【発明の詳細な説明】[Detailed description of the invention]
[産業上の利用分野]
本発明は炭素繊維の製造法、特にサイジング剤
を付与していない炭素繊維を品位良く、かつ生産
性良く製造する方法に関する。
[従来の技術]
従来、炭素繊維の製造法としては炭素繊維用前
駆体繊維(以下、単にプリカーサーという)を耐
炎化、炭素化し、必要に応じて表面処理を行つた
後、ハンドリング性を良くするためにサイジング
剤を乾燥させてからボビンに巻上げるのが通例で
あつた。即ち、炭素繊維の製品としてはサイジン
グ剤を付与した物が一般的であつた。
ところが、最近になつて複合材料用マトリツク
スの多様化が進み、従来の熱硬化性樹脂から金
属、セラミツクス、熱可塑性樹脂などをマトリツ
クスとする複合材料の展開が急速に拡大してい
る。このようなマトリツクス用には、サイジング
剤が付着していると、それが原因でマトリツクス
との濡れ性が悪くなつたり、あるいは炭素繊維の
濡れ性を良くするための還元処理、コーテイング
処理などの含浸前処理を行う際に不純物となつて
処理効果が低減するという問題がある。
そこでこれらのマトリツクス用途にはサイジン
グ剤の付着していない炭素繊維が求められてい
る。そのために従来はサイジング処理した炭素繊
維を、サイジング剤を焼き飛ばすなどの方法によ
り除去したのち用いられてきた。
しかし、このサイジング剤を焼き飛ばすことに
より、毛羽立ちや物性低下が著しく、また焼き飛
ばす工程を入れることにより生産性、経済性が低
下するといつた問題から、結局、サイジング処理
を施さない炭素繊維が好ましく、そのために従来
はただ単に炭化後のサイジング剤処理を省略し、
しかも乾燥状態で巻き取る方法が採られてきた。
しかし、サイジング剤処理を施さない炭素繊維
は当然のことながら集束性が極めて悪く、また毛
羽が発生し易いという問題があり、加えてそのよ
うな炭素繊維の巻上げパツケージでは所謂、パツ
ケージの肩崩れが起こりやすく、このためボビン
当りの巻上げ重量を大きくできないという問題点
があつた。
[発明が解決しようとする課題]
本発明の課題は上記従来技術の問題点を解消
し、炭素繊維にサイジング剤処理を施すことな
く、高品位の炭素繊維を生産性良く製造する方法
を提供することにある。
[課題を解決するための手段]
本発明の上記課題は、炭素繊維用前駆体繊維を
炭素化し、得られた炭素繊維に対して20℃におけ
る電導度が300μS/cm以下の水を0.1重量%以上30
重量%以下付着保持せしめた状態で巻き取り、不
透湿包装することによつて解決できる。
すなわち、本発明におけるプリカーサーとして
は、特に限定されるものではなく、アクリル系繊
維、ピツチ系繊維、レーヨン系繊維などを用いる
ことができるが、好ましくはアクリル系繊維がよ
い。これらプリカーサーを従来公知の技術により
耐炎化あるいは不融化した後、1000〜2000℃で炭
化した炭素繊維、あるいは2000℃以上で黒鉛化し
た黒鉛化繊維に本発明方法を適用することがで
き、従つて、本発明における炭素繊維とは上記し
た炭素繊維および黒鉛化繊維を包含する。
また、この際のプリカーサーの加撚数は特に限
定されるものではなく無撚でも加撚でもよいが、
物性低下を防ぐ意味から無撚か40T/m以下の加
撚が好ましい。
本発明における水としては、電導度が300μS/
cm以下の軟水・水道水・イオン交換水・蒸溜水な
どを用いるものであるが、好ましくは10μS/cm
以下、さらに好ましくは2μS/cm以下の蒸溜水あ
るいはイオン交換水である。なお、これらの用水
には必要に応じて濡れ性を良くするために“ノイ
ゲン”[第一工業製薬(株)製]などの界面活性剤な
どを加えてもよい。
この際、用水の電導度が300μS/cmを超える
と、金属イオンなど不純物が多量に含まれること
になり、高次加工工程において不純物による接着
不良、樹脂の硬化不良などの問題が生じるように
なる。なお、この電導度は20℃おいて測定した値
である。
また、炭素繊維に対する水の付着量は0.1重量
%以上30重量%以下、好ましくは0.3〜25重量%、
さらに好ましくは0.5〜20重量%とするものであ
る。この水分量は巻上げ段階での炭素繊維中の水
分量を意味し、この水分量が0.1重量%未満では
集束効果が小さく、巻上げ時の毛羽、単糸切れ、
パツケージの肩崩れ問題などが多発するようにな
る。一方、30重量%を越えると水を付着させた効
果が飽和し、また、余分な水がパツケージから浸
み出てきて不透湿性を有するフイルムで包装した
際に、包装パツケージ内に水がたまる、巻取機の
トラバースガイドなどの錆の原因になるなどの問
題がある。
この際、水の付与方法は特に限定されるもので
はなく、水槽を通すか、あるいはシヤワー方式な
どにより炭素繊維に対して所定の付着水量を保持
させることができればよい。また水付与時の繊維
張力は焼成時の張力でもよく、あるいは駆動ロー
ラを介して張力を適宜制御してもよい。
所定量の付着水量が付与された炭素繊維は、そ
の巻上げ方式、および巻上げパツケージについて
特に限定されるものではなく、従来公知の方法が
適用できる。巻き上げ後は炭素繊維の付着水分が
蒸発しないよう収縮フイルム包装などの不透湿包
装をするものである。かかる不透湿包装をしなけ
れば、輸送時に端面がくずれやすく、また解舒の
際に毛羽が発生しやすいという問題がある。また
巻上げ時の温度・湿度についても季節の影響を受
けないようほぼ一定温度・湿度に保つことが望ま
しい。
[実施例]
以下、本発明を実施例により具体的に説明す
る。
実施例 1
単糸繊度1.0デニール、12000フイラメントのア
クリル繊維を最終的に不活性雰囲気中1250℃で炭
化後、希硝酸水溶液で炭素繊維を陽極として電解
表面処理を行なつた。次にこの電解処理後の炭素
繊維を電導度が0.7μS/cmの水を満した水洗槽を
通して水洗を行なつた後、乾燥することなくその
ままボビンに巻き上げた。巻上げ時の糸の付着水
分量は約6重量%であつた。また巻き上げる際の
糸条の毛羽を目視で数えた結果、5mm以上の毛羽
(単糸切れ)個数は約1個/mと少なかつた。ま
た巻上げ量はスクエアーエンド方式の30cm幅で10
Kgまで安定して巻き上げることができた。このよ
うにして得られたパツケージを表1の条件で30日
間放置した。放置後のボビン形態、コンポジツト
成形時の解舒状態とも、不透湿包装することによ
つて良好な状態を保つことができた。
[Industrial Application Field] The present invention relates to a method for producing carbon fibers, and particularly to a method for producing carbon fibers to which no sizing agent has been added with good quality and high productivity. [Conventional technology] Conventionally, the method for manufacturing carbon fibers is to make precursor fibers for carbon fibers (hereinafter simply referred to as precursors) flame resistant, carbonize them, perform surface treatment as necessary, and then improve handling properties. Therefore, it was customary to dry the sizing agent and then wind it onto a bobbin. That is, carbon fiber products generally include those to which a sizing agent