JP4144851B2 - Ship position detection method, position detection apparatus and system - Google Patents

Ship position detection method, position detection apparatus and system Download PDF

Info

Publication number
JP4144851B2
JP4144851B2 JP2002211497A JP2002211497A JP4144851B2 JP 4144851 B2 JP4144851 B2 JP 4144851B2 JP 2002211497 A JP2002211497 A JP 2002211497A JP 2002211497 A JP2002211497 A JP 2002211497A JP 4144851 B2 JP4144851 B2 JP 4144851B2
Authority
JP
Japan
Prior art keywords
electric field
azimuth
ship
field sensor
elevation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002211497A
Other languages
Japanese (ja)
Other versions
JP2004050970A (en
Inventor
誠 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Network and System Integration Corp
Original Assignee
NEC Network and System Integration Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Network and System Integration Corp filed Critical NEC Network and System Integration Corp
Priority to JP2002211497A priority Critical patent/JP4144851B2/en
Publication of JP2004050970A publication Critical patent/JP2004050970A/en
Application granted granted Critical
Publication of JP4144851B2 publication Critical patent/JP4144851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Distances Traversed On The Ground (AREA)
  • Navigation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、海底に敷設し海上及び海中を航行する船舶を検出する電界センサを用いて船舶の航行位置を検出する方法、装置並びにシステムに関する。
【0002】
【従来の技術】
船舶は、各種電気機器を搭載しているため、船体部位により不平衡な電位を帯びており、この電位差による電流によって電界が発生する。また、この電流により電食(錆)が発生するため、船体の電位を平衡に保つように、積極的に電流を流しているものも多くあり、その電流によって電界が発生する。この船舶が発する電界を検出して、位置を特定する船舶位置検出方式は、これまでの音響検出方式や磁気検出方式に比べて確度の高い受動型の位置検出方式である。
【0003】
従来、電界センサを用いて、船舶が放射している電界を検出し、船舶の位置を検知するシステムとしては、特開2000−304533に開示されている船体位置偏倚検出量装置の例がある。図8は、この装置の検出方法を示す図であり、図8(A)は、全体回路構成、図8(B)は3軸構成の電界センサ110の外観、図8(C)は、船体の位置偏倚検出時の検知する船体111と設置するセンサ120との位置関係を示している。相互に直交する空間軸に電極棒101−1〜101−3を設け、電極棒両端の電極間の差動出力を3軸方向に関して検出し、この数値と深度計104の深度データとから船体111の位置を演算するものである。
【0004】
【発明が解決しようとする課題】
従来の船舶位置検出方法には課題がある。第1に、用いる電界センサが海底の地形等によって傾いて置かれた場合や、センサの軸が地球の方位とずれて設置された場合には、正しい位置検出ができなくなる。
第2に、船舶より放射される電界の極性が反転している場合、又は船舶が後進している場合は、検出方位が180度反転する。また、船舶が放射している電界の極性及び前進/後進を知り得る手段がないため、船舶の位置の検出結果は、常に2地点となり、位置検出が不確定である。
本発明はこのような課題に鑑みて成されたものであって、上記のような検出誤差要因や位置検出の不確定性を除去した船舶の位置検出方法並びに検出装置及びシステムを提供することにある。
【0005】
【課題を解決するための手段】
上記の課題を解決する方法として、本発明の船舶の位置検出方法は、軸上の2点間の電位差から水中の電界を検出する水中電界検知手段を直交する3軸に配設した電界センサが有する前記3軸のうち2軸の前記水中電界検知手段からの出力によって、船舶位置の前記電界センサの前記2軸に対する方位である相対方位を検出し、地磁極に対する方位を検出する方位計の出力によって、前記相対方位を補正して前記船舶位置方向の地磁極に対する絶対方位を検出することを特徴とする。
また、本発明の船舶の位置検出方法は、前記2軸の水中電界検知手段からの出力に加え、前記2軸に直交する第3の軸に配設した水中電界検知手段からの出力とによって、船舶位置方向の前記電界センサの前記軸に対する仰角である相対仰角を検出し、前記電界センサの水平に対する傾きを検出する傾斜計の出力によって、前記相対仰角を補正して前記船舶位置方向の絶対仰角を検出することを特徴とする。
また、本発明の船舶の位置検出方法は、上記の絶対方位の情報と、上記の絶対仰角の情報と、前記電界センサの深度位置を検出する深度計の情報とから、前記船舶の前記電界センサに対する位置を検出することを特徴とする。
また、複数の地点における各地点での上記の絶対方位の情報と、前記各地点での上記の絶対仰角の情報と、前記複数の地点の位置情報とから前記船舶の位置を検出することを特徴とする。
また、本発明の船舶の位置検出方法は、緯度経度が異なる複数の地点の各地点において上記の絶対方位の方向に引いてできる複数の直線の交点と、前記各地点において上記の絶対仰角の方向に引いてできる複数の直線の交点とから前記船舶の位置を検出することを特徴とする。
【0006】
また、上記の課題を解決するために、本発明の船舶の位置検出方法は、軸上の2点間の電位差から水中の電界を検出する水中電界検知手段を直交する3軸に配設した電界センサと、地磁極に対する方位を検出する方位計と、前記3軸のうち2軸の前記水中電界検知手段からの出力によって、船舶位置の前記電界センサの前記2軸に対する方位である相対方位を演算し、前記方位計の出力によって前記相対方位を補正して前記船舶位置方向の地磁極に対する絶対方位を演算する演算部、を備えることを特徴とする。
また、本発明の船舶の位置検出方法は、さらに、前記電界センサの水平に対する傾きを検出する傾斜計を備え、前記演算部が、演算部前記2軸の水中電界検知手段からの出力に加え、前記2軸に直交する第3の軸に配設した水中電界検知手段からの出力とによって、船舶位置方向の前記電界センサの前記軸に対する仰角である相対仰角を演算し、前記傾斜計の出力によって、前記相対仰角を補正して前記船舶位置方向の絶対仰角を演算することを特徴とする。
また、本発明の船舶の位置検出方法は、さらに、前記電界センサの深度位置を検出する深度計を備え、前記演算部が、前記請求項6記載の絶対方位の情報と、前記請求項7記載の絶対仰角の情報と、前記深度計の情報とから、前記船舶の前記電界センサに対する位置を検出することを特徴とする。
【0007】
また、上記の課題を解決するために、本発明の船舶の位置検出システムは、軸上の2点間の電位差から水中の電界を検出する水中電界検知手段を直交する3軸に配設した電界センサと、地磁極に対する方位を検出する方位計と、前記電界センサの水平に対する傾きを検出する傾斜計と、前記水中電界検知手段からの出力によって、船舶位置の前記電界センサの前記軸に対する方位である相対方位と前記船舶位置方向の前記電界センサの前記軸に対する仰角である相対仰角を演算し、前記方位計の出力によって前記相対方位を補正して前記船舶位置方向の地磁極に対する絶対方位と前記傾斜計の出力によって前記相対仰角を補正して前記船舶位置方向の絶対仰角を演算する演算部を備えた船舶の位置検出装置を複数の地点に有し、前記複数の地点の前記絶対方位の情報と絶対仰角の情報と前記各装置の位置情報とから前記船舶の位置を演算する手段、を備えたことを特徴とする。
また、本発明の船舶の位置検出システムは、前記位置情報が、緯度経度であることを特徴とする。
【0008】
【発明の実施の形態】
本発明の実施の形態について図面を参照して詳細に説明する。
(第1の実施の形態)図1は本発明の第1の実施の形態を示す電界センサを含んだの系統図である。
このシステムは、海底に敷設され、航行する船舶が放射する電界を検出する3軸の電界センサ10を用いて船舶の相対方位を検出し、演算部8において、方位計5、傾斜計6、深度計7の情報で相対方位を補正することにより、船舶の位置を検出する。
電界センサシステムは、電界センサ10と、電界センサの出力信号を信号処理する処理器9とから構成される。電界センサ10は、直交した3軸方向にそれぞれ電極対を備え、電極対間の電位差から電界Ex、Ey、Ezを検出する。船舶が放射している電界を電界センサ10の電極1−1、1−2で検出した電界信号を差動アンプ4−1で受け、電界信号Exを演算部8に入力する。同様に、電界信号Ey、Ezを演算部8に入力する。
図2は水面上に位置する船舶11−1と、海底に位置する電界センサ10との水平面内の角度関係を示す。電界センサ10のEx検出用電極1−1と1−2を結ぶX軸とEy検出用電極2−1と1−2を結ぶY軸とがつくるXY面は必ずしも水平面とは一致せず、一般的には電界センサは海底に傾いて設置される。また、東西南北の方位と電界センサ10のXY軸とは必ずしも一致しない。いま、船舶11−1は、電界センサ10のつくるYZ面を左から右へ横切ろうとする位置にある。
また、図3は、電界センサに立てた鉛直線と水面上での船舶と鉛直線を結ぶ線とが作る断面における電界センサ10と船舶11−1との位置関係を示す図である。電界センサは海底に傾いて設置されているので、電界センサ10のEz検出用電極3−1と3−2を結ぶZ軸と鉛直線とは一致しない。
【0009】
船舶の移動に伴った時間経過と3つの差動アンプの電界信号の出力例を図4に示す。グラフの中心時間で船舶は電界センサシステムに一番近づいている。
図5に、船舶が電界センサの直上付近を通過した場合と直上を離れて通過した場合の垂直成分の信号Ezの大きさの変化を示す。船舶が電界センサの直上にある場合は、2つの電極3−1と3−2とで検出した電界の差分出力が最大となり、直上より離れるに従って、図5(A)に示す2つの電極の船舶に対する距離L1とL2の差がなくなるため信号出力が低下する。
