W 1 n 1 + W 2 n 2 + W 3 n 3 = cos δ

【0044】〔数13〕式に〔数12〕を代入してSubstituting [Equation 12] into the [Equation 13] Expression

【0045】[0045]

【数14】N1 W+N2 2 +N3 3 =Tcosα[Equation 14] N 1 W + N 2 W 2 + N 3 N 3 = T cos α

【0046】[0046]

【数15】Tcosα=FV (15) Tcos α = F V

【0047】従って、次に示す演算式Therefore, the following arithmetic expression

【0048】[0048]

【数16】FV ←N1 1 +N2 2 +N3 3 [Formula 16] F V ← N 1 W 1 + N 2 W 2 + N 3 N 3

【0049】が成立する。この場合、上記の〔数1
1〕,〔数12〕,〔数13〕,〔数14〕,〔数1
5〕の各式の関係は重力及び磁束各出力内部に内蔵され
ているので、FV を求めるにはこれ等の関係式に考慮を
要せず各軸磁束センサ及び重力センサの出力を演算式
〔数16〕によって演算を行うことにより直ちに求めら
れる。
Is satisfied. In this case, the above [Equation 1
1], [Equation 12], [Equation 13], [Equation 14], [Equation 1]
Since the relation of each equation of [5] is built inside each output of gravity and magnetic flux, the output of each axis magnetic flux sensor and gravity sensor can be calculated without calculating these relational equations in order to obtain F V. It can be immediately obtained by performing the calculation according to [Equation 16].

【0050】このFV 値とW2の出力とを乗算してN2
の出力より減算することによりH2 が求められる、すな
わち次に示す演算式が成立する。
This F V value is multiplied by the output of W2 to obtain N 2
H 2 is obtained by subtracting from the output of, that is, the following arithmetic expression is established.

【0051】[0051]

【数17】H2 ←N2 −FV ・W2 [Equation 17] H 2 ← N 2 − F V · W 2

【0052】H2 は次式の内容をもっている。H 2 has the following content.

【0053】[0053]

【数18】H2 =FH sinθ・cosα[Equation 18] H 2 = F H sin θ · cos α

【0054】次にN3 出力とW1 出力を乗算し、これよ
りN1 出力とW3 出力の乗算値を減算することによりH
2 が求められる。すなわち、次に示す演算式が成立す
る。
Next, the N 3 output is multiplied by the W 1 output, and the product of the N 1 output and the W 3 output is subtracted from this to obtain H
2 is required. That is, the following arithmetic expression is established.

【0055】[0055]

【数19】H1 ←N3 *W1 −N1 *N3 [Formula 19] H 1 ← N 3 * W 1 −N 1 * N 3

【0056】H1 の内容は〔数20〕式となる。The content of H 1 is given by the equation (20).

【0057】[0057]

【数20】H1 =FH cosθ・cosα[Equation 20] H 1 = F H cos θ · cos α

【0058】なんとならば、What if

【0059】[0059]

【数21】 [Equation 21]

【0060】これにてH1 ,H2 が求められたので次の
演算式によりθが求められる。
Since H 1 and H 2 are obtained in this manner, θ can be obtained by the following arithmetic expression.

【0061】[0061]

【数22】θ←tan-1(H2 /H1 [Equation 22] θ ← tan -1 (H 2 / H 1 )

【0062】なんとならば、If anything,

【0063】[0063]

【数23】 [Equation 23]

【0064】[0064]

【数24】tan-1(tanθ)=θ(24) tan −1 (tan θ) = θ

【0065】上述の如く本例ではN1 ,N2 ,N3 ,W
1 ,W2 ,W3 の出力値そのものを演算式〔数16〕,
〔数17〕,〔数19〕,〔数22〕によりて計算する
ことによりθが求められる。θはOX軸を含む鉛直面の
磁気子午面とのなす角である。
As described above, in this example, N 1 , N 2 , N 3 , W
The output values of 1 , W 2 and W 3 themselves are calculated by the equation [Equation 16],
Θ can be obtained by calculation using [Equation 17], [Equation 19], and [Equation 22]. θ is an angle formed by the vertical meridional plane including the OX axis and the magnetic meridian plane.

【0066】上記の計算はα,βに関係なく施行され算
出は高速に行いうるため、本実施例の方位測定は傾斜角
に制限なく全範囲型である。
Since the above calculation is carried out regardless of α and β and the calculation can be performed at high speed, the azimuth measurement of the present embodiment is of the full range type without limitation on the inclination angle.

