JPH05160501A - Surface emitting laser element - Google Patents

Surface emitting laser element

Info

Publication number
JPH05160501A
JPH05160501A JP31897591A JP31897591A JPH05160501A JP H05160501 A JPH05160501 A JP H05160501A JP 31897591 A JP31897591 A JP 31897591A JP 31897591 A JP31897591 A JP 31897591A JP H05160501 A JPH05160501 A JP H05160501A
Authority
JP
Japan
Prior art keywords
layer
reflector
deposited
type
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31897591A
Other languages
Japanese (ja)
Inventor
Toyoji Chino
豊治 知野
Kenichi Matsuda
賢一 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31897591A priority Critical patent/JPH05160501A/en
Publication of JPH05160501A publication Critical patent/JPH05160501A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To inject carriers into an active layer with low resistance, by forming an electrode on a clad layer formed on an active layer, or forming a conducting layer on the reflector side and a surface. CONSTITUTION:On an N-type reflector composed of N-AlAs 102 and N-GaAs 103, the followings are constituted; an active layer composed of GaAs 116 and an InGaAs quantum well layer 106, an N-clad layer composed of N-AlGaAs 104 and AlGaAs 105, and a P-clad layer composed of AlGaAs 107 and a P<+>- AlGaAs 108. An interface layer 111 having conductivity and an oxide film 112 are formed on the side surface of a P-type reflector composed of P-AlAs 109 and a P-GaAs 110. The whole part of an element is covered with polyimide 113, 114 is an anode and 115 is a cathode. Electrons are injected in the active layer 106 through a substrate 101 and the N-type reflector. Positive holes are injected into the active layer 106 through the P-type reflector and the interface layer 111. Light generated in a quantum well layer 106 is reflected by the p-type reflector and the N-type reflector, and laser oscillation is induced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、面発光型レーザ素子の
構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a surface emitting laser device.

【0002】[0002]

【従来の技術】これまでに数種類の構造の面発光型レー
ザ素子が提案されてきた。例えば、オプトロニクス(19
90)、No.4 157頁〜175頁やアプライドフィジックスレ
ターズ57巻、1990年16号、1605頁〜1607頁(Appl. Phys.
Lett. 57 (16) 1990)に掲載されている。これらの構造
において、反射器は、誘電体多層膜または半導体多層膜
が用いられている。誘電体多層膜を反射器に用いる場
合、SiO2503とTiO2504などの対が用いられ
る。活性層は基板上に積層された結晶により埋め込まれ
ている。図5にこの様子を示している。キャリヤは反射
器を通ることができないので、活性層への注入効率に問
題がある。また、半導体多層膜を反射器に用いる場合、
活性層を挟む上下の反射器にpまたはn型の不純物を添
加し、これらの反射器を通してキャリヤを活性層に注入
する。構造は、メサ形状のものや埋め込み構造のものが
ある。
2. Description of the Related Art Up to now, surface emitting laser devices having several types of structures have been proposed. For example, Optronics (19
90), No. 4 pp. 157-175 and Applied Physics Letters vol. 57, No. 16, 1990, pp. 1605-1607 (Appl. Phys.
Lett. 57 (16) 1990). In these structures, the reflector uses a dielectric multilayer film or a semiconductor multilayer film. When the dielectric multilayer film is used for the reflector, a pair such as SiO 2 503 and TiO 2 504 is used. The active layer is filled with crystals stacked on the substrate. This is shown in FIG. Since the carriers cannot pass through the reflector, there is a problem with the efficiency of injection into the active layer. When using a semiconductor multilayer film for the reflector,
A p-type or n-type impurity is added to the upper and lower reflectors that sandwich the active layer, and carriers are injected into the active layer through these reflectors. The structure may be a mesa shape or an embedded structure.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では以下に述べる課題を有していた。即ち、誘
電体多層膜を反射器とした場合、反射器を通してキャリ
ヤを活性層に直接注入できないため、注入効率が低下
し、発振しきい値が数kA/cm2となり低しきい値化に限界
がある。また、スパッタ装置などで誘電体多層膜を形成
する時、膜厚の厳密な制御が難しく、発振波長の4分の
1から厚みがずれて理論値通りの反射率が得られず、発
振しきい値が高くなってしまう。また、半導体多層膜を
反射器に用いた場合、膜厚の制御は厳密に行えるが、反
射器内に不純物を添加し、キャリヤの注入を反射器を通
して行うわけであるが、特に、p型の不純物のドーピン
グが困難で多層膜の界面でノッチあるいはスパイクが発
生し反射器の抵抗が高くなり、発振した後の発熱が大き
くなり素子が破壊される。抵抗を下げるために不純物の
添加量を多くすると反射器を構成する多層膜の超格子構
造が崩れてしまうという課題があった。
However, the above conventional structure has the following problems. That is, when the dielectric multilayer film is used as a reflector, carriers cannot be directly injected into the active layer through the reflector, so the injection efficiency is lowered and the oscillation threshold is several kA / cm 2 , which is the limit for lowering the threshold. There is. Further, when a dielectric multilayer film is formed by a sputtering device or the like, it is difficult to strictly control the film thickness, the thickness deviates from a quarter of the oscillation wavelength, and the reflectance as the theoretical value cannot be obtained. The value becomes high. Further, when the semiconductor multilayer film is used for the reflector, the film thickness can be strictly controlled, but an impurity is added into the reflector and carriers are injected through the reflector. Impurity doping is difficult, and notches or spikes are generated at the interface of the multilayer film, the resistance of the reflector becomes high, and the heat generated after oscillation increases and the element is destroyed. If the amount of impurities added is increased in order to reduce the resistance, there is a problem that the superlattice structure of the multilayer film forming the reflector is destroyed.