【0010】
演算部8は、以下に示す演算を行う。XY面内の電界信号Ex、Eyの信号より、式(1)にて、図2に示す相対角θh1を得る。
Ey≧0の場合、
θh1=cos-1(Ex/(Ex2+Ey21/2) (1−1)
Ey<0の場合、
θh1=−cos-1(Ex/(Ex2+Ey21/2) (1−2)
演算部8は、方位計5が計測する電界センサの水平面内での方位θh2信号を受けて、式(2)により絶対方位θhを得ることができる。
θh=θh1+θh2 (2)
但し、ここで検出された絶対方位θhは、180度反転している場合があり、図2に示すように、船舶11−1の実像に対して、船舶の虚像を指し示している場合がある。
次に、Z方向の電界信号Ezから、式(3)にて図3に示す相対仰角θv1を得る。
θv1=tan-1(│Ez│/(Ex2+Ey21/2) (3)
図3に示すように、電界センサは海底において、一般に水平から傾いて位置するので、電界センサの水平方向の直交する2軸XYと同じ軸上に設けた2軸の傾斜計からθh1方向に対してベクトル合成された傾き(電界センサの傾き)θv2を得て、演算部8は、式(4)により絶対仰角θvを得る。
θv=θv1+θv2 (4)
(1)〜(4)によって得られる絶対方位θh及び絶対仰角θvの出力例を船舶の移動に伴った時間経過を横軸にとって図6に示す。
そして、絶対仰角θvと深度計の深度情報dpより、水平直距離rgを(5)式から得ることができる。
rg=dp/tanθv (5)
(1)〜(5)による演算部8の出力によって、絶対方位θhと合わせ船舶の位置を特定することができる。
【0011】
以上の説明における、方位計5、傾斜計6及び深度計7は、以下のものを使用することができる。方位計は、磁気センサを使用して、地磁気の方向と磁気センサの方向とのずれを検出して電界センサの方位角を求めることができる。
また、傾斜計は、気密容器中の液体の傾斜による水位の差を検出することによって傾斜角を求めることができる。
また、深度計は、圧力センサによって水圧を計測することによって深度を計測する。
また、方位や傾斜は、ジャイロセンサによってもよい。
【0012】
但し、船舶が水中を航行している場合、航行深度を知り得ることができないため、その場合は位置の特定はできないが、図3にしめすように、電界センサ10と(1)〜(5)により求められた位置を結ぶ直線dt=rg/cosθv上に存在することがわかる。
【0013】
次に示す本発明の第2の実施の形態は、第1の実施の形態を応用し、電界センサを異なる場所に複数敷設し、各センサの情報を統合処理することで船舶の位置を特定することを特徴とする。
【0014】
(第2の実施の形態)次に、本発明の第2の実施の形態について説明する。
図7は、水面上または水中に位置する船舶11−1と、海底に位置する2つの電界センサとの水平面(図7(A))と垂直面(図7(B))の角度関係を示す図である。
位置(緯度、経度)がわかるように電界センサA10−1と電界センサB10−2を敷設する。各電界センサにおいて、第1の実施の形態における(1)〜(4)の処理を行い、電界センサA10−1と電界センサB10−2からの絶対方位θha、θhb及び絶対仰角θva、θvbを求める。それぞれの交点が、水平面、垂直面における船舶の位置である。
【0015】
【発明の効果】
以上説明したように本発明の電界センサを用いた船舶の位置検出システムは、電界センサの出力に深度計の出力のみならず、さらに方位計と傾斜計の出力を組み合わせているため、電界センサが傾いて設置されても誤差の小さい船舶位置検出が可能となる。
さらに、複数の電界センサを複数箇所に設置することによって、検出方向の不確定性をもたない、高精度の船舶位置検出が可能となる。
【図面の簡単な説明】
【図1】本発明の電界センサによる第1の実施形態を示すブロック図である。
【図2】本発明の絶対方位を検出する処理を説明するための図である。
【図3】本発明の絶対仰角及び位置を検出する処理を説明するための図である。
【図4】相互に直交する3軸の電界センサより得られる出力信号の例。
【図5】図6の信号より、第1の実施形態により得られる絶対方位と絶対仰角の算出例。
【図6】鉛直方向の検出電界信号と距離の関係を示した図である。
【図7】本発明の電界センサを用いた船舶の位置検出による第2の実施形態を示すブロック図である。
【図8】従来の電界センサを用いた船舶の位置検出システムのブロック図である。
【符号の説明】
1 電極
2 電極
3 電極
4 差動アンプ
5 方位計
6 傾斜計
7 深度計
8 演算部
9 処理器
10 電界センサ
11−1 船舶
101 電極棒
104 深度計
110 電界センサ
111 船体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method, an apparatus, and a system for detecting a navigation position of a ship using an electric field sensor that is laid on the seabed and detects a ship navigating the sea and the sea.
[0002]
[Prior art]
Since a ship is equipped with various electrical devices, it has an unbalanced potential depending on the hull part, and an electric field is generated by current due to this potential difference. In addition, since electric corrosion (rust) is generated by this current, many currents are actively passed so as to keep the potential of the hull in equilibrium, and an electric field is generated by the current. The ship position detection method for detecting the electric field generated by this ship and specifying the position is a passive position detection method with higher accuracy than conventional acoustic detection methods and magnetic detection methods.
[0003]
Conventionally, as a system for detecting an electric field radiated by a ship using an electric field sensor and detecting the position of the ship, there is an example of a hull position deviation detection amount device disclosed in Japanese Patent Application Laid-Open No. 2000-304533. 8A and 8B are diagrams showing a detection method of this apparatus. FIG. 8A is an overall circuit configuration, FIG. 8B is an external view of a three-axis electric field sensor 110, and FIG. 8C is a hull. The positional relationship between the hull 111 to be detected and the sensor 120 to be installed when the position deviation is detected is shown. Electrode rods 101-1 to 101-3 are provided on mutually perpendicular space axes, and differential outputs between the electrodes at both ends of the electrode rods are detected in the three axial directions, and the hull 111 is obtained from this numerical value and the depth data of the depth meter 104. Is calculated.
[0004]
[Problems to be solved by the invention]
The conventional ship position detection method has a problem. First, when the electric field sensor to be used is inclined due to the topography of the seabed, or when the sensor axis is installed out of alignment with the earth, correct position detection cannot be performed.
Secondly, when the polarity of the electric field radiated from the ship is reversed, or when the ship is moving backward, the detection direction is reversed by 180 degrees. Further, since there is no means for knowing the polarity of the electric field radiated by the ship and the forward / backward movement, the detection result of the ship position is always two points, and the position detection is uncertain.
The present invention has been made in view of such problems, and provides a ship position detection method, a detection apparatus, and a system that eliminate the above-described detection error factors and position detection uncertainties. is there.
[0005]
[Means for Solving the Problems]
