JPH05163933A - Denitration device - Google Patents

Denitration device

Info

Publication number
JPH05163933A
JPH05163933A JP35179891A JP35179891A JPH05163933A JP H05163933 A JPH05163933 A JP H05163933A JP 35179891 A JP35179891 A JP 35179891A JP 35179891 A JP35179891 A JP 35179891A JP H05163933 A JPH05163933 A JP H05163933A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
temperature
denitration
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35179891A
Other languages
Japanese (ja)
Inventor
Masanobu Nishikawa
正信 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP35179891A priority Critical patent/JPH05163933A/en
Publication of JPH05163933A publication Critical patent/JPH05163933A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve an excellent denitration treatment even if a temperature of exhaust gas is lower than a predetermined denitration temperature, for example, in starting or stopping by providing a preheater for increasing a temperature of the exhaust gas in the case where the temperature of the exhaust gas before being brought into contact with a catalyst is lower than a predetermined value. CONSTITUTION:Exhaust gas 12 from a burner 11 passes through an ammonia mixer 14 for mixing the exhaust gas with aqueous ammonia as a reducing agent in a predetermined ratio. The resultant mixture gas 18 is turned into nitrogen gas and steam in contact with a catalyst inside a reactor 15, to be discharged through a chimney 16. On a pipeline before the ammonia mixer 14, there is provided a preheater 22 for introducing combustion gas 21 from a low No.x burner 20 as preheating gas into the exhaust gas 12. In the case of starting when the catalyst inside the reactor 15 is completely cooled, the preheater is started for preheating an exhaust gas line by the combustion gas 21 to activate the catalyst inside the reactor 15 and inject the aqueous ammonia 13 into the ammonia mixer 14, for denitration. In this state, the burner 11 is started, and a load is gradually increased. Simultaneously, fuel of the preheater 22 is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ボイラーや焼却炉等の
燃焼装置の排ガス中のNOX を脱硝する脱硝装置に関
し、特に発停時のように排ガス温度が低い場合にも脱硝
処理を良好に行うことのできる脱硝装置の改良に関する
ものである。
BACKGROUND OF THE INVENTION This invention relates to a denitration apparatus for denitrating the NO X in the exhaust gas of a combustion apparatus such as boilers and incinerators, good denitration even when particular exhaust gas temperature such as during start-stop is low The present invention relates to an improvement of a denitration device that can be performed in

【0002】[0002]

【従来の技術】窒素酸化物としては、窒素(N)と酸素
(O)の結合の状態によって数種類の化合物の存在が知
られているが、燃料の燃焼によって発生するものは、一
酸化窒素(NO)と二酸化窒素(NO2 )であり、一般
にこの両者を窒素酸化物(以下、NOX と言う)と呼ん
でいる。ボイラ、ディーゼルエンジン等の燃焼装置で
は、燃焼ガスの排出時点でのNO/NOX は容量比で9
0〜95%程度であり、排ガス中のNOX はほとんどN
Oである。
2. Description of the Related Art As nitrogen oxides, several kinds of compounds are known to exist depending on the bonding state of nitrogen (N) and oxygen (O). NO) and nitrogen dioxide (NO 2 ), both of which are generally called nitrogen oxides (hereinafter referred to as NO x ). In combustion devices such as boilers and diesel engines, the NO / NO X ratio at the time of combustion gas discharge is 9 % by volume.
It is about 0 to 95%, NO X in the exhaust gas almost N
It is O.

【0003】NOは無色無臭の気体で、水には殆ど溶け
ず、NO2 よりは毒性が低いと言われている。NO2
NOが主として大気中に存在するオゾン(O3 )により
酸化され生成される。その反応速度は風速、日射量、気
温等の気象条件や他の汚染物質によっても影響を受け
る。NO2 はNOよりも水溶性であり、濃度の高い場合
には赤褐色を呈し、臭気がある。
NO is a colorless and odorless gas which is almost insoluble in water and is said to be less toxic than NO 2 . NO 2 is produced by NO being oxidized mainly by ozone (O 3 ) existing in the atmosphere. The reaction rate is also affected by weather conditions such as wind speed, solar radiation, temperature, and other pollutants. NO 2 is more water-soluble than NO, and has a reddish brown color and an odor when the concentration is high.

