JPH05159643A - Oxide superconductive wire rod and manufacture thereof - Google Patents

Oxide superconductive wire rod and manufacture thereof

Info

Publication number
JPH05159643A
JPH05159643A JP3323275A JP32327591A JPH05159643A JP H05159643 A JPH05159643 A JP H05159643A JP 3323275 A JP3323275 A JP 3323275A JP 32327591 A JP32327591 A JP 32327591A JP H05159643 A JPH05159643 A JP H05159643A
Authority
JP
Japan
Prior art keywords
silver
superconducting
wire
current density
critical current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3323275A
Other languages
Japanese (ja)
Inventor
Toshihiro Kotani
敏弘 小谷
Mutsumi Ito
睦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3323275A priority Critical patent/JPH05159643A/en
Publication of JPH05159643A publication Critical patent/JPH05159643A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide the oxide superconductive wire rod, of which critical current density is improved, and the manufacture thereof. CONSTITUTION:The powder of T1 group oxide superconductive wire material is covered with the sheath material, which is essentially made of silver and palladium at 2-10weight%, and thereafter rolling and hot press and heat processing are performed to form a wire material. The oxide superconductive wire material obtained by filling the T1 group oxide superconductive material in a cover, which is essentially made of silver and palladium at 2-10weight%, can restrict the intrusion of silver into the superconductive structure to improve the critical current density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Tl系酸化物超電導線
材の製造方法に関し、より詳細には、このような超電導
線材における臨界電流密度を高めるための改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Tl-based oxide superconducting wire, and more particularly to an improvement for increasing the critical current density in such a superconducting wire.

【0002】[0002]

【従来の技術】近年、より高い臨界温度を示す超電導材
料として、セラミック系のもの、すなわち酸化物超電導
材料が注目されている。その中で、Tl(タリウム)系
超電導材料は、120K程度の最高の臨界温度を示して
おり、その実用化が期待されている。
2. Description of the Related Art In recent years, as a superconducting material exhibiting a higher critical temperature, a ceramic material, that is, an oxide superconducting material has been attracting attention. Among them, the Tl (thallium) -based superconducting material has a maximum critical temperature of about 120 K, and its practical application is expected.

【0003】Tl系超電導材料は、Tl−Ca−Ba/
Sr−Cu−Oの成分、またはこの成分の一部をPb、
Biもしくは希土類元素で置換した成分、またはこの成
分の一部をPb、Tlもしくは希土類元素で置換した成
分で構成される。このような超電導材料には、異なる結
晶構造および臨界温度を有する複数の超電導相が存在す
ることが知られている。また、これらの超電導材料は、
結晶構造および超電導特性に大きな異方性を有すること
も知られている。すなわち、結晶は、c軸方向よりa、
b軸方向の成長速度が大きいため、通常、c面が板状面
となる板状を呈する。したがって、超電導電流はこのc
面内でより流れやすく、臨界電流密度が高い。
The Tl-based superconducting material is Tl-Ca-Ba /
Sr-Cu-O component, or part of this component is Pb,
It is composed of a component substituted with Bi or a rare earth element, or a component in which a part of this component is substituted with Pb, Tl or a rare earth element. It is known that such superconducting materials have a plurality of superconducting phases having different crystal structures and critical temperatures. In addition, these superconducting materials are
It is also known to have large anisotropy in crystal structure and superconducting properties. That is, the crystal has a, a
Since the growth rate in the b-axis direction is high, the c-plane usually has a plate shape with a plate-like surface. Therefore, the superconducting current is
Easier to flow in the plane and higher critical current density.

【0004】また、このような超電導材料を用いて長尺
の超電導線材を得る1つの方法として、原料粉末を銀製
の金属シースに被覆した後、加工し、これを熱処理する
ことにより原料粉末を超電導体化して超電導線材を製造
する方法が知られている。
Further, as one method of obtaining a long superconducting wire using such a superconducting material, the raw material powder is superconducted by coating the raw material powder on a silver metal sheath, processing it, and then subjecting it to heat treatment. A method is known in which a superconducting wire is manufactured by embodying it.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
たような方法により得られたTl酸化物超電導線材は、
臨界電流密度の点でさらに改善されるべき余地が残され
ている。超電導線材をケーブルやマグネットに応用しよ
うとするには、高い臨界温度に加えて高い臨界電流密度
を有していることが必要であるからである。
However, the Tl oxide superconducting wire obtained by the method as described above is
There is room for further improvement in terms of critical current density. This is because in order to apply the superconducting wire to cables and magnets, it is necessary to have a high critical current density in addition to a high critical temperature.