As a method for solving the above-described problem, the ship position detection method of the present invention includes an electric field sensor in which underwater electric field detection means for detecting an electric field in water from a potential difference between two points on the axis is arranged on three orthogonal axes. An output of an azimuth meter that detects a relative azimuth that is an azimuth of the electric field sensor with respect to the two axes of the electric field sensor and detects an azimuth with respect to the earth pole by an output from the underwater electric field detection means of two of the three axes. Thus, the relative azimuth is corrected to detect the absolute azimuth with respect to the geomagnetic pole in the ship position direction.
In addition to the output from the two-axis underwater electric field detection means, the ship position detection method of the present invention is based on the output from the underwater electric field detection means disposed on the third axis orthogonal to the two axes. An absolute elevation angle in the vessel position direction is detected by detecting a relative elevation angle that is an elevation angle with respect to the axis of the electric field sensor in the vessel position direction, and correcting the relative elevation angle by an output of an inclinometer that detects an inclination of the electric field sensor with respect to the horizontal. Is detected.
The ship position detection method according to the present invention includes the electric field sensor of the ship based on the information on the absolute azimuth, the information on the absolute elevation angle, and the information on a depth meter that detects the depth position of the electric field sensor. The position with respect to is detected.
Further, the position of the ship is detected from the information on the absolute azimuth at each of a plurality of points, the information on the absolute elevation at each of the points, and the position information on the plurality of points. And
Further, the ship position detection method of the present invention includes the intersection of a plurality of straight lines drawn in the direction of the absolute direction at each of a plurality of points having different latitudes and longitudes, and the direction of the absolute elevation angle at each of the points. The position of the ship is detected from intersections of a plurality of straight lines formed by pulling to the point.
[0006]
In order to solve the above-mentioned problem, the ship position detection method of the present invention is an electric field in which an underwater electric field detection means for detecting an electric field in water from a potential difference between two points on the axis is arranged on three orthogonal axes. A relative azimuth, which is the azimuth of the ship position with respect to the two axes of the electric field sensor, is calculated by an output from the underwater electric field detection means of the two axes among the three axes, and an azimuth sensor that detects the direction with respect to the earth pole. And an arithmetic unit that corrects the relative azimuth by the output of the azimuth meter and calculates an absolute azimuth with respect to the geomagnetic pole in the ship position direction.
Further, the ship position detection method of the present invention further includes an inclinometer that detects the inclination of the electric field sensor with respect to the horizontal, and the calculation unit adds to the output from the two-axis underwater electric field detection means, A relative elevation angle that is an elevation angle with respect to the axis of the electric field sensor in the ship position direction is calculated by the output from the underwater electric field detection means arranged on the third axis orthogonal to the two axes, and the output of the inclinometer The absolute elevation angle in the ship position direction is calculated by correcting the relative elevation angle.
The ship position detection method according to the present invention further includes a depth meter that detects a depth position of the electric field sensor, and the calculation unit includes the absolute azimuth information according to claim 6 and the claim 7. The position of the ship with respect to the electric field sensor is detected from the information on the absolute elevation angle and the information on the depth meter.
[0007]