【0004】大気中に存在するNOX の起源としては自
然発生源と人工発生源の両方がある。自然発生源による
ものとしては、雷,火山の噴火,バクテリアの活動等が
主であり、人工発生源はその排出形態から固定発生源,
移動発生源及び群小発生源に分類でき、発生源の種類は
多種多様である。
The sources of NO x present in the atmosphere include both natural and artificial sources. The main sources of natural sources are lightning, volcanic eruptions, bacterial activities, etc.
There are various types of sources, which can be classified into mobile sources and small group sources.

【0005】NOX の発生を抑制するためには、(1) 有
機窒素化合物を含まない燃料を使用すること、(2) 燃焼
域での酸素濃度を低くすること、(3) 高温域での燃焼ガ
スの対流時間を短くすること、(4) 燃焼温度を低くする
こと(特に局所的高温域をなくす)等のそれぞれの原理
を組合わせ、応用することによってNOX の低減を図っ
ている。
In order to suppress the generation of NO x , (1) use a fuel containing no organic nitrogen compound, (2) lower the oxygen concentration in the combustion region, and (3) in the high temperature region. shortening the residence time of the combustion gas, thereby achieving a reduction of the NO X by the combination, to apply each of the principles, such as (4) (eliminating especially local high temperature zone) to lower the combustion temperature.

【0006】ところで、燃料の燃焼によって生成したN
X の大部分は反応性の低いNOであるため、その除去
は技術的にかなり難しい。具体的な脱硝法としては適当
な触媒を用い、還元剤を排ガスに添加して、NOX を還
元する接触還元法が多く用いられている。還元剤として
はアンモニア,炭化水素,水素,一酸化炭素等が用いら
れる。
By the way, N generated by combustion of fuel
Most of the O x is NO with low reactivity, so its removal is technically quite difficult. With the appropriate catalyst as a specific denitration method, a reducing agent is added to the exhaust gas, it is often used catalytic reduction method for reducing the NO X. As the reducing agent, ammonia, hydrocarbon, hydrogen, carbon monoxide, etc. are used.

【0007】図3は従来の接触還元式脱硝装置の構成を
示す説明図である。図に示す通り、ボイラ,ディーゼル
エンジン等の燃焼装置1から排出される排ガス2は、還
元剤として例えばアンモニア3と所定量混合するアンモ
ニアミキシング装置4を通って、反応器5内で混合ガス
8が触媒と接触して、窒素ガスと水蒸気となって煙突6
から排出される。尚、反応器5を出たガスは排ガスボイ
ラ7で熱を回収される。
FIG. 3 is an explanatory view showing the structure of a conventional catalytic reduction type denitration apparatus. As shown in the figure, the exhaust gas 2 discharged from the combustion device 1 such as a boiler or a diesel engine passes through an ammonia mixing device 4 that mixes a predetermined amount with, for example, ammonia 3 as a reducing agent, and a mixed gas 8 is generated in a reactor 5. Contacting the catalyst, it becomes nitrogen gas and water vapor, and the stack 6
Discharged from. The heat of the gas leaving the reactor 5 is recovered by the exhaust gas boiler 7.

【0008】[0008]

【発明が解決しようとする課題】前述の通り、従来の脱
硝装置では、燃焼装置1より発生する排ガスより昇温さ
れ、ジルコニア等の触媒が反応温度(約300℃以上)
に達してからアンモニアを排ガス中へ噴霧し、触媒内部
で脱硝反応をさせNOX を無公害なN2 ,H2 Oとして
大気へ放出するものであった。
As described above, in the conventional denitration apparatus, the temperature of the exhaust gas generated by the combustion apparatus 1 is raised and the catalyst such as zirconia reacts at the reaction temperature (about 300 ° C. or higher).
Then, ammonia was sprayed into the exhaust gas to cause a denitration reaction inside the catalyst, and NO x was released to the atmosphere as N 2 and H 2 O, which are non-polluting.