has been applied. However, recently, matrices for composite materials have become more diverse, and the development of composite materials using matrices of metals, ceramics, thermoplastic resins, etc. is rapidly expanding from the conventional thermosetting resins. For such matrices, if a sizing agent is attached, it may cause poor wettability with the matrix, or impregnation such as reduction treatment or coating treatment to improve the wettability of carbon fibers. There is a problem that when pre-treatment is performed, it becomes an impurity and the treatment effect is reduced. Therefore, carbon fibers to which no sizing agent is attached are required for these matrix applications. For this purpose, sizing-treated carbon fibers have conventionally been used after the sizing agent is removed by a method such as burning off. However, burning off this sizing agent causes significant fuzzing and deterioration of physical properties, and adding a burning process reduces productivity and economic efficiency, so in the end, carbon fibers that are not subjected to sizing treatment are preferable. Therefore, conventionally, the sizing agent treatment after carbonization was simply omitted,
Moreover, a method of winding it in a dry state has been adopted. However, carbon fibers that are not treated with a sizing agent naturally have extremely poor cohesiveness and are prone to fuzzing, and in addition, such rolled-up package cages of carbon fibers tend to suffer from the so-called collapse of the package shoulders. This is easy to happen, and for this reason, there was a problem that the winding weight per bobbin could not be increased. [Problems to be Solved by the Invention] An object of the present invention is to solve the problems of the above-mentioned conventional techniques and provide a method for manufacturing high-quality carbon fibers with good productivity without treating carbon fibers with a sizing agent. There is a particular thing. [Means for Solving the Problems] The above object of the present invention is to carbonize precursor fibers for carbon fibers, and add 0.1% by weight of water having an electrical conductivity of 300 μS/cm or less at 20° C. to the obtained carbon fibers. More than 30
This can be solved by winding up the product while retaining the adhesion below % by weight and packaging it in moisture-impermeable packaging. That is, the precursor in the present invention is not particularly limited, and acrylic fibers, pitch fibers, rayon fibers, etc. can be used, but acrylic fibers are preferable. After making these precursors flameproof or infusible using conventionally known techniques, the method of the present invention can be applied to carbon fibers carbonized at 1000 to 2000°C or graphitized fibers graphitized at 2000°C or higher. The carbon fibers in the present invention include the above-mentioned carbon fibers and graphitized fibers. In addition, the number of twists of the precursor at this time is not particularly limited, and may be untwisted or twisted, but
In order to prevent deterioration of physical properties, it is preferable to use no twisting or twisting of 40 T/m or less. The water in the present invention has an electrical conductivity of 300μS/
cm or less, soft water, tap water, ion exchange water, distilled water, etc. are used, but preferably 10μS/cm
