JPH0515921B2 - - Google Patents

Info

Publication number
JPH0515921B2
JPH0515921B2 JP3766185A JP3766185A JPH0515921B2 JP H0515921 B2 JPH0515921 B2 JP H0515921B2 JP 3766185 A JP3766185 A JP 3766185A JP 3766185 A JP3766185 A JP 3766185A JP H0515921 B2 JPH0515921 B2 JP H0515921B2
Authority
JP
Japan
Prior art keywords
pressure
exhaust gas
steam
economizer
gas boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3766185A
Other languages
Japanese (ja)
Other versions
JPS61197901A (en
Inventor
Masamichi Kashiwazaki
Satoki Motai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3766185A priority Critical patent/JPS61197901A/en
Publication of JPS61197901A publication Critical patent/JPS61197901A/en
Publication of JPH0515921B2 publication Critical patent/JPH0515921B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、排ガスボイラ発電装置に関し、特
に、ガスタービン排ガスボイラの強制冷却システ
ムに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an exhaust gas boiler power generation device, and more particularly to a forced cooling system for a gas turbine exhaust gas boiler.

従来の技術 従来のボイラにおいては、強圧送風機を装備し
ているため、ボイラ停止後はその送風機によつて
ボイラの冷却を行なえたが、ガスタービン排ガス
ボイラにはそのような冷却手段を持たないので、
排ガスボイラを急速冷却するための効果的な冷却
方法が必要であつた。
Conventional technology Conventional boilers are equipped with a high-pressure blower and can be used to cool the boiler after the boiler has stopped, but gas turbine exhaust gas boilers do not have such cooling means. ,
There was a need for an effective cooling method to rapidly cool exhaust gas boilers.

発明が解決しようとする問題点 本発明は、上記事情にかんがみてなされたもの
で、排ガスボイラを急速に冷却する手段を備えた
排ガスボイラ発電装置を目的とする。
Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide an exhaust gas boiler power generation device equipped with means for rapidly cooling an exhaust gas boiler.

問題点を解決するための手段 本発明によれば、排ガスボイラ出口の主蒸気管
の途中で復水器へ連通させる系のタービンバイパ
ス弁と節炭器再循環系の節炭器再循環弁とを、排
ガスボイラ停止後に、規定の蒸気圧力降下となる
よう制御すると共に規定の節炭器出口水温度降下
となるよう制御することで、ガスタービン排ガス
ボイラの強制冷却が達成される。
Means for Solving the Problems According to the present invention, a turbine bypass valve in a system communicating with a condenser and an economizer recirculation valve in an economizer recirculation system are provided in the middle of the main steam pipe at the exhaust gas boiler outlet. After the exhaust gas boiler is stopped, forced cooling of the gas turbine exhaust gas boiler is achieved by controlling it so that the steam pressure drops to a specified value and the water temperature at the exit of the economizer to a specified value.

作 用 蒸気タービン起動時には、蒸気タービンの最低
保持圧力になるようタービンバイパス弁を制御
し、通常運転時にはこのガスタービンバイパス弁
は全閉に制御されている。排ガスボイラの強制冷
却時には、ボイラ停止後すなわちガスタービン停
止後、排ガスボイラの主蒸気管の蒸気圧力を検出
してタービンバイパス弁を規定の圧力降下になる
よう制御する。これによつて、その圧力にみあう
温度まで主蒸気管の冷却が行なわれる。
Operation When starting the steam turbine, the turbine bypass valve is controlled to maintain the minimum pressure of the steam turbine, and during normal operation, the gas turbine bypass valve is controlled to be fully closed. During forced cooling of the exhaust gas boiler, after the boiler is stopped, that is, after the gas turbine is stopped, the steam pressure in the main steam pipe of the exhaust gas boiler is detected and the turbine bypass valve is controlled to achieve a specified pressure drop. This cools the main steam pipe to a temperature that matches the pressure.

加えて、節炭器再循環系統の節炭器出口水温度
を検出して冷却速度にみあつた開度信号を節炭器
再循環弁に与えることで、節炭器再循環系統の冷
却が行なわれる。
In addition, by detecting the temperature of the water at the outlet of the economizer in the economizer recirculation system and giving an opening signal that matches the cooling rate to the economizer recirculation valve, the cooling of the economizer recirculation system can be improved. It is done.

実施例 以下添付図面に例示した本発明の好適な実施例
について詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described in detail as illustrated in the accompanying drawings.