【0009】ところで、燃焼装置が始動して1時間位は
安定した脱硝処理ができないために、発停頻度の多い施
設では脱硝設備を十分有効に活用できずNOX を発停時
期には多量に未処理で放出していた。NOX の除去量は
各地方条例により異なるが、始動時と言えどもNOX
未処理で多量に放出することは許されてないが、現在ま
での脱硝装置では対応ができなかった。
By the way, since the denitrification treatment cannot be performed stably for about one hour after the start of the combustion device, the denitration equipment cannot be used effectively in facilities with frequent start / stop, and a large amount of NO X is generated during the start / stop timing. It was released untreated. Although the amount of NO X removed varies depending on the local regulations, it is not allowed to release a large amount of NO X untreated even at the time of start-up, but it has not been possible with the denitration equipment to date.

【0010】本発明は、例えば発停時のように、排ガス
温度が低い場合にも脱硝処理を良好に行うことのできる
脱硝装置を得ることを目的とする。
It is an object of the present invention to provide a denitration device which can perform a denitration treatment favorably even when the exhaust gas temperature is low, such as when starting and stopping.

【0011】[0011]

【課題を解決するための手段】本請求項1に記載された
発明に係る脱硝装置では、燃焼装置から排出される排ガ
ス中のNOX を還元ガスと混合して触媒に接触させて窒
素ガスと水蒸気とに還元する脱硝装置において、前記触
媒に接触させる前の排ガスが所定の温度よりも低い場合
に該排ガスを昇温する予熱手段を備えたものである。
In the denitration apparatus according to the invention described in claim 1, NO x in the exhaust gas discharged from the combustion apparatus is mixed with a reducing gas and brought into contact with the catalyst to form a nitrogen gas. A denitration apparatus for reducing to steam is provided with a preheating means for raising the temperature of the exhaust gas before it is brought into contact with the catalyst is lower than a predetermined temperature.

【0012】具体的には、前記還元ガスがアンモニアガ
スであり、前記予熱手段が低NOXバーナを備え、該バ
ーナの燃焼ガスを予熱用ガスとして前記排ガスに導入す
るものを開示するものである。
Specifically, it is disclosed that the reducing gas is ammonia gas, the preheating means is provided with a low NO x burner, and the combustion gas of the burner is introduced into the exhaust gas as preheating gas. ..

【0013】[0013]

【作用】本発明では、触媒に接触させる前の排ガスが所
定の温度よりも低い場合に該排ガスを昇温する予熱手段
を備えたために、例えば発停時のように、排ガスの温度
が所定の脱硝温度よりも低い場合にも、脱硝処理を良好
に行うことができる。
In the present invention, since the exhaust gas before being brought into contact with the catalyst is provided with the preheating means for raising the temperature of the exhaust gas when the temperature is lower than the predetermined temperature, the temperature of the exhaust gas is controlled to a predetermined value, for example, at the time of start / stop. Even when the temperature is lower than the denitration temperature, the denitration treatment can be favorably performed.

【0014】本発明では、ディーゼルエンジン等のよう
に、高温の排ガスを排出し、始動時より多量のNOX
発生させる燃焼装置であって、しかも特に発停頻度の多
い装置に設置することが良い。
According to the present invention, a combustion device, such as a diesel engine, which emits high-temperature exhaust gas and generates a larger amount of NO X than at the time of start-up, and can be installed particularly in a device having a high start / stop frequency. good.