【0006】それゆえに、本発明の目的は、臨界電流密
度がより向上された酸化物超電導線材およびその製造方
法を提供することにある。
Therefore, it is an object of the present invention to provide an oxide superconducting wire having a further improved critical current density and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者らは、臨界電流
密度の向上を目的として、超電導相の結晶粒の配向性を
向上させる方法を見いだすべく実験を重ねた。特に、所
望の超電導相からなる原料粉末を用いて、臨界電流密度
のより高い結晶方向が線材の電流方向に沿うように配向
させつつ超電導相結晶粒を成長させる加工および熱処理
方法に関し研究を行なった。その結果、まず、未熱処理
の原料微粉末を含むテープ状線材を単に熱処理と冷間プ
レス処理を加えるだけでは超電導相の配向化は得られ
ず、一方向性の荷重印加状態で適当な温度に加熱して、
すなわち熱間プレスを行なって超電導相を粒成長させれ
ば、超電導相の板状結晶粒がテープ面に平行、すなわち
線材電流方向に配向することを見いだした。
The present inventors have conducted experiments to find a method for improving the orientation of crystal grains of a superconducting phase for the purpose of improving the critical current density. In particular, using a raw material powder consisting of a desired superconducting phase, research was conducted on a processing and heat treatment method for growing superconducting phase crystal grains while orienting the crystal direction with a higher critical current density along the current direction of the wire. .. As a result, first, the superconducting phase cannot be oriented simply by heat-treating and cold-pressing the tape-shaped wire containing unheated raw material fine powder. Heat it up
That is, it was found that when hot pressing is performed to grow grains of the superconducting phase, the plate-like crystal grains of the superconducting phase are oriented parallel to the tape surface, that is, in the wire current direction.

【0008】しかしながら、従来のごとく銀をシース材
料として用いる場合には、熱間プレスによりシース材料
の銀が線材中の超電導相結晶組織、特にその表層部10
μm程度の深さまで浸入し、超電導特性の劣化を招くこ
とが判明した。熱間プレスは800℃付近で行なわれる
ため、約960℃の融点を有する銀は、この工程でかな
り軟化し、荷重印加によって超電導材の粒間に侵入し
た。もちろん、予め超電導相部をプレスにより緻密化
し、粒間の空隙を除去していれば、銀の侵入はある程度
抑止できるが、そうすると熱間プレス処理の重要な目的
の1つである超電導相の配向が得られないという問題が
あった。
However, when silver is used as the sheath material as in the conventional case, the silver of the sheath material is hot-pressed so that the superconducting phase crystal structure in the wire, particularly the surface layer portion 10 thereof.
It was found that it penetrates to a depth of about μm and causes deterioration of superconducting properties. Since the hot pressing is performed at around 800 ° C., silver having a melting point of about 960 ° C. was considerably softened in this step and penetrated between the grains of the superconducting material by applying a load. Of course, if the superconducting phase part is previously densified by pressing and the voids between the grains are removed, the penetration of silver can be suppressed to some extent. There was a problem that could not be obtained.

【0009】本発明者らは、この問題について、条件お
よび方法を種々検討し、シース材料として銀(Ag)に
2〜10重量%のパラジウム(Pd)を添加した合金を
用いれば、熱間プレスにおいて銀の超電導組織中への侵
入を抑制でき、その結果、高い臨界電流密度を有する線
材を作製できることを見いだした。この発明は、このよ
うな知見に基づきなされたものである。
With respect to this problem, the present inventors have studied various conditions and methods, and if an alloy in which 2 to 10% by weight of palladium (Pd) is added to silver (Ag) is used as a sheath material, hot pressing is performed. In the above, it was found that the penetration of silver into the superconducting structure can be suppressed, and as a result, a wire having a high critical current density can be manufactured. The present invention has been made based on such knowledge.

【0010】すなわち、本発明に従う酸化物超電導線材
の製造方法は、Tl系酸化物超電導材料の粉末をシース
材で被覆した後、圧延加工、熱間プレス加工および熱処
理を行なって線材を形成する方法であって、シース材が
銀および2〜10重量%のパラジウムとから本質的にな
ることを特徴としている。
That is, a method for producing an oxide superconducting wire according to the present invention is a method of forming a wire by coating a powder of a Tl-based oxide superconducting material with a sheath material, and then performing rolling, hot pressing and heat treatment. The sheath material consists essentially of silver and 2 to 10% by weight of palladium.