第1図は本発明による装置の構成を示したもの
で、図中、符号1は排ガスボイラ本体、2は過熱
器、3は高圧蒸発器、4は低圧蒸発器、5は節炭
器、6は高圧蒸気管、7は低圧蒸気管、8は節炭
器再循環系統、9は高圧止弁、10は低圧止弁、
11は高圧タービン、12は低圧タービン、13
は復水器、14は復水ポンプ、15は高圧タービ
ンバイパス弁、16は低圧タービンバイパス弁、
17は主蒸気圧力制御装置、18は節炭器再循環
弁をそれぞれ示している。
FIG. 1 shows the configuration of an apparatus according to the present invention, in which reference numeral 1 is the exhaust gas boiler main body, 2 is a superheater, 3 is a high-pressure evaporator, 4 is a low-pressure evaporator, 5 is an economizer, and 6 is a high-pressure evaporator. is a high pressure steam pipe, 7 is a low pressure steam pipe, 8 is an economizer recirculation system, 9 is a high pressure stop valve, 10 is a low pressure stop valve,
11 is a high pressure turbine, 12 is a low pressure turbine, 13
is a condenser, 14 is a condensate pump, 15 is a high pressure turbine bypass valve, 16 is a low pressure turbine bypass valve,
Reference numeral 17 indicates a main steam pressure control device, and reference numeral 18 indicates an economizer recirculation valve.

排ガスボイラ停止時は、高圧止弁9および低圧
止弁10が全閉となり、排ガスボイラ強制冷却を
指示する信号が主蒸気圧力制御装置17に与えら
れる。主蒸気圧力制御装置17は高圧蒸気管6お
よび低圧蒸気管7より現在の蒸気系圧力POを検
出し、設定された冷却完了時の最低圧力PMから
蒸気圧力降下率α(Kg・cm2/分)=PO−PM)/T
(Tは時間)を自動設定し、この蒸気圧力降下率
αになるよう高圧タービンバイパス弁15および
低圧タービンバイパス弁16の開度を制御し、主
蒸気管すなわち高圧蒸気管6および低圧蒸気管7
の蒸気圧力を降下させる。この結果、排ガスボイ
ラ本体1内の過熱器2、高圧蒸発器3および低圧
蒸発器4はその圧力にみあつた飽和温度となるた
め、設定最低圧力値に対応した強制冷却が可能と
なる。この主蒸気系統の圧力制御動作を詳細に示
せば、第2図のようになる。
When the exhaust gas boiler is stopped, the high pressure stop valve 9 and the low pressure stop valve 10 are fully closed, and a signal instructing forced cooling of the exhaust gas boiler is given to the main steam pressure control device 17. The main steam pressure control device 17 detects the current steam system pressure P O from the high pressure steam pipe 6 and the low pressure steam pipe 7, and calculates the steam pressure drop rate α (Kg・cm 2 ) from the set minimum pressure P M at the completion of cooling. /min)=P O −P M )/T
(T is time) is automatically set, and the opening degrees of the high pressure turbine bypass valve 15 and the low pressure turbine bypass valve 16 are controlled to achieve this steam pressure drop rate α, and the main steam pipe, that is, the high pressure steam pipe 6 and the low pressure steam pipe 7
decreases the steam pressure of As a result, the superheater 2, high-pressure evaporator 3, and low-pressure evaporator 4 in the exhaust gas boiler main body 1 reach a saturation temperature that matches the pressure, so that forced cooling corresponding to the set minimum pressure value becomes possible. The pressure control operation of this main steam system is shown in detail in FIG. 2.

第2図において、復水器真空が正常であり、最
低圧力PMが設定されていて現在の蒸気系圧力PO
を検出することで蒸気圧力降下率αが設定されて
いるところに、排ガスボイラ停止信号および強制
冷却“自動操作”信号が入力されれば、まず、タ
ービンバイパス弁をその最小開度に保持して、蒸
気系圧力を少し変化させる。次いで、蒸気系圧力
降下率を監視しながらタービンバイパス弁を作動
させて、これによる圧力変化率が規定値以内にあ
るかどうかを判定する。圧力変化率が規定値以内
になければタービンバイパス弁の開度変更を行な
い、規定値以内にあれば現在の圧力が最低圧力か
どうかを判定する。最低圧力になければ、再度タ
ービンバイパス弁を作動させて圧力変化率および
最低圧力の判定を繰り返していき、最低圧力に達
すれば、蒸気系統の強制冷却が完了したことにな
り、タービンバイパス弁は閉にされる。
In Figure 2, the condenser vacuum is normal, the minimum pressure P M is set, and the current steam system pressure P O
If the exhaust gas boiler stop signal and forced cooling "automatic operation" signal are input while the steam pressure drop rate α is set by detecting the , slightly change the steam system pressure. Next, the turbine bypass valve is operated while monitoring the steam system pressure drop rate, and it is determined whether the resulting pressure change rate is within a specified value. If the pressure change rate is not within the specified value, the opening degree of the turbine bypass valve is changed, and if it is within the specified value, it is determined whether the current pressure is the minimum pressure. If the minimum pressure is not reached, the turbine bypass valve is operated again and the pressure change rate and minimum pressure are repeatedly determined. When the minimum pressure is reached, forced cooling of the steam system is completed, and the turbine bypass valve is closed. be made into