In order to solve the above-mentioned problem, the ship position detection system of the present invention is an electric field in which underwater electric field detection means for detecting an underwater electric field detecting means for detecting an electric field in water from two points on the axis is arranged on three orthogonal axes. A sensor, an azimuth meter that detects an azimuth with respect to the earth pole, an inclinometer that detects an inclination of the electric field sensor with respect to the horizontal, and an output from the underwater electric field detection means, with an azimuth of the ship position relative to the axis of the electric field sensor. A relative elevation angle, which is an elevation angle of the electric field sensor with respect to the axis of the electric field sensor in a direction of the ship position, is calculated, and the relative direction is corrected by an output of the direction meter, and the absolute direction of the earth position in the ship position direction with respect to the geomagnetic pole A ship position detecting device including a calculation unit that corrects the relative elevation angle by an output of an inclinometer and calculates an absolute elevation angle in the ship position direction at a plurality of points, and Said means for calculating the position of the marine vessel from the position information of the absolute azimuth information and the absolute elevation information and the respective device, characterized by comprising a.
The ship position detection system according to the present invention is characterized in that the position information is latitude and longitude.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings.
(First Embodiment) FIG. 1 is a system diagram including an electric field sensor showing a first embodiment of the present invention.
This system detects the relative direction of a ship using a three-axis electric field sensor 10 that is laid on the seabed and detects an electric field radiated by a navigating ship. In a calculation unit 8, an azimuth meter 5, an inclinometer 6, a depth The position of the ship is detected by correcting the relative azimuth with the information of the total 7.
The electric field sensor system includes an electric field sensor 10 and a processor 9 that processes an output signal of the electric field sensor. The electric field sensor 10 includes electrode pairs in three orthogonal directions, and detects electric fields Ex, Ey, and Ez from potential differences between the electrode pairs. The electric field signal detected by the electrodes 1-1 and 1-2 of the electric field sensor 10 is received by the differential amplifier 4-1, and the electric field signal Ex is input to the calculation unit 8. Similarly, the electric field signals Ey and Ez are input to the calculation unit 8.
FIG. 2 shows an angular relationship in the horizontal plane between the ship 11-1 located on the water surface and the electric field sensor 10 located on the seabed. The XY plane formed by the X axis connecting the Ex detection electrodes 1-1 and 1-2 of the electric field sensor 10 and the Y axis connecting the Ey detection electrodes 2-1 and 1-2 does not necessarily coincide with the horizontal plane. Specifically, the electric field sensor is installed inclined to the seabed. Further, the direction of east, west, south, and north does not necessarily match the XY axes of the electric field sensor 10. Now, the ship 11-1 is in a position to cross the YZ plane created by the electric field sensor 10 from left to right.
Moreover, FIG. 3 is a figure which shows the positional relationship of the electric field sensor 10 and the ship 11-1 in the cross section which the vertical line standing on the electric field sensor and the line which connects the ship on a water surface and a vertical line make. Since the electric field sensor is installed inclined to the seabed, the Z axis connecting the Ez detection electrodes 3-1 and 3-2 of the electric field sensor 10 does not coincide with the vertical line.
[0009]
FIG. 4 shows an example of the output of electric field signals from the passage of time as the ship moves and the three differential amplifiers. At the center time of the graph, the ship is closest to the electric field sensor system.
FIG. 5 shows changes in the magnitude of the signal Ez of the vertical component when the ship passes near the electric field sensor and passes away from the electric field sensor. When the ship is directly above the electric field sensor, the differential output of the electric field detected by the two electrodes 3-1 and 3-2 becomes the maximum, and the ship with two electrodes shown in FIG. Since there is no difference between the distances L1 and L2, the signal output decreases.
[0010]
The calculation unit 8 performs the following calculation. From the electric field signals Ex and Ey in the XY plane, the relative angle θh1 shown in FIG.
If Ey ≧ 0,
θh1 = cos −1 (Ex / (Ex 2 + Ey 2 ) 1/2 ) (1-1)
If Ey <0,
θh1 = −cos −1 (Ex / (Ex 2 + Ey 2 ) 1/2 ) (1-2)
The computing unit 8 can receive the azimuth θh2 signal in the horizontal plane of the electric field sensor measured by the azimuth meter 5, and can obtain the absolute azimuth θh by Expression (2).
θh = θh1 + θh2 (2)
However, the absolute azimuth θh detected here may be inverted by 180 degrees, and as shown in FIG. 2, the virtual image of the ship may be indicated with respect to the real image of the ship 11-1.
Next, from the electric field signal Ez in the Z direction, a relative elevation angle θv1 shown in FIG.