【0015】本発明の予熱手段によって触媒に接触する
排ガス温度を昇温させて、排ガス中のNOX は還元剤と
してアンモニアを使用した場合には、次の反応の通り、
窒素ガスと水蒸気に還元される。 4NO +4NH3 +O2 →4N2 +6H2 O …(1) 6NO +4NH3 →5N2 +6H2 O …(2) 6NO2 +8NH3 →7N2 +12H2 O …(3) 尚、触媒に接触する際の温度が350〜400℃付近で
は(1) 式の反応が優先的に進行する。
When the temperature of the exhaust gas contacting the catalyst is raised by the preheating means of the present invention and NO x in the exhaust gas uses ammonia as a reducing agent, the following reaction is performed:
Reduced to nitrogen gas and water vapor. 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (1) 6NO + 4NH 3 → 5N 2 + 6H 2 O (2) 6NO 2 + 8NH 3 → 7N 2 + 12H 2 O (3) When contacting the catalyst When the temperature is around 350 to 400 ° C, the reaction of the formula (1) preferentially proceeds.

【0016】具体的な予熱手段としては、排ガスを導入
する配管自体を加熱したり、触媒に接触させる前に排ガ
スを加熱炉に導入してそこであらためて燃焼させたり、
種々の手段が取られるが、特に低NOX バーナを備え、
該バーナの燃焼ガスを予熱用ガスとして前記排ガスに導
入する手段が、既設の脱硝装置に付設することができ、
設備費,燃料費,維持費等に優れている。
As a concrete preheating means, the pipe itself for introducing the exhaust gas is heated, or the exhaust gas is introduced into the heating furnace and brought into combustion again before contacting with the catalyst,
Various means are taken, with low NO X burner particular,
A means for introducing the combustion gas of the burner into the exhaust gas as a preheating gas can be attached to an existing denitration device,
Excellent facility cost, fuel cost, maintenance cost, etc.

【0017】これらの予熱手段は、脱硝温度よりも排ガ
ス温度が低い場合のみ使用し、排ガス温度が安定して、
脱硝温度以上となったときには、予熱手段を停止する。
以上のように、本発明の装置によれば、燃焼装置の始動
時には低負荷より脱硝反応によりNOX 除去ができる。
特にディーゼルエンジンのように高NOX の燃焼装置、
更に発停頻度の多い装置であって、装置自体の高性を抜
本的に改変することができない既設の脱硝装置に付加さ
せるのに有効である。
These preheating means are used only when the exhaust gas temperature is lower than the denitration temperature, and the exhaust gas temperature is stable.
When the temperature exceeds the denitration temperature, the preheating means is stopped.
As described above, according to the device of the present invention, NO x can be removed by denitration reaction from a low load when the combustion device is started.
In particular combustion apparatus of high NO X as a diesel engine,
Further, it is effective in adding to an existing denitration device, which is a device with a high frequency of starting and stopping and in which the highness of the device itself cannot be drastically modified.

【0018】[0018]

【実施例】以下に、本発明の予熱手段を備えた脱硝装置
の概要について説明を行なう。本発明では、ディーゼル
発電装置の排ガス系統ブローに引き続く脱硝装置であ
る。図1は本発明の脱硝装置の一実施例の構成を示す説
明図である。
EXAMPLE An outline of a denitration apparatus equipped with the preheating means of the present invention will be described below. In the present invention, the denitration device follows the exhaust gas system blow of the diesel power generator. FIG. 1 is an explanatory diagram showing the configuration of an embodiment of the denitration device of the present invention.