【0004】故に、本発明は活性層上に設けられたクラ
ッド層に電極を形成する、或は反射器側面及び表面に導
電層を形成することで、低抵抗でキャリヤを活性層に注
入することを目的とする。
Therefore, according to the present invention, carriers are injected into the active layer with a low resistance by forming an electrode on the cladding layer provided on the active layer or forming a conductive layer on the side and surface of the reflector. With the goal.

【0005】[0005]

【課題を解決するための手段】この課題を解決するため
に本発明は、半導体基板と、前記半導体基板上に被着さ
れた半導体多層膜よりなるブラッグ反射器でn型導電性
を持つn型反射器と、前記n型反射器上に被着されたn
クラッド層と、前記nクラッド層上に被着された活性層
と、前記活性層上に被着されたpクラッド層と、前記p
クラッド層上に被着された化合物半導体多層膜よりなる
ブラッグ反射器でp型導電性を持つp型反射器と、前記
p型反射器の側面に形成された前記p型反射器を構成す
る化合物半導体のストイキオメトリーのずれた層が酸化
されたリーク層と、前記p型反射器上に被着されたアノ
ードとを備えるか、あるいは半導体基板と、前記半導体
基板上に被着された半導体多層膜よりなるブラッグ反射
器でn型導電性を持つn型反射器と、前記n型反射器上
に被着されたnクラッド層と、前記nクラッド層上に被
着された活性層と、前記活性層上に被着されたpクラッ
ド層と、前記pクラッド層の一部領域上に被着された多
層膜よりなりブラッグ反射を起こす上部反射器と、前記
pクラッド上で前記上部反射器の被着されていない領域
に被着されたアノードと、前記pクラッド層の直下で前
記上部反射器の被着されていない領域に形成された高抵
抗層とを備えることにより、キャリヤを低抵抗で効率良
く活性層に注入しようというものである。
In order to solve this problem, the present invention is a Bragg reflector composed of a semiconductor substrate and a semiconductor multi-layer film deposited on the semiconductor substrate, and has an n-type conductivity. A reflector and n deposited on the n-type reflector
A clad layer, an active layer deposited on the n-clad layer, a p-clad layer deposited on the active layer,
A Bragg reflector composed of a compound semiconductor multilayer film deposited on a clad layer, a p-type reflector having p-type conductivity, and a compound forming the p-type reflector formed on a side surface of the p-type reflector. A semiconductor stoichiometry-shifted layer comprises an oxidized leak layer and an anode deposited on the p-type reflector, or a semiconductor substrate and a semiconductor multilayer deposited on the semiconductor substrate. A Bragg reflector formed of a film, having an n-type conductivity, an n-clad layer deposited on the n-type reflector, an active layer deposited on the n-clad layer, A p-clad layer deposited on the active layer, an upper reflector that is formed of a multilayer film deposited on a partial region of the p-clad layer and causes Bragg reflection, and an upper reflector on the p-clad. Anno deposited on uncoated area And a high-resistivity layer formed immediately below the p-clad layer in the uncoated region of the upper reflector so as to efficiently inject carriers into the active layer with low resistance. ..