θv1 = tan −1 (| Ez | / (Ex 2 + Ey 2 ) 1/2 ) (3)
As shown in FIG. 3, the electric field sensor is generally tilted from the horizontal on the seabed. Therefore, from the biaxial inclinometer provided on the same axis as the two orthogonal axes XY in the horizontal direction of the electric field sensor, Thus, vector-combined inclination (inclination of the electric field sensor) θv2 is obtained, and the calculation unit 8 obtains the absolute elevation angle θv by Expression (4).
θv = θv1 + θv2 (4)
An output example of the absolute azimuth θh and absolute elevation angle θv obtained by (1) to (4) is shown in FIG.
And the horizontal direct distance rg can be obtained from the equation (5) from the absolute elevation angle θv and the depth information dp of the depth meter.
rg = dp / tan θv (5)
The position of the ship can be specified together with the absolute azimuth θh by the output of the calculation unit 8 according to (1) to (5).
[0011]
The following can be used for the azimuth meter 5, the inclinometer 6, and the depth meter 7 in the above description. The azimuth meter can determine the azimuth angle of the electric field sensor by detecting a deviation between the direction of the geomagnetism and the direction of the magnetic sensor using a magnetic sensor.
Further, the inclinometer can determine the inclination angle by detecting the difference in water level due to the inclination of the liquid in the hermetic container.
Moreover, a depth meter measures depth by measuring a water pressure with a pressure sensor.
Further, the azimuth and inclination may be determined by a gyro sensor.
[0012]
However, when the ship is navigating underwater, the depth of navigation cannot be known. In this case, the position cannot be specified, but as shown in FIG. 3, the electric field sensor 10 and (1) to (5) It can be seen that it exists on the straight line dt = rg / cos θv connecting the positions obtained by the above.
[0013]
The second embodiment of the present invention shown below applies the first embodiment, and lays out a plurality of electric field sensors at different locations, and identifies the position of the ship by integrating the information of each sensor. It is characterized by that.
[0014]
(Second Embodiment) Next, a second embodiment of the present invention will be described.
FIG. 7 shows the angular relationship between the horizontal plane (FIG. 7A) and the vertical plane (FIG. 7B) between the ship 11-1 located on the water surface or underwater and the two electric field sensors located on the sea floor. FIG.
The electric field sensor A10-1 and the electric field sensor B10-2 are laid so that the position (latitude, longitude) can be understood. In each electric field sensor, the processes (1) to (4) in the first embodiment are performed to obtain the absolute directions θha and θhb and the absolute elevation angles θva and θvb from the electric field sensor A 10-1 and the electric field sensor B 10-2. . Each intersection is the position of the ship in the horizontal and vertical planes.
[0015]
【The invention's effect】
As described above, the ship position detection system using the electric field sensor of the present invention combines not only the output of the depth meter with the output of the electric field sensor, but also the output of the azimuth meter and the inclinometer. Even if it is installed at an inclination, it is possible to detect the ship position with a small error.
Furthermore, by installing a plurality of electric field sensors at a plurality of locations, it is possible to detect the ship position with high accuracy without any uncertainty in the detection direction.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a first embodiment of an electric field sensor according to the present invention.
FIG. 2 is a diagram for explaining processing for detecting an absolute azimuth according to the present invention;
FIG. 3 is a diagram for explaining processing for detecting an absolute elevation angle and position according to the present invention;
FIG. 4 is an example of an output signal obtained from a triaxial electric field sensor orthogonal to each other.
FIG. 5 is a calculation example of absolute azimuth and absolute elevation obtained from the signal of FIG. 6 according to the first embodiment;
FIG. 6 is a diagram illustrating a relationship between a detection electric field signal in a vertical direction and a distance.
FIG. 7 is a block diagram showing a second embodiment by ship position detection using the electric field sensor of the present invention.
FIG. 8 is a block diagram of a position detection system for a ship using a conventional electric field sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrode 2 Electrode 3 Electrode 4 Differential amplifier 5 Direction meter 6 Inclinometer 7 Depth meter 8 Arithmetic unit 9 Processor 10 Electric field sensor 11-1 Ship 101 Electrode rod 104 Depth meter 110 Electric field sensor 111 Hull