【0019】図に示す通り、ボイラ,ディーゼルエンジ
ン等の燃焼装置11から排出される排ガス12は、還元
剤として例えばアンモニア13と所定量混合するアンモ
ニアミキシング装置14を通って、反応器15内で混合
ガス18が触媒と接触して、窒素ガスと水蒸気となって
煙突16から排出される。尚、反応器15を出たガスは
排ガスボイラ17で熱を回収される。この装置のアンモ
ニアミキシング装置14手前の配管に低NOX バーナ2
0の燃焼ガス21を予熱用ガスとして排ガス12に導入
する予熱装置22が設けられている。低NOX バーナ2
0の燃焼度合は反応器15内の排ガス温度によって制御
装置23によって制御される。
As shown in the figure, exhaust gas 12 discharged from a combustion device 11 such as a boiler or a diesel engine passes through an ammonia mixing device 14 which mixes a predetermined amount with, for example, ammonia 13 as a reducing agent, and is mixed in a reactor 15. The gas 18 comes into contact with the catalyst, becomes nitrogen gas and water vapor, and is discharged from the stack 16. The heat of the gas leaving the reactor 15 is recovered by the exhaust gas boiler 17. A low NO x burner 2 is installed in the pipe before the ammonia mixing device 14 of this device.
A preheating device 22 for introducing the combustion gas 21 of 0 as a preheating gas into the exhaust gas 12 is provided. Low NO x burner 2
The degree of combustion of 0 is controlled by the controller 23 by the exhaust gas temperature in the reactor 15.

【0020】以上のような脱硝装置の操作手順は、反応
器15内の触媒が完全に冷め切った場合の起動(例え
ば、ブラックスタート又は長期間停止後のスタート)で
は、まず予熱装置22を始動し、排ガスラインを400
〜500℃の排ガスで予熱すると、350℃位の温度で
反応器15内の触媒が活性化されるので、アンモニア水
13をアンモニアミキシング装置14に必要量注入すれ
ば脱硝が可能となる。この状態でディーゼルエンジン
(図示せず)を始動し、徐々に負荷を上げて行く、これ
と平行して予熱装置22の燃料も増加させ、反応器15
内の触媒の反応温度を確保する。
In the operating procedure of the denitration apparatus as described above, in starting when the catalyst in the reactor 15 is completely cooled (for example, black start or start after long-term stop), the preheating apparatus 22 is first started. And exhaust gas line 400
Preheating with an exhaust gas of ˜500 ° C. activates the catalyst in the reactor 15 at a temperature of about 350 ° C. Therefore, denitration becomes possible by injecting the ammonia water 13 into the ammonia mixing device 14 in a required amount. In this state, a diesel engine (not shown) is started and the load is gradually increased. In parallel with this, the fuel of the preheating device 22 is also increased, and the reactor 15
Ensure the reaction temperature of the catalyst inside.

【0021】図2は予熱装置を駆動した又は駆動しなか
った際の反応器出口のNOX 量(A)と反応器温度及び
エンジン出力(B)の経時変化を示した線図である。縦
軸は各々NOX 量,温度及びエンジン出力率、横軸は時
間であり、は予熱装置を駆動した場合の反応器出口N
X 量,は予熱装置を駆動しなかった場合の反応器出
口NOX 量,は予熱装置を駆動させた場合の反応器出
口温度,は予熱装置を駆動しなかった場合の反応器出
口温度,は予熱装置を駆動させなかった場合の反応器
入口温度,はエンジン出口温度,はエンジン出力を
示す。尚、反応器の容量により時間は種々延びるため、
あくまで参考時間である。
FIG. 2 is a diagram showing changes over time in the NO x amount (A) at the reactor outlet, the reactor temperature and the engine output (B) when the preheater was driven or not driven. The vertical axis represents the NO X amount, temperature and engine output rate, the horizontal axis represents time, and is the reactor outlet N when the preheating device is driven.
O X amount, the reactor outlet the amount of NO X, the reactor outlet temperature when the reactor outlet temperature in the case of driving the preheater, the did not drive the preheating device when not driving the preheating device, Is the reactor inlet temperature when the preheater is not driven, is the engine outlet temperature, and is the engine output. In addition, since the time is variously extended depending on the capacity of the reactor,
It is just a reference time.