【0006】[0006]

【作用】先ず、酸化剤を用いた酸化法で反射器側面に導
電層を形成する場合について述べる。反射器をドライエ
ッチングで形成すると高電場で加速された荷電粒子の衝
突で反射器側面の結晶には格子欠陥が生じて、結晶のス
トイキオメトリーがずれている。そのため、酸化反応は
理論通りに進まず、酸化膜と反射器の界面がはっきりと
定まらず、酸化層と半導体層の混在したリーク層が生じ
る。このリーク層には、バンド中に様々な準位が存在す
るので導電性を有する。この故にホールは、低抵抗で活
性層に注入される。
First, the case where a conductive layer is formed on the side surface of the reflector by an oxidation method using an oxidizing agent will be described. When the reflector is formed by dry etching, lattice defects occur in the crystal on the side surface of the reflector due to collision of charged particles accelerated in a high electric field, and the stoichiometry of the crystal is deviated. Therefore, the oxidation reaction does not proceed according to the theory, the interface between the oxide film and the reflector is not clearly defined, and a leak layer in which the oxide layer and the semiconductor layer are mixed is generated. This leak layer has conductivity because various levels exist in the band. Therefore, holes are injected into the active layer with low resistance.

【0007】次に、電極をpクラッド上に形成する場合
について述べる。pクラッド上に電極が形成されるの
で、ホールは低抵抗で活性層に注入される。電子の注入
には、抵抗の問題はない。また、活性層は高抵抗層で囲
まれているので、その内側にキャリヤは閉じ込められ
る。
Next, the case where the electrode is formed on the p-clad will be described. Since the electrode is formed on the p-clad, holes are injected into the active layer with low resistance. There is no resistance problem with electron injection. Further, since the active layer is surrounded by the high resistance layer, carriers are confined inside the active layer.

【0008】[0008]

【実施例】以下、本発明の実施例について図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】(実施例1)図1は、本発明の一実施例の
面発光型レーザ素子の断面図である。nーGaAs基板
101上に半導体多層膜をMBE法またはMOVPE法
でエピタキシャル成長させている。n−AlAs102
を発振波長の4分の1の厚みで、n−GaAs103も
発振波長の4分の1の厚みで交互に成長することを25
回繰り返した部分により下側のブラッグ反射を起こす、
n−AlAs102とn−GaAs103からなるn型
反射器が構成されている。その上にn−AlGaAs1
04を100Å〜1000Å、AlGaAs105を1
00Å〜1000Å,GaAs116を100〜200
Å、InGaAs量子井戸層106を50Å〜100
Å、GaAs116を100〜200Å、AlGaAs
107を100Å〜1000Å、p+−AlGaAs1
08を100Å〜1000Åこの順に成長させる。こう
して、GaAs116,InGaAs量子井戸層106
からなる活性層、n−AlGaAs104、AlGaA
s105からなるnクラッド層、AlGaAs107、
+−AlGaAs108からなるpクラッド層を構成
する。さらに、p−AlAs109を発振波長の4分の
1の厚みで、p−GaAs110も発振波長の4分の1
の厚みで交互に成長することを15回繰り返すことによ
り上側のブラッグ反射を起こすp型反射器を構成する。
p型反射器側面には導電性を有する界面層111と酸化
膜112があり、素子全体はポリイミド113で覆われ
ている。114は、アノード、115はカソードであ
る。
(Embodiment 1) FIG. 1 is a sectional view of a surface emitting laser device according to an embodiment of the present invention. A semiconductor multilayer film is epitaxially grown on the n-GaAs substrate 101 by the MBE method or the MOVPE method. n-AlAs102
With a thickness of a quarter of the oscillation wavelength and n-GaAs 103 with a thickness of a quarter of the oscillation wavelength.
Bragg reflection of the lower side is caused by the repeated part,
An n-type reflector composed of n-AlAs 102 and n-GaAs 103 is configured. On top of that, n-AlGaAs1
04 to 100Å ~ 1000Å, AlGaAs105 to 1
00Å ~ 1000Å, GaAs116 100 ~ 200
Å, InGaAs quantum well layer 106 50 Å ~ 100
Å, GaAs116 100-200 Å, AlGaAs
107 to 100Å to 1000Å, p + -AlGaAs1
08 is grown in this order from 100Å to 1000Å. Thus, the GaAs 116 and the InGaAs quantum well layer 106
Active layer composed of n-AlGaAs104, AlGaA
n-clad layer made of s105, AlGaAs 107,
A p-clad layer made of p + -AlGaAs 108 is formed. Further, the p-AlAs 109 has a thickness of a quarter of the oscillation wavelength, and the p-GaAs 110 also has a thickness of a quarter of the oscillation wavelength.
The p-type reflector that causes the Bragg reflection on the upper side is formed by repeating the alternating growth with the thickness of 15 times.
An interface layer 111 having conductivity and an oxide film 112 are provided on the side surface of the p-type reflector, and the entire element is covered with polyimide 113. 114 is an anode and 115 is a cathode.