【0067】この3軸型磁束センサ、動力センサを用い
ての方位角θの測定のプログラムフローチャートを図1
0に示す。
FIG. 1 shows a program flow chart for measuring the azimuth angle θ using the triaxial magnetic flux sensor and the power sensor.
It shows in 0.

【0068】次に図4にて説明したS面とH面との間の
最大傾斜角及びその方向の算出について述べる。これら
の関係は図8の観測体の重力分力説明図にも示されてい
る。
Next, the calculation of the maximum tilt angle between the S-plane and the H-plane and its direction described in FIG. 4 will be described. These relationships are also shown in the gravitational force component explanatory diagram of the observing body in FIG.

【0069】図8のO−XYZ座標においてOP′(ベ
クトル)を重力ベクトル、この3軸への分力W1
2 ,W3 P点を含みXOY面と平行のX′O′Y′面
を設け、上面XOY,下面X′O′Y′,W1 ,W2
3 をX,Y,Z各辺にもつ直立方体を考えれば、O
P′(ベクトル)はこの立方体の上面O点を原点とし
て、底面にP点をもつ対角線OP′にて示される。
In the O-XYZ coordinates of FIG. 8, OP '(vector) is a gravity vector, and the component force W 1 on these three axes is
An X'O'Y 'plane including W 2 and W 3 P points and parallel to the XOY plane is provided, and the upper surface XOY, the lower surface X'O'Y', W 1 , W 2 ,
Considering a rectangular parallelepiped having W 3 on each side of X, Y and Z, O
P ′ (vector) is indicated by a diagonal line OP ′ having a point P on the bottom surface with the point O on the top surface of the cube as the origin.

【0070】又対角線OP′を斜辺とし、立辺をO′
O,底辺をO′Pとする直角三角形OO′P′の底辺
O′Pの対角Mが最大傾斜角になり、又底面X′OY′
面上にてO′P′とO′X′のはさむ角σが最大傾斜方
向σとなる。
The diagonal line OP 'is the hypotenuse and the vertical side is O'.
O, the diagonal M of the base O'P of a right-angled triangle OO'P 'with the base O'P is the maximum inclination angle, and the bottom X'OY'
The angle σ between O′P ′ and O′X ′ on the surface is the maximum inclination direction σ.

【0071】従って次の演算式〔数25〕によりMが求
められ、これを演算式〔数26〕によりて段差K及び勾
配Gに換算する。
Therefore, M is obtained by the following arithmetic expression [Equation 25], and this is converted into the step K and the gradient G by the arithmetic expression [Equation 26].

【0072】[0072]

【数25】 [Equation 25]

【0073】次に式〔数26〕によりて最大傾斜方向σ
が求められる。
Then, the maximum inclination direction σ
Is required.

【0074】[0074]

【数26】 [Equation 26]

【0075】σはS面上で測った最大傾斜方向で、これ
に直交する方向をEとすれば、
Σ is the maximum tilt direction measured on the S-plane, and let E be the direction orthogonal to this,

【0076】[0076]

【数27】E=σ+90°[Equation 27] E = σ + 90 °

【0077】Eは又次式で求められる。E is also calculated by the following equation.

【0078】[0078]

【数28】 [Equation 28]

【0079】このEはS面上で測った交切線の方向であ
るがこれを水平面(H面)上の方位に関連づけるにはS
面上で測ったE値を水平面上のE0 に換算する必要があ
る。これらの関係は図9に示される。
This E is the direction of the intersection line measured on the S plane, but to relate this to the orientation on the horizontal plane (H plane), S
It is necessary to convert the E value measured on the surface into E 0 on the horizontal surface. These relationships are shown in FIG.