【0022】図に示す通り、予熱装置を駆動しなかった
場合は、NOX 量変化及び温度変化,から判るよ
うに、エンジンを始動して徐々にエンジン出力を100
%に近付けるため、反応器15の出口温度が脱硝反応温
度以上となって、反応器15の触媒が活性化されるまで
の時間が必要となる(約36分)。一方、NOX 量は起
動後10分で既に800ppm を越えているのに除去でき
ず、排ガスとして放出される。また、エンジン停止操作
時でも同様にエンジンの出力を下げることにより排ガス
温度が下がり、300℃以下では反応はほとんどできな
いのでアンモニア水の注入をストップする。このためN
X はこれ以後排ガスとして放出される。
[0022] As shown in FIG. Otherwise, driving the pre-heating device, NO X amount and temperature change, as can be seen from the gradual engine output to start the engine 100
%, The time required for the outlet temperature of the reactor 15 to reach or exceed the denitration reaction temperature and activate the catalyst of the reactor 15 (about 36 minutes). On the other hand, the amount of NO X cannot be removed even though it has already exceeded 800 ppm 10 minutes after the start-up, and is emitted as exhaust gas. Further, even when the engine is stopped, the exhaust gas temperature is lowered by lowering the output of the engine in the same manner, and the reaction can hardly be performed at 300 ° C. or less, so that the injection of ammonia water is stopped. Therefore N
O X is Since then discharged as exhaust gas.

【0023】予熱装置を駆動させた場合には、エンジン
起動前に予熱装置を駆動させ、反応器15内の触媒を所
定の温度に昇温させているため、起動後すぐに(5分)
アンモニアを注入して、脱硝反応を開始することがで
き、エンジンの出力が上昇するに従い予熱装置の出力を
下げていき、エンジンの排ガスのみで脱硝反応を行うこ
とができる時に予熱装置を停止する。また、エンジン停
止操作時でも、出力を下げ始めた時点で予熱装置を再起
動し、反応温度を確保しながらエンジン出力を下げるの
に合せて低NOX バーナーの燃料量も徐々に絞って行
き、前のグラフのエンジン始動時点と同じ状態となる。
When the preheating device is driven, the preheating device is driven before the engine is started to raise the temperature of the catalyst in the reactor 15 to a predetermined temperature. Therefore, immediately after the starting (5 minutes).
Ammonia can be injected to start the denitration reaction, the output of the preheating device is lowered as the output of the engine rises, and the preheating device is stopped when the denitration reaction can be performed only with the exhaust gas of the engine. Also, even when the engine is stopped, the preheater is restarted when the output starts to decrease, and the fuel amount of the low NO X burner is gradually reduced as the engine output is decreased while securing the reaction temperature. The state is the same as when the engine was started in the previous graph.

【0024】また、排ガスを排出する装置が短期間停止
する場合には、エンジンを停止した後に、反応器の温度
があまり低下しないように、予熱装置を予熱運転状態に
しておき、触媒温度を300〜400℃(排ガスは50
0℃位)で温度コントロールしてもよい。また、長期間
停止する場合や、10時間以上停止する場合は予熱装置
も停止する。尚、ディーゼルエンジンの発電装置等の殆
どは、排熱回収ボイラーを装備しているため予熱装置で
発生するエネルギーの60〜70%は回収できるためエ
ネルギーの無駄にはあまりならない。
When the device for discharging exhaust gas is stopped for a short period of time, after the engine is stopped, the preheating device is kept in the preheating operation state so that the temperature of the reactor does not decrease so much, and the catalyst temperature is set to 300. ~ 400 ° C (exhaust gas is 50
The temperature may be controlled at about 0 ° C. In addition, the preheating device is also stopped when it is stopped for a long period of time or when it is stopped for 10 hours or more. Since most of the diesel engine power generators and the like are equipped with an exhaust heat recovery boiler, 60 to 70% of the energy generated in the preheating device can be recovered, so energy is not wasted much.

【0025】また、低NOX バーナーのガス量はエンジ
ンの定格出力時のガス量の1/2〜1/3程度でガス温
は500℃(max)であればよい。尚、必要ガス量は
次式で得られる。 必要ガス量(kg/h)=1.5〜2(kg/h)×定格出力
(ps) 尚、エンジン停止中の予熱用熱量は、排ガス管及びNO
X 反応器の放熱分をカバーできるものでもよい。
The amount of gas in the low NO x burner may be about 1/2 to 1/3 of the amount of gas at the rated output of the engine, and the gas temperature may be 500 ° C. (max). The required gas amount is obtained by the following formula. Required gas amount (kg / h) = 1.5 to 2 (kg / h) x rated output (ps) The heat amount for preheating while the engine is stopped is the exhaust gas pipe and NO.
It may be capable of covering the heat released from the X reactor.