【0010】電子は、基板101及びn型反射器を、正
孔はp型反射器及び界面層111を通して活性層106
に注入される。量子井戸層106で発生した光は、p型
反射器とn型反射器により反射されてレーザ発振を起こ
す。アノード114をリング状に加工しておけばレーザ
光は、基板表面から射出される。本発明においては、p
型反射器表面に導電性を有する界面層111を設け、こ
の層を通して低抵抗で正孔を活性領域に注入するという
ものである。導電性を有する界面層111が形成される
理由は以下の通りである。ドライエッチングを行う際、
電場により加速された荷電粒子の衝突により、p型反射
器を構成する結晶に格子欠陥が発生し、ストイキオメト
リーがずれる。この状態で酸化するとAlAsOx,A
23,As23,GaAsOx,Ga23やこれらの
酸化物のAl,As,GaとOの組成比が少しずれた化
合物生じる結果、p型反射器の結晶と酸化膜との界面の
バンド中には、様々な準位が存在し、導電性を有するよ
うになる。
Electrons pass through the substrate 101 and the n-type reflector, and holes pass through the p-type reflector and the interface layer 111, and the active layer 106.
Is injected into. The light generated in the quantum well layer 106 is reflected by the p-type reflector and the n-type reflector to cause laser oscillation. If the anode 114 is processed into a ring shape, laser light is emitted from the surface of the substrate. In the present invention, p
The interface layer 111 having conductivity is provided on the surface of the type reflector, and holes are injected into the active region with low resistance through this layer. The reason why the conductive interface layer 111 is formed is as follows. When performing dry etching,
The collision of charged particles accelerated by the electric field causes lattice defects in the crystal forming the p-type reflector, and the stoichiometry shifts. When oxidized in this state, AlAsO x , A
l 2 O 3, As 2 O 3, GaAsO x, Ga 2 O 3 and these Al oxides, As, compound composition ratio deviates little Ga and O resulting crystals and oxide film of p-type reflector Various levels are present in the band at the interface with and, and they become conductive.

【0011】従って、p−AlAs109とp−GaA
s110からなるp型反射器を通らずにこの界面層11
1、p+ーAlGaAs108を通ってキャリヤが活性
領域へ注入される。キャリヤが活性層106中で全体に
拡散せずに、その上部に形成されているp型反射器の直
径内に閉じ込められるように図1に示したように高抵抗
層116を層106、107、116中に形成してお
く。
Therefore, p-AlAs109 and p-GaA
This interface layer 11 without passing through the p-type reflector made of s110
1, carriers are injected into the active region through the p + -AlGaAs 108. As shown in FIG. 1, a high resistance layer 116 is added to the layers 106, 107 so that the carriers do not diffuse throughout the active layer 106 but are confined within the diameter of the p-type reflector formed above it. It is formed in 116.

【0012】図2に以上で説明した面発光型レーザ素子
の製造方法を工程断面図で示してある。半導体多層膜を
被着した基板にアノードを形成する(a)。次に、塩素
とアルゴンの混合ガスにより、ドライエッチングを行い
p型反射器を形成する。ドライエッチングの条件は、r
f出力が150W以上、塩素とアルゴンの流量比が1/
10から1/2、反応時の内圧は、0.3から20mT
orrである。この後、レジストをマスクとして水素を
イオン注入する。このイオン注入により、nクラッド層
中に高抵抗層213が出来る(b)。続いて活性領域と
n型反射器を形成し、カソードを被着する(c)。次
に、活性領域、n型反射器と基板をレジストで覆い隠し
た後、過酸化水素水中で煮沸しp型反射器に酸化膜を形
成する(d)。最後に、素子全体をポリイミドで覆った
後、アノードとカソードを露出させる(e)。
FIG. 2 is a process sectional view showing a method of manufacturing the surface-emitting type laser device described above. An anode is formed on a substrate coated with a semiconductor multilayer film (a). Next, dry etching is performed with a mixed gas of chlorine and argon to form a p-type reflector. The condition of dry etching is r
f output is 150W or more, chlorine / argon flow ratio is 1 /
10 to 1/2, internal pressure during reaction is 0.3 to 20 mT
orr. After that, hydrogen is ion-implanted using the resist as a mask. By this ion implantation, the high resistance layer 213 is formed in the n-clad layer (b). The active region and n-type reflector are then formed and the cathode is deposited (c). Next, the active region, the n-type reflector and the substrate are covered with a resist and then boiled in hydrogen peroxide water to form an oxide film on the p-type reflector (d). Finally, after covering the entire device with polyimide, the anode and cathode are exposed (e).