【0011】また、本発明に従う酸化物超電導線材は、
銀および2〜10重量%のパラジウムとから本質的にな
る被覆部と、被覆部内に充填されるTl系酸化物超電導
材料とを備える。
The oxide superconducting wire according to the present invention is
A coating portion consisting essentially of silver and 2 to 10% by weight of palladium and a Tl-based oxide superconducting material filled in the coating portion are provided.

【0012】[0012]

【作用】本発明において、圧延加工を加えた直後は、原
材料の微結晶粒は互いにランダムな方向を向き、しかも
空隙がこれらの超電導相結晶粒間にまだ存在している。
ここで、適当な条件で熱間プレス処理をほどこすと超電
導相の緻密化および配向化が起こる。
In the present invention, immediately after the rolling process, the fine crystal grains of the raw material are oriented in random directions with respect to each other, and voids still exist between these superconducting phase crystal grains.
Here, when the hot press treatment is performed under appropriate conditions, the superconducting phase is densified and oriented.

【0013】しかしながら、このとき、熱間プレスによ
り軟化した銀が超電導結晶組織中に侵入し、臨界電流密
度の低下を引き起こす。そこで、シース材として銀に2
〜10重量%のパラジウム(Pd)を添加した合金を用
いれば、融点が上昇するとともに硬度も若干増加するた
め、熱間プレス時にシース材料が超電導相部に侵入する
という事態を防止することができる。
However, at this time, the silver softened by the hot pressing penetrates into the superconducting crystal structure, causing a decrease in the critical current density. Therefore, 2 as a sheath material
If an alloy containing 10 wt% palladium (Pd) is used, the melting point rises and the hardness also slightly increases, so that it is possible to prevent the sheath material from entering the superconducting phase portion during hot pressing. ..

【0014】シース材料に必要な特性としては、融点が
熱処理温度より十分高いこと、および電気的に良導体で
あることはいうまでもなく、これ以外に超電導相と反応
しないこと、機械的加工がしやすいこと、ならびに安価
であることなどが挙げられる。銀に2〜10重量%のパ
ラジウム(Pd)を添加した合金は上記の条件を十分満
たしている。
Needless to say, the properties required for the sheath material are that the melting point is sufficiently higher than the heat treatment temperature, that it is an electrically good conductor, that it does not react with the superconducting phase, and that it is mechanically processed. It is easy and inexpensive. An alloy obtained by adding 2 to 10% by weight of palladium (Pd) to silver sufficiently satisfies the above conditions.

【0015】また、パラジウムの添加量は、合金に対し
て2重量%より小さくなると融点上昇および硬度増加の
点で十分な効果が得られず、一方、合金に対して10重
量%より大きくなると硬度が高くなりすぎるため、圧延
加工などの機械加工が難しくなる。
If the amount of palladium added is less than 2% by weight with respect to the alloy, sufficient effects cannot be obtained in terms of raising the melting point and hardness, while if it is more than 10% by weight with respect to the alloy, the hardness is insufficient. Becomes too high, which makes machining such as rolling difficult.

【0016】なお、金またはその合金もある程度上記条
件を満たすが、反応性および価格の点で当該材料に比べ
て劣る。
Although gold or its alloy satisfies the above condition to some extent, it is inferior to the material in terms of reactivity and cost.

【0017】[0017]

【発明の効果】このように、本発明によれば、緻密で配
向化した超電導相を得るための熱間プレスにおいて、問
題となるシース材料の超電導組織中への侵入を抑止し、
臨界電流密度の高い酸化物超電導線材を得ることができ
る。したがって、この発明にかかる酸化物超電導線材
は、ケーブルおよびマグネットなどへの実用化の可能性
が高められる。
As described above, according to the present invention, in a hot press for obtaining a dense and oriented superconducting phase, it is possible to prevent the problematic sheath material from entering the superconducting tissue,
An oxide superconducting wire having a high critical current density can be obtained. Therefore, the oxide superconducting wire according to the present invention has a high possibility of being put to practical use as a cable, a magnet and the like.

【0018】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる具体例にすぎ
ず、本発明の技術的範囲を何ら制限するものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the following disclosure is merely a specific example of the present invention and does not limit the technical scope of the present invention.

【0019】[0019]

【実施例】【Example】

実施例1 本発明の方法に従って、以下に示すとおりTl系超電導
線材を作製した。
Example 1 According to the method of the present invention, a Tl-based superconducting wire was manufactured as shown below.