Distilled water or ion-exchanged water with a concentration of 2 μS/cm or less is more preferred. Incidentally, a surfactant such as "Neugen" (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) or the like may be added to these water supplies as necessary to improve wettability. At this time, if the conductivity of the water exceeds 300 μS/cm, it will contain a large amount of impurities such as metal ions, which will cause problems such as poor adhesion and poor curing of resin due to impurities in high-order processing steps. . Note that this electrical conductivity is a value measured at 20°C. In addition, the amount of water attached to the carbon fiber is 0.1% to 30% by weight, preferably 0.3 to 25% by weight,
More preferably, it is 0.5 to 20% by weight. This water content refers to the water content in the carbon fiber at the winding stage. If this water content is less than 0.1% by weight, the focusing effect will be small, causing fuzz, single fiber breakage, and
Problems such as shoulder collapse in pack cages began to occur frequently. On the other hand, if it exceeds 30% by weight, the effect of adhering water will be saturated, and excess water will seep out of the package cage, causing water to accumulate inside the package cage when it is packaged with a moisture-impermeable film. There are problems such as causing rust in the winder's traverse guide, etc. At this time, the method of applying water is not particularly limited, as long as it is possible to maintain a predetermined amount of water attached to the carbon fibers by passing it through a water tank or by a shower method. Further, the fiber tension during water application may be the tension during firing, or the tension may be appropriately controlled via a drive roller. The winding method and winding package of the carbon fiber to which a predetermined amount of water has been applied are not particularly limited, and conventionally known methods can be applied. After winding up, the carbon fibers are wrapped in moisture-impermeable packaging such as shrink film to prevent moisture adhering to them from evaporating. If such moisture-impermeable packaging is not used, there are problems in that the end surfaces are likely to collapse during transportation, and fuzz is likely to occur when unrolling. It is also desirable to keep the temperature and humidity at approximately constant levels during winding to avoid being affected by the seasons. [Example] Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 Acrylic fibers with a single filament fineness of 1.0 denier and 12,000 filaments were finally carbonized at 1,250° C. in an inert atmosphere, and then subjected to electrolytic surface treatment with a dilute nitric acid aqueous solution using the carbon fibers as anodes. Next, the electrolytically treated carbon fibers were washed through a washing tank filled with water having an electrical conductivity of 0.7 μS/cm, and then wound onto a bobbin without drying. The amount of moisture attached to the yarn during winding was approximately 6% by weight. Furthermore, as a result of visually counting the fuzz on the yarn during winding, the number of fuzz (single thread breakage) of 5 mm or more was as small as about 1 piece/m. In addition, the winding amount is 10 with a width of 30 cm using the square end method.
I was able to reliably wind up to Kg. The packages thus obtained were left for 30 days under the conditions shown in Table 1. Both the bobbin shape after being left and the unrolled state during composite molding were able to be maintained in good condition by using moisture-impermeable packaging.