【0013】(実施例2)図3は、本発明の一実施例の
面発光型レーザ素子の断面図である。nーGaAs基板
301上に半導体多層膜をMBE法またはMOVPE法
でエピタキシャル成長させている。n−AlAs302
を発振波長の4分の1の厚みで、n−GaAs303も
発振波長の4分の1の厚みで交互に成長することを25
回繰り返した部分により下側のブラッグ反射を起こすn
型反射器が構成されている。その上にn−AlGaAs
304を100Å〜1000Å、AlGaAs305を
100Å〜1000Å,GaAs307を100〜20
0Å、InGaAs量子井戸層306を50Å〜100
Å、GaAs307を100〜200Å、AlGaAs
308を100Å〜1000Å、p+−AlGaAs3
09を100Å〜1000Åこの順に成長させる。こう
して、GaAs307,InGaAs量子井戸層306
からなる活性層、n−AlGaAs304、AlGaA
s305からなるnクラッド層、AlGaAs308、
+−AlGaAs309からなるpクラッド層を構成
する。さらに、p−AlAs310を発振波長の4分の
1の厚みで、p−GaAs311も発振波長の4分の1
の厚みで交互に成長することを15回繰り返すことによ
り上側のブラッグ反射を起こすp型反射器を構成する。
312は、アノード、313はカソードである。314
は、Hイオン注入して形成した高抵抗層で、n−AlG
aAs304、AlGaAs305、InGaAs量子
井戸層306、GaAs307、AlGaAs308に
わたり、リング状に形成されている。
(Embodiment 2) FIG. 3 is a sectional view of a surface emitting laser device according to an embodiment of the present invention. A semiconductor multilayer film is epitaxially grown on the n-GaAs substrate 301 by the MBE method or the MOVPE method. n-AlAs302
With a thickness of 1/4 of the oscillation wavelength and n-GaAs 303 with a thickness of 1/4 of the oscillation wavelength.
N that causes lower Bragg reflection due to repeated parts
A type reflector is constructed. On top of that n-AlGaAs
304 to 100Å to 1000Å, AlGaAs 305 to 100Å to 1000Å, GaAs 307 to 100 to 20
0 Å, InGaAs quantum well layer 306 50 Å ~ 100
Å, GaAs307 to 100-200Å, AlGaAs
308 is 100Å to 1000Å, p + -AlGaAs3
09 is grown in this order from 100Å to 1000Å. Thus, the GaAs 307 and the InGaAs quantum well layer 306
Active layer composed of n-AlGaAs304, AlGaA
n-clad layer made of s305, AlGaAs 308,
A p-clad layer made of p + -AlGaAs 309 is formed. Further, p-AlAs 310 has a thickness of a quarter of the oscillation wavelength, and p-GaAs 311 also has a thickness of a quarter of the oscillation wavelength.
The p-type reflector that causes the Bragg reflection on the upper side is formed by repeating the alternating growth with the thickness of 15 times.
Reference numeral 312 is an anode and 313 is a cathode. 314
Is a high resistance layer formed by H ion implantation, and is n-AlG
The aAs 304, AlGaAs 305, InGaAs quantum well layer 306, GaAs 307, and AlGaAs 308 are formed in a ring shape.

【0014】アノード312は、発光層のpクラッド上
に形成されているのでホールは、低抵抗で活性層内に注
入される。高抵抗層が活性層からnクラッドまで形成さ
れているので、キャリヤはこの内側に閉じ込められる。
電子は、カソード313からn−AlGaAs304及
びn型反射器を通って、活性層に注入される。
Since the anode 312 is formed on the p-clad of the light emitting layer, holes are injected into the active layer with low resistance. Since the high resistance layer is formed from the active layer to the n-clad, the carriers are confined inside this.
Electrons are injected from the cathode 313 through the n-AlGaAs 304 and the n-type reflector into the active layer.