【0020】まず、Tl2 3 、BaO2 、CaO、お
よびCuOの各粉末を、Tl:Ba:Ca:Cu=1.
8:2:2:3の配合比となるよう秤量し、混合、ペレ
ット成形した後、ペレットを880℃で12時間焼成し
て超電導材料のための原料を得た。次に、この原料を粉
砕して原料粉末とし、銀−10重量%パラジウム合金シ
ース内に充填した後、0.35mm厚のテープ状に圧延
加工した。テープ線材をさらに810℃、荷重240k
gで熱間プレスした後、0.15mm厚まで圧延加工
し、引き続いて780℃、12時間の熱処理を加えた。
First, each powder of Tl 2 O 3 , BaO 2 , CaO, and CuO was added to Tl: Ba: Ca: Cu = 1.
After weighing, mixing and pelletizing so that the compounding ratio was 8: 2: 2: 3, the pellet was fired at 880 ° C. for 12 hours to obtain a raw material for the superconducting material. Next, this raw material was pulverized into a raw material powder, filled in a silver-10 wt% palladium alloy sheath, and then rolled into a tape shape having a thickness of 0.35 mm. Tape wire rod at 810 ℃, load 240k
After hot pressing at g, it was rolled to a thickness of 0.15 mm, and subsequently heat-treated at 780 ° C. for 12 hours.

【0021】このようにして得られた酸化物超電導線材
の臨界電流密度は、10700A/cm2 であった。一
方、銀シースを用いて同条件で作製した従来法による線
材の臨界電流密度は、7100A/cm2 であった。
The critical current density of the oxide superconducting wire thus obtained was 10700 A / cm 2 . On the other hand, the critical current density of the wire produced by the conventional method using the silver sheath under the same conditions was 7100 A / cm 2 .

【0022】実施例2 Tl2 3 、BaCO3 、CaCO3 、およびCuOの
各粉末を原料とし、これらをTl:Ba:Ca:Cu=
1.3:2:3:4となるよう配合した後、これにさら
に5重量%のPbOを添加して混合、成形した。次に、
成形体を875℃で16時間熱処理し、超電導材料のた
めの原料を得た。この原料を粉砕して原料粉末とし、銀
−2重量%パラジウム合金シース内に充填した後、0.
3mm厚のテープ状に圧延加工した。テープ線材をさら
に820℃、荷重180kgで熱間プレスした後、0.
12mm厚まで圧延加工し、引き続いて770℃、12
時間の熱処理を加えた。
Example 2 Tl 2 O 3 , BaCO 3 , CaCO 3 , and CuO powders were used as raw materials, and these were used as Tl: Ba: Ca: Cu =
After blending so as to be 1.3: 2: 3: 4, 5% by weight of PbO was further added thereto and mixed and molded. next,
The molded body was heat-treated at 875 ° C. for 16 hours to obtain a raw material for the superconducting material. This raw material was pulverized into a raw material powder, which was filled in a silver-2 wt% palladium alloy sheath and then
It was rolled into a tape having a thickness of 3 mm. The tape wire was further hot-pressed at 820 ° C. and a load of 180 kg, and then 0.
Rolled to a thickness of 12 mm, then 770 ℃, 12
A heat treatment of time was applied.

【0023】このようにして得られた酸化物超電導線材
の臨界電流密度は12400A/cm2 であった。一
方、銀シースを用いて同条件で作製した従来法による線
材の臨界電流密度は8700A/cm2 であった。
The critical current density of the oxide superconducting wire thus obtained was 12400 A / cm 2 . On the other hand, the critical current density of the wire produced by the conventional method using the silver sheath under the same conditions was 8700 A / cm 2 .

【0024】実施例3 Tl2 3 、SrCO3 、CaCO3 、およびCuOの
各粉末を原料とし、これらをTl:Sr:Ca:Cu=
1.6:1.9:2:3となるよう配合し、これにさら
に6重量%のPbO、または6重量%のBi2 3 、ま
たは3重量%のBi2 3 と4重量%のPbOを添加し
て混合し、成形した後、870℃で10時間加熱処理を
実施して超電導材料のための原料を得た。次に、この原
料を粉砕して原料粉末とし、銀−5重量%パラジウム合
金シース内に充填した後、0.3mm厚のテープ状に圧
延加工した。テープ線材をさらに800℃、荷重160
kgで熱間プレスした後、0.1mm厚まで圧延加工
し、引き続いて780℃、12時間の熱処理を加えた。
Example 3 Tl 2 O 3 , SrCO 3 , CaCO 3 , and CuO powders were used as raw materials, and these were used as Tl: Sr: Ca: Cu =
1.6: 1.9: 2: 3, to which 6 wt% PbO, or 6 wt% Bi 2 O 3 , or 3 wt% Bi 2 O 3 and 4 wt% After PbO was added, mixed and molded, heat treatment was carried out at 870 ° C. for 10 hours to obtain a raw material for the superconducting material. Next, this raw material was pulverized into a raw material powder, filled in a silver-5 wt% palladium alloy sheath, and then rolled into a tape shape having a thickness of 0.3 mm. The tape wire is further heated at 800 ℃, load 160
After hot pressing with kg, it was rolled to a thickness of 0.1 mm, and subsequently heat-treated at 780 ° C. for 12 hours.