【0080】図9において既に説明したようにξηζ座
標系のξOη面は水平面(H面)は地図表示面と考えて
よく、一方XYZ座標系のXOY面(S面)は測定面で
あり、又OX線はその基準線である。H面とS面との交
切線はA−O−B線でありこの線上でH面とS面の方向
線は一致する。H面とS面のそれぞれに直交するC−O
−D線とC′−O−D′線がはさむ角度が最大傾斜角M
となる。C−O−D線とC′−O−D′線を含む面内に
OZ線が含まれており又OZ線はその面内にてD−O−
C線に直交している。従ってOZベクトルの水平面に対
する傾角をLoとすれば傾斜角又は地球座標系の緯度表
示を求める演算式として、
As already described in FIG. 9, the ξOη plane of the ξηζ coordinate system may be considered to be the horizontal plane (H plane) as the map display plane, while the XOY plane (S plane) of the XYZ coordinate system is the measurement plane, and The OX ray is the reference line. The line of intersection between the H-plane and the S-plane is the A-O-B line, on which the direction lines of the H-plane and the S-plane coincide. C-O orthogonal to each of the H and S planes
The angle between the -D line and the C'-O-D 'line is the maximum tilt angle M
Becomes The OZ line is included in the plane including the C-O-D line and the C'-O-D 'line, and the OZ line is D-O- in the plane.
It is orthogonal to the C line. Therefore, if the inclination angle of the OZ vector with respect to the horizontal plane is Lo, then the inclination angle or the arithmetic expression for obtaining the latitude display of the earth coordinate system is given as

【0081】[0081]

【数29】Lo←M−90°[Equation 29] Lo ← M-90 °

【0082】が求められる。測定面(S面)上で交切線
A−O−B線とOX線との間の角度がEであるが、これ
はH面上ではOX線を含む鉛直面がH面との交線OT線
と交切線A−O−Bとのはさむ角度がE0 である。
Is required. On the measurement plane (S plane), the angle between the cross section line A-O-B line and the OX line is E, but this is because the vertical plane including the OX line on the H plane is the line of intersection OT with the H plane. The angle between the line and the intersection line A-O-B is E 0 .

【0083】E0 は次式にて示される。E 0 is expressed by the following equation.

【0084】[0084]

【数30】tanE0 =−tanEcosMTanE 0 = -tanEcosM

【0085】式〔数30〕に式〔数28〕を代入してE
0 算出の式〔数31〕が求められる。
Substituting the expression [Equation 28] into the expression [Equation 30], E
An equation [Formula 31] for calculating 0 is obtained.

【0086】[0086]

【数31】 [Equation 31]

【0087】このE0 に直交するH面上の最大傾斜線O
D線とOT線のなす角をD0 とすればD0 算出の演算式
〔数32〕が求められる。
The maximum slope line O on the H plane orthogonal to this E 0
If the angle formed by the D line and the OT line is D 0 , the calculation formula [Formula 32] for calculating D 0 can be obtained.

【0088】[0088]

【数32】 [Equation 32]

【0089】一方地図上の方位角θはH面上でOT線と
北位ON線とのなす角度であるので最大傾斜線の方位す
なわち地球座標系の経度表示をLaとすれば、〔数3
2〕でLa算出の演算式が求められる。
On the other hand, since the azimuth angle θ on the map is the angle formed by the OT line and the north ON line on the H plane, if the azimuth of the maximum inclination line, that is, the longitude display of the earth coordinate system is La, [Equation 3]
In 2], an arithmetic expression for La calculation is obtained.

【0090】[0090]

【数33】La←D0 −θ[Expression 33] La ← D 0 −θ

【0091】これらにより照準線の経緯データとして
M,Lo,Do,Laが求められたのでこれらを表示す
る。
Since M, Lo, Do, and La are obtained as the history data of the line of sight from these, these are displayed.

【0092】重力センサによるM,Lo,Do,Laの
算定表示の処理プログラムは前述の方位角θの演算プロ
グラムに続いてフローチャート図10に演算式〔数2
5〕,〔数29〕,〔数32〕,〔数33〕として示さ
れている。
The processing program for the calculation display of M, Lo, Do, La by the gravity sensor is the calculation formula [Equation 2] shown in the flow chart of FIG.
5], [Equation 29], [Equation 32], and [Equation 33].

【0093】本例による照準線データ測定は、磁束セン
サ、重力センサの2×3の6データを用いて演算式〔数
16〕,〔数17〕,〔数19〕,〔数22〕,〔数2
5〕,〔数29〕,〔数32〕,〔数33〕に至る処理
にて施行される。入力はスタテック型であり、処理は単
純且つ単一方向型のため小型マイクロコンピュータにて
充分高速演算が行いうる。例えば、入力センサ部、コン
ピュータ部、表示部全体をポータブル小型計測器として
一体に収納し、計測器表面を表示、視軸光軸部を外界に
開放して構成できる。そして、この視軸光軸を測定対象
となる物標に指向させてワンタッチにて対象目標の経緯
データが計測できる。
The line-of-sight data measurement according to this example uses the equations [16], [17], [19], [22], [22] and [6] of 2 × 3 6 data of the magnetic flux sensor and the gravity sensor. Number 2
5], [Equation 29], [Equation 32], and [Equation 33]. The input is a static type, and the processing is simple and unidirectional, so a small microcomputer can perform sufficiently high-speed calculations. For example, the input sensor unit, the computer unit, and the entire display unit can be integrally housed as a portable compact measuring instrument, the measuring instrument surface can be displayed, and the visual axis optical axis can be opened to the outside. Then, the optical axis of the visual axis is directed to the target to be measured, and the history data of the target can be measured with one touch.