節炭器系統においては、排ガスボイラ強制冷却
を指示する信号を受けると主蒸気圧力制御装置1
7が節炭器再循環系統8より現在の節炭器出口水
温度tOを検出し、設定された冷却完了時の温度tM
から温度降下率β(℃/分)=(tO−tM)/Tを自
動設定し、この温度降下率βになるよう節炭器再
循環弁18の開度を制御する。この制御の詳細を
第3図に示す。
In the energy saving system, when a signal instructing forced cooling of the exhaust gas boiler is received, the main steam pressure control device 1
7 detects the current economizer outlet water temperature t O from the economizer recirculation system 8 and sets the temperature t M at the set completion of cooling.
The temperature drop rate β (° C./min) = (t O −t M )/T is automatically set from , and the opening degree of the economizer recirculation valve 18 is controlled so as to achieve this temperature drop rate β. Details of this control are shown in FIG.

第3図において、復水器真空が正常であり、冷
却温度tOが設定されていて現在の節炭器出口水温
度tMが検出されることで温度降下率βが自動設定
されているところに、排ガスボイラ停止信号およ
び強制冷却“自動操作”信号が入力されれば、ま
ず節炭器再循環弁をその最小開度に保持して、節
炭器出口水温度の変化および変化率を監視する。
次いで節炭器再循環弁を作動させて、これによる
温度変化率が規定値以内にあるかどうかを判定
し、規定値以内になければ節炭器再循環弁の開度
変更を行ない、規定値以内にあれば現在の温度が
冷却温度に達したかどうかを判定し、その冷却温
度に達するまで、節炭器再循環弁を作動させる操
作を繰り返す。冷却温度に達すれば、節炭器再循
環弁は閉にされて、この節炭器系の冷却が終了す
る。このように、主蒸気圧力制御装置17は冷却
速度にみあつた開度信号を節炭器再循環弁18に
与えて、節炭器5内の復水器13、復水ポンプ1
4および節炭器再循環系8の間のクローズドサイ
クルとして冷却することができる。
In Figure 3, the condenser vacuum is normal, the cooling temperature tO is set, and the temperature drop rate β is automatically set by detecting the current economizer outlet water temperature tM . When the exhaust gas boiler stop signal and forced cooling “automatic operation” signal are input, the economizer recirculation valve is first held at its minimum opening and the change and rate of change of the economizer outlet water temperature is monitored. do.
Next, the economizer recirculation valve is operated, and it is determined whether the temperature change rate due to this is within the specified value. If it is not within the specified value, the opening degree of the economizer recirculation valve is changed, and the temperature change rate is determined to be within the specified value. If the current temperature is within the range, it is determined whether the current temperature has reached the cooling temperature, and the operation of activating the economizer recirculation valve is repeated until the current temperature reaches the cooling temperature. Once the cooling temperature is reached, the economizer recirculation valve is closed, terminating the cooling of the economizer system. In this way, the main steam pressure control device 17 gives an opening signal that matches the cooling rate to the economizer recirculation valve 18 to control the condenser 13 in the economizer 5 and the condensate pump 1.
4 and the economizer recirculation system 8 as a closed cycle.

発明の効果 本発明によれば、タービンバイパス弁および節
炭器再循環弁を蒸気タービン運転停止後に開いて
主蒸気管の圧力を低下させると共に節炭器に給水
を循環させることで、ガスタービン排ガスボイラ
を強制的に冷却することができるようになつた。
Effects of the Invention According to the present invention, the turbine bypass valve and the economizer recirculation valve are opened after the steam turbine operation is stopped to reduce the pressure in the main steam pipe and circulate the feed water to the economizer, thereby reducing gas turbine exhaust gas. It is now possible to forcefully cool the boiler.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるガスタービン排ガスボイ
ラ発電装置の構成を示す図、第2図は主蒸気圧力
制御のフローチヤート、第3図は節炭器系統の制
御のフローチヤートである。 1……排ガスボイラ本体、2……過熱器、3…
…高圧蒸発器、4……低圧蒸発器、5……節炭
器、6……高圧蒸気管、7……低圧蒸気管、8…
…節炭器再循環系統、9……高圧止弁、10……
低圧止弁、11……高圧タービン、12……低圧
タービン、13……復水器、14……復水ポン
プ、15……高圧タービンバイパス弁、16……
低圧タービンバイパス弁、17……主蒸気圧力制
御装置、18……節炭器再循環弁。
FIG. 1 is a diagram showing the configuration of a gas turbine exhaust gas boiler power generation system according to the present invention, FIG. 2 is a flowchart of main steam pressure control, and FIG. 3 is a flowchart of control of the economizer system. 1...Exhaust gas boiler main body, 2...Superheater, 3...
...High pressure evaporator, 4...Low pressure evaporator, 5...Economy device, 6...High pressure steam pipe, 7...Low pressure steam pipe, 8...
... Economizer recirculation system, 9 ... High pressure stop valve, 10 ...
Low pressure stop valve, 11... High pressure turbine, 12... Low pressure turbine, 13... Condenser, 14... Condensate pump, 15... High pressure turbine bypass valve, 16...
Low pressure turbine bypass valve, 17... Main steam pressure control device, 18... Economizer recirculation valve.