Claims (6)

軸上の2点間の電位差から水中の電界を検出する水中電界検知手段を直交する3軸に配設した電界センサが有する前記3軸のうち2軸の前記水中電界検知手段からの出力によって、前記電界センサの前記2軸を含む平面における船舶位置の方位を相対方位として検出し、
前記2軸を含む平面の地磁極に対する方位を検出する方位計の出力によって、前記相対方位を補正して前記船舶位置方向の地磁極に対する絶対方位を検出し、
前記2軸に直交する第3の軸に配設した水中電界検知手段からの出力とによって、前記電界センサの前記第3の軸に対する船舶位置の仰角を相対仰角として検出し、
前記電界センサの重力方向と垂直な平面である水平平面に対する傾きを検出する傾斜計の出力によって、前記相対仰角を補正して前記船舶位置方向の前記水平平面に対する仰角である絶対仰角を検出し、
前記絶対方位と、前記絶対仰角、前記電界センサの深度位置を検出する深度計の情報とから、前記船舶の前記電界センサに対する位置を検出する
ことを特徴とする船舶の位置検出方法。
By the output from the underwater electric field detection means of two axes among the three axes of the electric field sensor arranged in three orthogonal axes, the underwater electric field detection means for detecting the electric field in water from the potential difference between two points on the axis, Detecting the azimuth of the ship position in a plane including the two axes of the electric field sensor as a relative azimuth;
By the output of an azimuth meter that detects the azimuth of the plane including the two axes with respect to the geomagnetic pole, the relative azimuth is corrected to detect the absolute azimuth relative to the geomagnetic pole in the ship position direction,
By detecting the elevation angle of the ship position with respect to the third axis of the electric field sensor as a relative elevation angle by the output from the underwater electric field detection means arranged on the third axis orthogonal to the two axes,
By detecting an inclination of the electric field sensor with respect to a horizontal plane that is a plane perpendicular to the gravity direction, the relative elevation angle is corrected to detect an absolute elevation angle that is an elevation angle of the ship position direction with respect to the horizontal plane;
A position detection method for a ship, comprising: detecting a position of the ship with respect to the electric field sensor from the absolute azimuth, the absolute elevation angle, and information on a depth meter that detects a depth position of the electric field sensor.
複数の地点にて請求項1記載の方法を実行し、
各地点で検出された絶対方位と、前記各地点で検出された絶対仰角と、前記複数の地点の位置情報とから前記船舶の位置を検出することを特徴とする船舶の位置検出方法。
Performing the method of claim 1 at a plurality of points;
A ship position detection method, wherein the ship position is detected from absolute azimuth detected at each point, absolute elevation angles detected at each point, and position information of the plurality of points.
緯度経度が異なる複数の地点の各地点において検出された絶対方位の方向に引いて得られる複数の直線の交点と、前記各地点において検出された絶対仰角の方向に引いて得られる複数の直線の交点とから前記船舶の位置を検出することを特徴とする請求項2に記載の船舶の位置検出方法。  The intersection of a plurality of straight lines obtained by pulling in the direction of absolute azimuth detected at each of a plurality of points having different latitudes and longitudes, and a plurality of straight lines obtained by pulling in the direction of absolute elevation detected at each of the points The ship position detection method according to claim 2, wherein the position of the ship is detected from an intersection. 軸上の2点間の電位差から水中の電界を検出する水中電界検知手段を直交する3軸に配設した電界センサと、
前記電界センサの重力方向と垂直な平面である水平面に対する傾きを検出する傾斜計と、
前記電界センサの深度位置を検出する深度計と、
前記3軸の中の2軸を含む平面の地磁極に対する方位を検出する方位計と、
前記2軸の前記水中電界検知手段からの出力によって、前記電界センサの前記2軸を含む平面における船舶位置の方位を相対方位として演算し、前記方位計の出力によって前記相対方位を補正して前記船舶位置方向の地磁極に対する絶対方位を演算し、前記2軸に直交する第3の軸に配設した水中電界検知手段からの出力とによって、前記電界センサの前記第3の軸に対する船舶位置方向の仰角を相対仰角として演算し、前記傾斜計の出力によって、前記相対仰角を補正して前記船舶位置方向の前記水平面に対する仰角である絶対仰角を演算し、前記絶対方位と前記絶対仰角と、前記深度計の情報とから前記船舶の前記電界センサに対する位置を検出する演算部、
とを備えたことを特徴とする船舶の位置検出装置。
An electric field sensor in which an underwater electric field detection means for detecting an electric field in water from a potential difference between two points on the axis is arranged in three orthogonal axes;
An inclinometer that detects an inclination with respect to a horizontal plane that is a plane perpendicular to the direction of gravity of the electric field sensor;
A depth meter for detecting a depth position of the electric field sensor;
An azimuth meter for detecting an azimuth of a plane including two of the three axes with respect to a geomagnetic pole;