【0094】[0094]

【発明の効果】本発明によると、観測器の肉眼照準、単
眼、双眼の光軸の別なく視線を対象目標に指向させるだ
けで、この視線の経緯データが直ちに表示される。この
場合観測器支承の姿勢には全く影響なく且つ磁束センサ
及び重力センサともに3軸型のため対象物標の傾斜に制
限なく、天空、海、陸、水平線、地平線、地下堀進方位
の別なく全範囲型の測定ができる。
According to the present invention, by simply directing the line of sight to the target target regardless of the naked eye sight, monocular, and binocular optical axes of the observer, the history data of this line of sight is immediately displayed. In this case, the attitude of the observer bearing is not affected at all, and since the magnetic flux sensor and gravity sensor are both 3-axis type, there is no limitation on the inclination of the target object, regardless of the direction of the sky, sea, land, horizon, horizon, and underground excavation. Full range measurement is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に適用される重力センサを一
部断面図で示す構成図である。
FIG. 1 is a partial cross-sectional view of a gravity sensor applied to an embodiment of the present invention.

【図2】図1の例の重力センサの動作説明図である。FIG. 2 is an operation explanatory diagram of the gravity sensor of the example of FIG.

【図3】本発明の一実施例に適用される地磁気センサを
示す斜視図である。
FIG. 3 is a perspective view showing a geomagnetic sensor applied to one embodiment of the present invention.

【図4】図3の例の地磁気センサの動作説明図である。FIG. 4 is an operation explanatory view of the geomagnetic sensor of the example of FIG.

【図5】一実施例の計測部を示す斜視図である。FIG. 5 is a perspective view showing a measuring unit according to an embodiment.

【図6】一実施例による測定器座標O−XYZと空間座
標系O−ξηζとの関係を示す説明図にして、(イ)は
空間座標系と測定器座標系が一致した場合、(ロ)は測
定器座標が傾斜面上にセットされた場合である。
FIG. 6 is an explanatory diagram showing a relationship between measuring instrument coordinates O-XYZ and a spatial coordinate system O-ξηζ according to one embodiment, and (a) shows a case where the spatial coordinate system and the measuring instrument coordinate system are coincident with each other. ) Is the case where the measuring instrument coordinates are set on the inclined surface.

【図7】図6の(イ)と(ロ)の関係が重なった場合の
ベクトル解折図である。
FIG. 7 is a vector solution diagram when the relationship between (a) and (b) in FIG. 6 overlaps.

【図8】測定器座標系に示される最大傾斜の方向を空間
座標系の方向の説明図である。
FIG. 8 is an explanatory diagram of the direction of the maximum coordinate shown in the measuring instrument coordinate system as the direction of the spatial coordinate system.

【図9】測定器座標系における最大傾斜角の方向の表示
を空間座標系における方向に変換するための説明図であ
る。
FIG. 9 is an explanatory diagram for converting the display of the direction of the maximum tilt angle in the measuring instrument coordinate system into the direction in the spatial coordinate system.

【図10】本発明の一実施例における等高線地図データ
の計算プログラムのフローチャートである。
FIG. 10 is a flowchart of a contour map data calculation program according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

X,Y,Z 測定器の直交3軸 IX ,IY ,IZ 重力検出センサ MX ,MY ,MZ 磁束検出センサ α X軸回転角 β Y軸回転角 θ 方位角 W 重力ベクトル ξ,η,ζ 空間の直交3軸 FH 水平磁場 FV 垂直磁場 W1 ,W2 ,W3 重力3軸分力 M 最大傾斜角 σ 最大傾斜方向X, Y, orthogonal three axes I X and Z meter, I Y, I Z gravity sensor M X, M Y, M Z magnetic flux sensor alpha X-axis rotational angle beta Y-axis rotation angle θ azimuth W gravity vector ξ , Η, ζ orthogonal three-axis F H horizontal magnetic field F V vertical magnetic field W 1 , W 2 , W 3 gravity three-axis component force M maximum inclination angle σ maximum inclination direction