【0015】図4に以上で説明した面発光型レーザ素子
の製造方法を工程断面図で示してある。半導体多層膜を
被着した基板を塩素とアルゴンの混合ガスでドライエッ
チングし、p型反射器404を形成すると同時にp+
AlGaAs層403を露出する。続いて、水素イオン
を注入して、発光層中にp型反射器404を囲むよう、
リング状に高抵抗層405を形成する(a)。p+ーA
lGaAs403上にアノード406を被着する
(b)、再び、塩素とアルゴンの混合ガスでドライエッ
チングし、発光層を形成し、発光層下部のnーAlGa
As407を露出する。ドライエッチングの条件は、r
f出力が150W以上、塩素とアルゴンの流量比が1/
10から1/2、反応時の内圧は、0.3から20mT
orrである。nーAlGaAs407上にカソード4
09を被着してプロセスを終了する(c)。
FIG. 4 is a process sectional view showing a method of manufacturing the surface-emitting type laser device described above. The substrate coated with the semiconductor multilayer film is dry-etched with a mixed gas of chlorine and argon to form a p-type reflector 404 and at the same time expose the p + -AlGaAs layer 403. Subsequently, hydrogen ions are implanted to surround the p-type reflector 404 in the light emitting layer,
The high resistance layer 405 is formed in a ring shape (a). p + -A
An anode 406 is deposited on the 1GaAs 403 (b), dry etching is again performed with a mixed gas of chlorine and argon to form a light emitting layer, and n-AlGa under the light emitting layer is formed.
Exposing As407. The condition of dry etching is r
f output is 150W or more, chlorine / argon flow ratio is 1 /
10 to 1/2, internal pressure during reaction is 0.3 to 20 mT
orr. Cathode 4 on n-AlGaAs 407
09 is deposited and the process ends (c).

【0016】尚、第1の実施例において酸化剤として過
酸化水素水を用いたが、過酸化水素水に金属イオンを触
媒として添加した溶液でも良く、過マンガン酸カリウム
でも良い。さらに、以上の溶液を用いて陽極酸化を行っ
ても良い。陽極酸化の際、酒石酸とアルコールの混合液
または過マンガン酸カリウムとアセトンの混合液を用い
ても良い。
Although hydrogen peroxide solution was used as the oxidizing agent in the first embodiment, it may be a solution prepared by adding metal ions as a catalyst to hydrogen peroxide solution or potassium permanganate. Further, anodic oxidation may be performed using the above solution. At the time of anodic oxidation, a mixed solution of tartaric acid and alcohol or a mixed solution of potassium permanganate and acetone may be used.

【0017】また、第2の実施例において、発光層上に
形成した反射器に半導体多層膜を用いたが、誘電体多層
膜を用いても構わない。
Further, in the second embodiment, the semiconductor multilayer film is used for the reflector formed on the light emitting layer, but a dielectric multilayer film may be used.

【0018】[0018]

【発明の効果】以上のように本発明は、ストイキオメト
リーのずれた表面を持つブラッグ反射器を湿式酸化する
ことにより酸化膜と反射器の界面に導電性を有する層を
形成するか、あるいはnクラッドと活性層の周囲に高抵
抗層を形成しつつ、活性層に被着したp+クラッド及び
高抵抗層以外の部分のnクラッド上に電極を形成し、ホ
ールは、p+クラッドから、電子はn型導電性の反射器
から注入される。その結果、半導体多層膜を用いたブラ
ッグ反射器を採用した面発光型レーザ素子において、低
抵抗でキャリヤを活性層に注入でき、発振しきい値の低
減、動作電圧の低減による発熱量の低減という効果が得
られる。
As described above, according to the present invention, a Bragg reflector having a stoichiometrically deviated surface is wet-oxidized to form a conductive layer at the interface between the oxide film and the reflector, or While forming a high resistance layer around the n-clad and the active layer, an electrode is formed on the p + clad other than the p + clad and the high resistance layer deposited on the active layer, and the hole is formed from the p + clad. The electrons are injected from the n-type conductive reflector. As a result, in a surface-emitting laser device that employs a Bragg reflector that uses a semiconductor multilayer film, carriers can be injected into the active layer with low resistance, which reduces the oscillation threshold and the amount of heat generated by reducing the operating voltage. The effect is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】酸化膜を用いて構成した面発光型レーザ素子の
断面図
FIG. 1 is a cross-sectional view of a surface-emission type laser device configured by using an oxide film.