Claims (1)

【特許請求の範囲】[Claims] 1 排ガスボイラの過熱器で過熱された蒸気を蒸
気タービンに導く主蒸気管の途中から分岐して復
水器と連通したタービンバイパス管の途中に設け
られたタービンバイパス弁と、前記排ガスボイラ
の節炭器の出口と復水器とを連結する節炭器再循
環管の途中に設けられた節炭器再循環弁とを、蒸
気タービン運転停止後、開いて前記主蒸気管の圧
力を低下させると共に給水を節炭器に循環させる
ことを特徴とする、排ガスボイラ発電装置。
1. A turbine bypass valve installed in the middle of a turbine bypass pipe branched from the middle of the main steam pipe that leads steam superheated in the superheater of the exhaust gas boiler to the steam turbine and communicating with the condenser, and a node of the exhaust gas boiler. After the steam turbine operation is stopped, a economizer recirculation valve provided in the middle of the economizer recirculation pipe connecting the outlet of the coalizer and the condenser is opened to reduce the pressure in the main steam pipe. An exhaust gas boiler power generation device characterized by circulating supply water to an energy saver.
JP3766185A 1985-02-28 1985-02-28 Generating set for exhaust gas boiler Granted JPS61197901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3766185A JPS61197901A (en) 1985-02-28 1985-02-28 Generating set for exhaust gas boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3766185A JPS61197901A (en) 1985-02-28 1985-02-28 Generating set for exhaust gas boiler

Publications (2)

Publication Number Publication Date
JPS61197901A JPS61197901A (en) 1986-09-02
JPH0515921B2 true JPH0515921B2 (en) 1993-03-03

Family

ID=12503819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3766185A Granted JPS61197901A (en) 1985-02-28 1985-02-28 Generating set for exhaust gas boiler

Country Status (1)

Country Link
JP (1) JPS61197901A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905941B2 (en) * 2006-09-22 2012-03-28 バブコック日立株式会社 Waste heat recovery boiler and its steam pressure control method
JP6103347B2 (en) * 2012-12-05 2017-03-29 中国電力株式会社 Boiler forced cooling method after fire extinguishing of boiler in power generation equipment
JP2020125700A (en) * 2019-02-01 2020-08-20 株式会社東芝 Power generation facility, power generation facility control device, and power generation facility control method

Also Published As

Publication number Publication date
JPS61197901A (en) 1986-09-02

Similar Documents

Publication Publication Date Title
JPH0515921B2 (en)
JP2000213374A (en) Gas turbine fuel heating system
JP2578328B2 (en) Output control method for back pressure turbine generator
JPH06330706A (en) Back pressure steam turbine system
JPS63208602A (en) Denitration controlling device for combined cycle plant
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JP2000345811A (en) Exhaust heat recovery boiler plant and operating method thereof
JPH07217802A (en) Waste heat recovery boiler
JP2645129B2 (en) Condensate recirculation flow control device
JPS63148006A (en) Boiler water quality regulator
JPS5870007A (en) Apparatus for controlling combined cycle power plant
JPH01212802A (en) Steam temperature control device for boiler
JPS6239661B2 (en)
JP2708406B2 (en) Startup control method for thermal power plant
JP2670059B2 (en) Drum level controller for waste heat recovery boiler
JPS61155605A (en) Supply water flow rate control device of heat recovery boiler
JPH01230905A (en) Hot starting method of boiler
JPS6326801B2 (en)
JP2625487B2 (en) Hot start method of boiler
JPH07122485B2 (en) Steamer steam prevention device for once-through thermal power generation boiler system
JPS6176803A (en) Waste-heat recovery boiler
JPS5557608A (en) Control method of combined power plant and its device
JPH04116204A (en) Overshoot preventive circuit for controlling turbine bypass desuperheating
JPH0235201B2 (en)
JPH02130202A (en) Combined plant