The azimuth of the ship position in the plane including the two axes of the electric field sensor is calculated as a relative azimuth by the output from the underwater electric field detection means of the two axes, and the relative azimuth is corrected by the output of the compass The absolute azimuth of the ship position direction with respect to the geomagnetic pole is calculated, and the ship position direction with respect to the third axis of the electric field sensor is determined by the output from the underwater electric field detection means disposed on the third axis orthogonal to the two axes. Is calculated as a relative elevation angle, and by the output of the inclinometer, the relative elevation angle is corrected to calculate an absolute elevation angle that is an elevation angle with respect to the horizontal plane in the ship position direction, the absolute azimuth, the absolute elevation angle, A calculation unit for detecting a position of the ship with respect to the electric field sensor from information of a depth meter;
A ship position detecting device characterized by comprising:
軸上の2点間の電位差から水中の電界を検出する水中電界検知手段を直交する3軸に配設した電界センサと、
地磁極に対する方位を検出する方位計と、
前記電界センサの重力方向と垂直な平面である水平面に対する傾きを検出する傾斜計と、
前記3軸の中の2軸の前記水中電界検知手段出力によって、前記2軸を含む平面における船舶位置の方位を相対方位として演算し、船舶位置の前記電界センサの前記軸に対する方位である相対方位と、前記2軸に直交する第3の軸に配設した水中電界検知手段からの出力とによって、前記電界センサの前記第3の軸に対する船舶位置方向の仰角を相対仰角とを演算し、前記方位計の出力によって前記相対方位を補正して前記船舶位置方向の地磁極に対する絶対方位と、前記傾斜計の出力によって前記相対仰角を補正して前記船舶位置方向の前記水平面に対する仰角である絶対仰角を演算する演算部
とを備えた船舶の位置検出装置を複数の地点に有し、
前記複数の地点の前記絶対方位と絶対仰角と前記各装置の位置情報とから前記船舶の位置を演算する手段、
を備えたことを特徴とする船舶の位置検出システム。
An electric field sensor in which an underwater electric field detection means for detecting an electric field in water from a potential difference between two points on the axis is arranged in three orthogonal axes;
An azimuth meter that detects the direction of the earth's magnetic pole;
An inclinometer that detects an inclination with respect to a horizontal plane that is a plane perpendicular to the direction of gravity of the electric field sensor;
Based on the output of the underwater electric field detection means in two of the three axes, the azimuth of the ship position in a plane including the two axes is calculated as a relative azimuth, and the relative azimuth that is the azimuth of the ship position with respect to the axis of the electric field sensor And the output from the underwater electric field detection means disposed on the third axis perpendicular to the two axes, the elevation angle of the electric field sensor relative to the third axis in the ship position direction is calculated as a relative elevation angle, The absolute azimuth is the absolute azimuth relative to the geomagnetic pole in the ship position direction by correcting the relative azimuth by the output of the azimuth meter, and the absolute elevation angle that is the elevation angle with respect to the horizontal plane in the ship position direction by correcting the relative elevation angle by the output of the inclinometer A ship position detection device having a calculation unit for calculating
Means for calculating the position of the ship from the absolute azimuth and absolute elevation angle of the plurality of points and the position information of each device;
A ship position detection system comprising:
前記位置情報が、緯度経度であることを特徴とする前記請求項5記載の船舶の位置検出システム。  The ship position detection system according to claim 5, wherein the position information is latitude and longitude.
JP2002211497A 2002-07-19 2002-07-19 Ship position detection method, position detection apparatus and system Expired - Lifetime JP4144851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002211497A JP4144851B2 (en) 2002-07-19 2002-07-19 Ship position detection method, position detection apparatus and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002211497A JP4144851B2 (en) 2002-07-19 2002-07-19 Ship position detection method, position detection apparatus and system