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 観測器筺XYZ3軸の中の1軸を視線軸
とし、上記3軸にそれぞれ固体型の磁束センサ、重力セ
ンサ計6個のセンサよりなる測定部を装着した観測器の
全範囲固定型照準装置において、 上記斜線軸を空間目標に指向し、測定部よりの出力を附
属コンピュータに導入し、上記視線軸の水平面に対する
傾斜角及び磁気子午面よりの方位角を算定し、これを表
示部に表示する全範囲固定型照準装置。
1. The entire range of the observation instrument housing, in which one of the three XYZ axes is used as a line-of-sight axis, and a measurement unit consisting of a solid-state magnetic flux sensor and a gravity sensor total of six sensors is attached to each of the three axes. In the fixed aiming device, the oblique line axis is directed to the spatial target, the output from the measuring unit is introduced to the attached computer, and the inclination angle of the line of sight axis with respect to the horizontal plane and the azimuth angle from the magnetic meridian plane are calculated, and this is calculated. Full range fixed aiming device displayed on the display.
JP3328996A 1991-12-12 1991-12-12 Full-range stationary type sight apparatus Pending JPH05164558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3328996A JPH05164558A (en) 1991-12-12 1991-12-12 Full-range stationary type sight apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3328996A JPH05164558A (en) 1991-12-12 1991-12-12 Full-range stationary type sight apparatus

Publications (1)

Publication Number Publication Date
JPH05164558A true JPH05164558A (en) 1993-06-29

Family

ID=18216443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3328996A Pending JPH05164558A (en) 1991-12-12 1991-12-12 Full-range stationary type sight apparatus

Country Status (1)

Country Link
JP (1) JPH05164558A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444916A (en) * 1993-01-25 1995-08-29 Sato Kogyo Co., Ltd. Electronic stereo clino-compass
WO2005111542A1 (en) * 2004-05-17 2005-11-24 Aichi Steel Corporation Small-sized attitude detection sensor and cellular phone having the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444916A (en) * 1993-01-25 1995-08-29 Sato Kogyo Co., Ltd. Electronic stereo clino-compass
WO2005111542A1 (en) * 2004-05-17 2005-11-24 Aichi Steel Corporation Small-sized attitude detection sensor and cellular phone having the same
JPWO2005111542A1 (en) * 2004-05-17 2008-03-27 愛知製鋼株式会社 Small posture detection sensor and mobile phone equipped with this small posture detection sensor
JP4576378B2 (en) * 2004-05-17 2010-11-04 愛知製鋼株式会社 Small posture detection sensor and mobile phone equipped with this small posture detection sensor

Similar Documents

Publication Publication Date Title
US8826550B2 (en) Geographically north-referenced azimuth determination
KR20060060666A (en) System for using a 2-axis magnetic sensor for a 3-axis compass solution
US5287628A (en) Omni range inclino-compass
KR20100054121A (en) Mobile phone
CN109073380B (en) Self-calibration and autonomous geomagnetic observation station
CN109407159A (en) A kind of earth magnetism total factor sensor attitude error calibration method
KR101210394B1 (en) geomagnetism detection device
CN108731674A (en) A kind of inertia celestial combined navigation system and computational methods based on single-shaft-rotation modulation
EP0986736A1 (en) Inertial and magnetic sensors systems designed for measuring the heading angle with respect to the north terrestrial pole
CN108871301A (en) Magnetic field orientation measurement method
JP5017527B2 (en) Electronic compass system
JPH06221852A (en) Electronic stereo clino-compass
Langley The magnetic compass and GPS
JPH05164558A (en) Full-range stationary type sight apparatus
JPH08278137A (en) Bearing output device
JP4144851B2 (en) Ship position detection method, position detection apparatus and system
US3229376A (en) Pendulous gyrocompass
JP3576728B2 (en) Attitude detection device
JPS6182109A (en) Magnetic azimutm device
JPH0535971B2 (en)
CN109716064B (en) Electronic compass
JP3008813B2 (en) Direction output device
JP3350819B2 (en) Contour data measurement device
JPH10160474A (en) Electronic azimuth instrument
JPH09273932A (en) Apparatus for measuring spatial position of moving body

Legal Events

Date Code Title Description
RVTR Cancellation of determination of trial for invalidation