【図2】酸化膜を用いて構成した面発光型レーザ素子作
製プロセスの工程断面図
2A to 2C are cross-sectional views of a process of manufacturing a surface-emission type laser device configured by using an oxide film.

【図3】p+クラッド上とnクラッド上に電極を被着
し、高抵抗層を設けた面発光型レーザ素子の断面図
FIG. 3 is a cross-sectional view of a surface emitting laser device in which electrodes are deposited on the p + clad and the n clad, and a high resistance layer is provided.

【図4】p+クラッド上とnクラッド上に電極を被着
し、高抵抗層を設けた面発光型レーザ素子作製プロセス
の工程断面図
FIG. 4 is a process cross-sectional view of a process for manufacturing a surface emitting laser device in which electrodes are deposited on the p + clad and the n clad, and a high resistance layer is provided.

【図5】面発光型レーザ素子の工程断面図FIG. 5 is a sectional view of a process of a surface emitting laser device.

【符号の説明】[Explanation of symbols]

101 nーGaAs基板 102 n−AlAs 103 n−GaAs 104 n−AlGaAs 105 AlGaAs 106 InGaAs 107 AlGaAs 108 p+ーAlGaAs 109 p−AlAs 110 p−GaAs 111 界面層 112 酸化膜 113 ポリイミド 114 アノード 115 カソード 116 GaAs 201 nーGaAs基板 202 半導体多層膜 203 アノード 204 レジスト 205 pミラー 206 発光層とnミラー 207 レジスト 208 カソード 209 レジスト 210 界面層 211 酸化膜 212 ポリイミド 301 nーGaAs基板 302 n−AlAs 303 n−GaAs 304 n−AlGaAs 305 AlGaAs 306 InGaAs 307 GaAs 308 AlGaAs 309 p+ーAlGaAs 310 p−AlAs 311 p−GaAs 312 アノード 313 カソード 314 高抵抗層 401 nーGaAs基板 402 半導体多層膜 403 p+ーAlGaAs 404 pミラー 405 高抵抗層 406 アノード 407 n−AlGaAs 408 nミラー 409 カソード101 n-GaAs substrate 102 n-AlAs 103 n-GaAs 104 n-AlGaAs 105 AlGaAs 106 InGaAs 107 AlGaAs 108 p + -AlGaAs 109 p-AlAs 110 p-GaAs 111 Interface layer 112 Oxide film 113 Polyimide 114 Anode 115 Cathode 116 GaAs 201 n-GaAs substrate 202 Semiconductor multilayer film 203 Anode 204 Resist 205 p Mirror 206 Light emitting layer and n mirror 207 Resist 208 Cathode 209 Resist 210 Interface layer 211 Oxide film 212 Polyimide 301 n-GaAs substrate 302 n-AlAs 303 n-GaAs 304 n-AlGaAs 305 AlGaAs 306 InGaAs 307 GaAs 308 AlGaAs 309 p + -AlGaAs 310 p-AlAs 311 p-GaAs 312 anode 313 cathode 314 high resistance layer 401 n-GaAs substrate 402 semiconductor multilayer film 403 p + -AlGaAs 404 p mirror 405 high resistance layer 406 anode 407 n-AlGaAs 408 n mirror 409 Cathode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体基板と、前記半導体基板上に被着さ
れた半導体多層膜よりなるブラッグ反射器でn型導電性
を持つn型反射器と、前記n型反射器上に被着されたn
クラッド層と、前記nクラッド層上に被着された活性層
と、前記活性層上に被着されたpクラッド層と、前記p
クラッド層上に被着された化合物半導体多層膜よりなる
ブラッグ反射器でp型導電性を持つp型反射器と、前記
p型反射器の側面に形成された前記p型反射器を構成す
る化合物半導体のストイキオメトリーのずれた層が酸化
されたリーク層と、前記p型反射器上に被着されたアノ
ードとを備えたことを特徴とする面発光型レーザ素子。
1. A Bragg reflector composed of a semiconductor substrate, a semiconductor multilayer film deposited on the semiconductor substrate, an n-type reflector having n-type conductivity, and a Bragg reflector deposited on the n-type reflector. n
A clad layer, an active layer deposited on the n-clad layer, a p-clad layer deposited on the active layer,
A Bragg reflector composed of a compound semiconductor multilayer film deposited on a clad layer, a p-type reflector having p-type conductivity, and a compound forming the p-type reflector formed on a side surface of the p-type reflector. A surface emitting laser device comprising: a leak layer in which a stoichiometric layer of semiconductor is oxidized; and an anode deposited on the p-type reflector.
【請求項2】半導体基板と、前記半導体基板上に被着さ
れた半導体多層膜よりなるブラッグ反射器でn型導電性
を持つn型反射器と、前記n型反射器上に被着されたn
クラッド層と、前記nクラッド層上に被着された活性層
と、前記活性層上に被着されたpクラッド層と、前記p
クラッド層の一部領域上に被着された多層膜よりなりブ
ラッグ反射を起こす上部反射器と、前記pクラッド上で
前記上部反射器の被着されていない領域に被着されたア
ノードと、前記pクラッド層の直下で前記上部反射器の
被着されていない領域に形成された高抵抗層とを備えた
ことを特徴とする面発光型レーザ素子。
2. A Bragg reflector composed of a semiconductor substrate, a semiconductor multilayer film deposited on the semiconductor substrate, an n-type reflector having n-type conductivity, and a n-type reflector deposited on the n-type reflector. n
A clad layer, an active layer deposited on the n-clad layer, a p-clad layer deposited on the active layer,
An upper reflector formed of a multi-layered film deposited on a partial region of the clad layer to cause Bragg reflection; an anode deposited on an uncoated region of the upper reflector on the p-clad; A surface emitting laser device comprising: a high resistance layer formed immediately below the p-clad layer in a region where the upper reflector is not adhered.
JP31897591A 1991-12-03 1991-12-03 Surface emitting laser element Pending JPH05160501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31897591A JPH05160501A (en) 1991-12-03 1991-12-03 Surface emitting laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31897591A JPH05160501A (en) 1991-12-03 1991-12-03 Surface emitting laser element