Publications (2)

Publication Number Publication Date
JP2004050970A JP2004050970A (en) 2004-02-19
JP4144851B2 true JP4144851B2 (en) 2008-09-03

Family

ID=31934720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002211497A Expired - Lifetime JP4144851B2 (en) 2002-07-19 2002-07-19 Ship position detection method, position detection apparatus and system

Country Status (1)

Country Link
JP (1) JP4144851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11340376B2 (en) 2019-01-25 2022-05-24 Shimadzu Corporation Subsea structure detection device, subsea structure detection system, and subsea structure detection method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515230B2 (en) * 2004-09-06 2010-07-28 ユニバーサル特機株式会社 Moving object position estimation detection method, apparatus, and moving object position estimation detection program
JP4494268B2 (en) * 2005-03-29 2010-06-30 ユニバーサル特機株式会社 Detecting buoy
JP4958424B2 (en) * 2005-11-07 2012-06-20 ユニバーサル特機株式会社 Electric field detection method, apparatus, electric field detection method program, moving object position estimation detection method, apparatus, and moving object position estimation detection method program
JP5008154B2 (en) * 2009-11-11 2012-08-22 防衛省技術研究本部長 Ship current moment analyzer
JP5305202B2 (en) * 2009-11-11 2013-10-02 防衛省技術研究本部長 Underwater electric field measuring device and underwater electric field measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11340376B2 (en) 2019-01-25 2022-05-24 Shimadzu Corporation Subsea structure detection device, subsea structure detection system, and subsea structure detection method

Also Published As

Publication number Publication date
JP2004050970A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US7400142B2 (en) Dynamic magnetic anomaly compensation
US8005635B2 (en) Self-calibrated azimuth and attitude accuracy enhancing method and system (SAAAEMS)
JP2006300880A (en) Inclination sensor, and azimuth measuring device using this
JP6419731B2 (en) Method for measuring underground excavation position and underground excavation position measuring apparatus
JP2006226810A (en) Azimuth measuring instrument
CN104049269A (en) Target navigation mapping method based on laser ranging and MEMS/GPS integrated navigation system
JP4144851B2 (en) Ship position detection method, position detection apparatus and system
KR100376313B1 (en) Inertial and magnetic sensors systems designed for measuring the heading angle with respect to the north terrestrial pole
KR100799536B1 (en) Apparatus and Method for estimation of Virtual Axis Magnetic Compass Data to compensate the Tilt Error of Biaxial Magnetic Compass, and System for calculating Azimuth Angle using it
CN104897152A (en) Navigation method and navigation apparatus
JP2000304533A (en) Ship position displacement detector
JPH08278137A (en) Bearing output device
GB2328026A (en) Electrical polarissation distribution of a vessel
JP7308294B2 (en) Precision line positioner, how to accurately determine the position of underground lines
JP2001091257A (en) Azimuth meter and true north measuring method
JPH1194573A (en) Position attitude measuring device for mobile body
RU2107897C1 (en) Method of inertia navigation
JP3008813B2 (en) Direction output device
JP3968442B2 (en) Hull orientation estimation device
Jeong et al. 10. An Algorithmic Study on Positioning and Directional System by Free Gyros
RU2792068C1 (en) Underground communication line locator
JP3711878B2 (en) Propulsion head position direction measuring method and propulsion head position direction measuring apparatus
CN109716064A (en) Electronic compass
JPH04357463A (en) Current flow meter
JPH0131926Y2 (en)

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

R150 Certificate of patent or registration of utility model

Ref document number: 4144851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

EXPY Cancellation because of completion of term