【0025】このようにして得られた酸化物超電導線材
の臨界電流密度は、PbO添加の場合11900A/c
2 、Bi2 3 添加の場合11200A/cm2 、B
2 3 およびPbO添加の場合11500A/cm2
であった。一方、銀シースを用いて同条件で作製した従
来法による線材の臨界電流密度は、8000〜8200
A/cm2 であった。
The critical current density of the oxide superconducting wire thus obtained is 11900 A / c when PbO is added.
m 2 , when Bi 2 O 3 was added 11200 A / cm 2 , B
11500 A / cm 2 when i 2 O 3 and PbO are added
Met. On the other hand, the critical current density of the wire produced by the conventional method using the silver sheath under the same conditions is 8000 to 8200.
It was A / cm 2 .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Tl系酸化物超電導材料の粉末をシース
材で被覆した後、圧延加工、熱間プレス加工および熱処
理を行なって線材を形成する酸化物超電導線材の製造方
法であって、 前記シース材が、銀および2〜10重量%のパラジウム
とから本質的になることを特徴とする、酸化物超電導線
材の製造方法。
1. A method for producing an oxide superconducting wire, comprising coating a powder of a Tl-based oxide superconducting material with a sheath material, and then performing rolling, hot pressing and heat treatment to form a wire. A method for producing an oxide superconducting wire, characterized in that the material consists essentially of silver and 2 to 10% by weight of palladium.
【請求項2】 銀および2〜10重量%のパラジウムと
から本質的になる被覆部と、 前記被覆部内に充填されるTl系酸化物超電導材料とを
備える、酸化物超電導線材。
2. An oxide superconducting wire comprising: a coating portion consisting essentially of silver and 2 to 10% by weight of palladium; and a Tl-based oxide superconducting material filled in the coating portion.
JP3323275A 1991-12-06 1991-12-06 Oxide superconductive wire rod and manufacture thereof Withdrawn JPH05159643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3323275A JPH05159643A (en) 1991-12-06 1991-12-06 Oxide superconductive wire rod and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3323275A JPH05159643A (en) 1991-12-06 1991-12-06 Oxide superconductive wire rod and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05159643A true JPH05159643A (en) 1993-06-25

Family

ID=18152975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3323275A Withdrawn JPH05159643A (en) 1991-12-06 1991-12-06 Oxide superconductive wire rod and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05159643A (en)

Similar Documents

Publication Publication Date Title
JPH04212215A (en) Manufacture of bismuthal oxide superconductor
JP2567505B2 (en) Method for producing bismuth oxide superconductor
JP3149441B2 (en) Method for producing bismuth-based oxide superconducting wire
EP0504909B1 (en) Method of preparing oxide superconducting wire
EP0504908A1 (en) Method of preparing oxide superconducting wire
JPH05159643A (en) Oxide superconductive wire rod and manufacture thereof
JPH10511926A (en) Low temperature preparation of melt textured YBCO superconductors (T below 950 ° C)
JPH0536317A (en) Manufacture of bismuth-based oxide superconductive wire material
JP3721392B2 (en) Manufacturing method of high-temperature superconducting wire
JPH05135634A (en) Manufacture of oxide superconductive wire
JP2855869B2 (en) Method for producing bismuth-based oxide superconducting wire
JPH05135635A (en) Manufacture of oxide superconductive wire
JP3089641B2 (en) Bismuth-based oxide superconductor and method for producing the same
JPH05159642A (en) Manufacture of oxide supreconductive wire
JPH06275146A (en) Composite superconducting wire
JP2569413B2 (en) Method for producing Bi-based oxide superconducting wire
JP3044732B2 (en) Method for producing bismuth-based oxide superconductor
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JP3314102B2 (en) Manufacturing method of oxide superconductor
JP3109076B2 (en) Manufacturing method of oxide superconducting wire
JP3008440B2 (en) Method for producing bismuth-based oxide superconductor
JP3538620B2 (en) Method for producing thallium-based superconducting silver-based sheath wire having high crystal orientation and thallium-based superconducting silver-based sheath wire obtained by the method
JP3149429B2 (en) Superconductor manufacturing method
JPH05159644A (en) Oxide superconductive wire and manufacture thereof
JPH02192401A (en) Production of oxide superconductor and oxide superconducting wire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311