【0026】[0026]

【発明の効果】以上説明した通り、本発明では触媒に接
触させる前の排ガスが所定の温度よりも低い場合に該排
ガスを昇温する予熱手段を備えたために、例えば発停時
のように、排ガスの温度が所定の脱硝温度よりも低い場
合にも、脱硝処理を良好に行うことができる。
As described above, in the present invention, since the preheating means for raising the temperature of the exhaust gas before contacting with the catalyst is lower than a predetermined temperature, for example, at the time of starting and stopping, Even when the temperature of the exhaust gas is lower than the predetermined denitration temperature, the denitration treatment can be favorably performed.

【0027】また、具体的な予熱手段としては、排ガス
を導入する配管自体を加熱したり、触媒に接触させる前
に排ガスを燃焼装置に導入してそこであらためて燃焼さ
せたり、種々の手段が取られるが、特に低NOX バーナ
を備え、該バーナの燃焼ガスを予熱用ガスとして前記排
ガスに導入する手段が、既設の脱硝装置に付設すること
ができ、設備費,燃料費,維持費等に優れている。
Further, as a concrete preheating means, various means such as heating the pipe itself for introducing the exhaust gas, introducing the exhaust gas into the combustion device and bringing it into combustion again before contacting with the catalyst, various means are taken. but especially with low NO X burner, means for introducing into the exhaust combustion gas of the burner as a preheating gas, it is possible to attached to existing denitration apparatus, equipment costs, fuel costs, excellent in maintenance costs, etc. ing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の脱硝装置の一実施例の構成を示す説明
図である。
FIG. 1 is an explanatory diagram showing a configuration of an example of a denitration device of the present invention.

【図2】予熱装置を駆動した又は駆動しなかった際の反
応器出口のNOX量(A)と反応器温度及びエンジン出
力(B)の経時変化を示した線図である。
FIG. 2 is a diagram showing changes over time in the NO x amount (A) at the reactor outlet, the reactor temperature, and the engine output (B) when the preheating device was driven or not driven.

【図3】従来の接触還元式脱硝装置の構成を示す説明図
である。
FIG. 3 is an explanatory diagram showing a configuration of a conventional catalytic reduction type denitration device.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃焼装置から排出される排ガス中のNO
X を還元ガスと混合して触媒に接触させて窒素ガスと水
蒸気とに還元する脱硝装置において、 前記触媒に接触させる前の排ガスが所定の温度よりも低
い場合に該排ガスを昇温する予熱手段を備えたことを特
徴とする脱硝装置。
1. NO in exhaust gas discharged from a combustion device
In a denitration device for mixing X with a reducing gas and bringing it into contact with a catalyst to reduce it to nitrogen gas and water vapor, a preheating means for raising the temperature of the exhaust gas before contacting with the catalyst is lower than a predetermined temperature. A denitration device characterized by being equipped with.
【請求項2】 前記予熱手段が低NOX バーナを備え、
該バーナの燃焼ガスを予熱用ガスとして前記排ガスに導
入することを特徴とする請求項1に記載の脱硝装置。
2. The preheating means comprises a low NO x burner,
The denitration apparatus according to claim 1, wherein the combustion gas of the burner is introduced into the exhaust gas as a preheating gas.
【請求項3】 前記還元ガスがアンモニアガスであるこ
とを特徴とする請求項1又は2に記載の脱硝装置。
3. The denitration apparatus according to claim 1, wherein the reducing gas is ammonia gas.
JP35179891A 1991-12-16 1991-12-16 Denitration device Pending JPH05163933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35179891A JPH05163933A (en) 1991-12-16 1991-12-16 Denitration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35179891A JPH05163933A (en) 1991-12-16 1991-12-16 Denitration device