Publications (1)

Publication Number Publication Date
JPH05160501A true JPH05160501A (en) 1993-06-25

Family

ID=18105089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31897591A Pending JPH05160501A (en) 1991-12-03 1991-12-03 Surface emitting laser element

Country Status (1)

Country Link
JP (1) JPH05160501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302919A (en) * 2005-04-15 2006-11-02 Sony Corp Vertical cavity surface emitting laser and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302919A (en) * 2005-04-15 2006-11-02 Sony Corp Vertical cavity surface emitting laser and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5416044A (en) Method for producing a surface-emitting laser
US20050220160A1 (en) Vertical cavity surface emitting semiconductor laser device
KR20020049385A (en) Semiconductor light-emitting device having improved electro-optical characteristics and the manufacturing method thereof
JPH10233557A (en) Semiconductor light emitting element
JP2007524253A (en) Strain compensation structure for reducing defects caused by oxides in semiconductor devices
JPH09107153A (en) Short-wave vcsel having active region with no aluminum
US6570191B2 (en) Surface-light-emitting device including AlGalnP and AlGaAs multi-film reflecting layers
JPH07162086A (en) Manufacture of semiconductor laser
JP2005142463A (en) Semiconductor light-emitting element and its manufacturing method
JP2000058981A (en) Gallium nitride based semiconductor light emitting element and fabrication thereof
US20010050935A1 (en) Surface emitting semiconductor laser device
JP2009038310A (en) Surface-emitting type semiconductor optical device
US6920167B2 (en) Semiconductor laser device and method for fabricating thereof
JP2863677B2 (en) Semiconductor laser and method of manufacturing the same
JP3459003B2 (en) Semiconductor device and manufacturing method thereof
WO2021177036A1 (en) Surface emitting laser
JPH08307003A (en) Semiconductor laser device
JP3938976B2 (en) Semiconductor laser device and manufacturing method thereof
US4783425A (en) Fabrication process of semiconductor lasers
US7037743B2 (en) Semiconductor device and method for producing the same
JPH05235473A (en) Surface light emitting device and fabrication thereof
JPH05160501A (en) Surface emitting laser element
JP3262310B2 (en) Vertical cavity semiconductor laser device and method of manufacturing the same
JP3546630B2 (en) Surface emitting semiconductor laser device and method of manufacturing the same
JPH11112086A (en) Embedded type surface emitting laser and manufacture thereof