【表】
比較例 1
実施例1と同一条件で炭化、電解表面処理およ
び水洗を行なつた後、乾燥をして水分を含まない
状態で巻上げを行なつた。5mm以上の毛羽個数は
約10個/mと多く、巻き上げ量は糸のスベリによ
る肩崩れのため3Kgまでしか巻くことができなか
つた。
実施例 2
実施例1と同一条件で炭化後連続して2000℃で
黒鉛化し、電解表面処理を施すことなく電導度が
230μS/cmの水を満した水槽を通した後、乾燥を
しないでそのままボビンに巻き上げた。巻き上げ
時の炭素繊維に付着している水分量は約0.8重量
%であつた。糸条の毛羽は約3個/mであり、巻
き上げ量は6Kgまで安定して巻き上げることがで
きた。これをポリエチレンフイルムで不透湿包装
した。これによつて良好な状態を保つことができ
た。
比較例 2
実施例2と同一条件で炭化、黒鉛化後、電解表
面処理をしないで水槽を通した後、乾燥して水分
を含まない状態で巻上げを行なつた。糸条の毛羽
は約25個/mと多く巻き上げ量は糸のスベリによ
る肩崩れのため1Kgに止どまつた。
比較例 3
実施例2において水槽の水を電導度が
1000μS/cmの水に変更した以外は、同一条件で
巻上げを行ない、さらにポリエチレンフイルムで
不透湿包装した。炭素繊維に付着している水分量
は約1.0重量%で、糸条の毛羽および巻き上げ量
はそれぞれ約4個/mおよび6Kgと同等であつた
が、引き続いて行なつた樹脂含浸工程において硬
化不良を起こした。
[発明の効果]
本発明方法による炭素繊維は、所定量の付着水
分のもとでパツケージに巻き取られるため、巻取
り工程での集束性の向上と、ローラとの擦過によ
る毛羽立ちが減少し、品位が向上すると同時に、
ボビン巻き上げ時の肩崩れの減少に基づく巻上げ
量の増量によつて生産性を大幅に向上させること
ができた。
一方、該炭素繊維の高次加工工程ではサイジン
グ剤に基づくマトリツクスとの接着問題の解消は
もとより、毛羽によるトラブルが未然に防止でき
るため最終製品の品位向上と共に、ハンドリング
性が改善されるという著しい効果が認められた。[Table] Comparative Example 1 After carbonization, electrolytic surface treatment, and water washing were performed under the same conditions as in Example 1, the product was dried and rolled up in a moisture-free state. The number of fuzz pieces of 5 mm or more was as high as about 10 pieces/m, and the amount of yarn that could be wound was only 3 kg due to the yarn slipping and causing the shoulders to collapse. Example 2 Under the same conditions as Example 1, carbonization was followed by continuous graphitization at 2000°C, and the electrical conductivity was increased without electrolytic surface treatment.
After passing through a water tank filled with 230 μS/cm water, the material was wound onto a bobbin without drying. The amount of water adhering to the carbon fibers at the time of winding was approximately 0.8% by weight. The fuzz of the yarn was about 3 fuzz/m, and it was possible to stably wind up up to 6 kg. This was packaged in moisture-impermeable polyethylene film. This allowed us to keep it in good condition. Comparative Example 2 After carbonization and graphitization under the same conditions as in Example 2, the product was passed through a water bath without electrolytic surface treatment, and then rolled up in a dry and moisture-free state. The amount of fuzz on the yarn was about 25 pieces/m, and the amount of winding was limited to 1 kg due to the yarn slipping and causing the shoulders to collapse. Comparative Example 3 In Example 2, the conductivity of the aquarium water was
Winding was carried out under the same conditions except that the water concentration was changed to 1000 μS/cm, and the film was further packaged in moisture-impermeable polyethylene film. The amount of moisture attached to the carbon fiber was approximately 1.0% by weight, and the fluff and winding amount of the yarn were approximately 4 pieces/m and 6 kg, respectively, but curing failure occurred during the subsequent resin impregnation process. woke up. [Effects of the Invention] Since the carbon fiber produced by the method of the present invention is wound into a package with a predetermined amount of attached moisture, the cohesiveness in the winding process is improved and fuzzing due to friction with the roller is reduced. At the same time as the quality improves,
By increasing the winding amount based on the reduction in shoulder collapse during bobbin winding, productivity could be significantly improved. On the other hand, in the high-order processing process of carbon fibers, it is possible to not only solve the problem of adhesion with the matrix caused by the sizing agent, but also to prevent problems caused by fluff, which has the remarkable effect of improving the quality of the final product and improving handling properties. was recognized.