Publications (1)

Publication Number Publication Date
JPH05163933A true JPH05163933A (en) 1993-06-29

Family

ID=18419681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35179891A Pending JPH05163933A (en) 1991-12-16 1991-12-16 Denitration device

Country Status (1)

Country Link
JP (1) JPH05163933A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010045285A3 (en) * 2008-10-16 2010-07-08 Cummins Filtration Ip Inc. Detachable decomposition reactor with an integral mixer
US8114364B2 (en) 2009-02-02 2012-02-14 Cummins Filtration Ip, Inc. Increased reductant decomposition reactor robustness through the use of a hydrolytic catalyst coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198711A (en) * 1985-02-28 1986-09-03 Toshiba Corp Semiconductor integrated circuit device
JPH03260313A (en) * 1990-03-09 1991-11-20 Nippon Steel Corp Nox removal method of exhaust gas for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198711A (en) * 1985-02-28 1986-09-03 Toshiba Corp Semiconductor integrated circuit device
JPH03260313A (en) * 1990-03-09 1991-11-20 Nippon Steel Corp Nox removal method of exhaust gas for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010045285A3 (en) * 2008-10-16 2010-07-08 Cummins Filtration Ip Inc. Detachable decomposition reactor with an integral mixer
US7976788B2 (en) 2008-10-16 2011-07-12 Cummins Filtration Ip, Inc. Detachable decomposition reactor with an integral mixer
CN102171423A (en) * 2008-10-16 2011-08-31 康明斯过滤Ip公司 Detachable decomposition reactor with an integral mixer
US8114364B2 (en) 2009-02-02 2012-02-14 Cummins Filtration Ip, Inc. Increased reductant decomposition reactor robustness through the use of a hydrolytic catalyst coating

Similar Documents

Publication Publication Date Title
US6066303A (en) Apparatus and method for reducing NOx from exhaust gases produced by industrial processes
KR102172147B1 (en) Low Pressure Selective Catalytic Reduction System and Urea Storage Tank Heating Control Method Thereof
WO2021141243A1 (en) Method for treating exhaust gas of thermal power plant
KR101807996B1 (en) Combined De-NOx System using Heterogeneous Reducing agent for Reducing Yellow Plume and NOx
JP3924150B2 (en) Gas combustion treatment method and apparatus
US5547650A (en) Process for removal of oxides of nitrogen
US5120516A (en) Process for removing nox emissions from combustion effluents
US20020028170A1 (en) Apparatus and method for reducing NOx from exhaust gases produced by industrial processes
TWI744523B (en) Method and system for the removal of noxious compounds from flue-gas
JP2018505990A (en) Exhaust system for power generator
CN206198975U (en) A kind of desulphurization denitration energy saving integral cleaning system of flue gases of cock oven
JPH0857258A (en) Denitrification apparatus using solid reducing agent
KR101433611B1 (en) SCR De-Nox Equipment for removing yellow plume
JPH0871372A (en) Denitration apparatus and method using urea
JPH05163933A (en) Denitration device
JPH01155007A (en) Operating method for exhaust heat recovery boiler
JPS5858132B2 (en) Method for reducing nitrogen oxides in exhaust gas
JP3526490B2 (en) Exhaust gas denitration device and denitration method
JP3942673B2 (en) Exhaust gas denitration method
KR102175437B1 (en) Burner for generating ammonia and SCR system using the same and Operation method thereof
CN217152124U (en) Gas turbine operation overall process deNOx systems
JPH01119329A (en) Denitration of exhaust gas from diesel engine
JPH07136465A (en) Usage of denitration apparatus for exhaust gas containing nitrogen dioxide and nitrogen monoxide
JPH03260313A (en) Nox removal method of exhaust gas for internal combustion engine
KR20170049882A (en) Selective Catalytic Reduction System for Engine