JPH05157924A - Production of microoptical element - Google Patents

Production of microoptical element

Info

Publication number
JPH05157924A
JPH05157924A JP3319455A JP31945591A JPH05157924A JP H05157924 A JPH05157924 A JP H05157924A JP 3319455 A JP3319455 A JP 3319455A JP 31945591 A JP31945591 A JP 31945591A JP H05157924 A JPH05157924 A JP H05157924A
Authority
JP
Japan
Prior art keywords
film
refractive index
substrate
sio
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3319455A
Other languages
Japanese (ja)
Inventor
Akihiko Hattori
明彦 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP3319455A priority Critical patent/JPH05157924A/en
Publication of JPH05157924A publication Critical patent/JPH05157924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To obtain the process for production of the microoptical element which can make treatment at a low temp. to prevent the thermal deformation of a silicon substrate and can execute the treatment with inexpensive equipment and materials at the time of forming the microoptical element, such as optical waveguide, on the substrate. CONSTITUTION:The silicon substrate 1 is immersed into an H2SiF6 soln. produced by adding SiO2 powder to a hydrofluoric acid soln. and stirring the soln. As a result, an SiO2 film 4 having a uniform thickness is formed on the surface of the substrate 1. The surface of the film 4 is coated with a masking film 5 exclusive of the aperture of a prescribed optical element pattern by photolithography method, etc., and thereafter, the substrate is put into water and is heated to 95 deg.C. As a result, fluorine is eluted from the inside of the SiO2 film in the masking apertures and the refractive index of this part 7 is made higher than the refractive index in the peripheral part. This high refractive index region 7 functions as an optical element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコン基板上へ光導
波路等の微小光学素子を形成する新規な方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for forming a micro optical element such as an optical waveguide on a silicon substrate.

【0002】[0002]

【従来の技術】近年、光通信システムの高度化に伴い、
光を分岐合流する分岐合流素子、光スイッチ、複数の波
長からなる光信号を波長ごとに分けたりあるいは合波し
たりする光分波合波器等が重要なデバイスとなってきて
いる。
2. Description of the Related Art In recent years, with the advancement of optical communication systems,
An important device is a branching / combining element for branching / combining light, an optical switch, an optical demultiplexer / multiplexer for dividing or multiplexing an optical signal having a plurality of wavelengths for each wavelength.

【0003】従来、このような機能はレンズ、プリズ
ム、ミラー、フィルターなどが担ってきたが、デバイス
の軽薄化・微細化への要望や、個々の部品の組合せの手
間の省力化、入出力ファイバとの接続の容易化の観点か
ら光導波路が一躍注目され始めた。
Conventionally, such functions have been carried out by lenses, prisms, mirrors, filters, etc., but there is a demand for thinner and thinner devices, labor saving of combining individual parts, and input / output fibers. From the viewpoint of facilitating connection with the optical waveguide, attention has been paid to the optical waveguide.

【0004】光導波路は通常、低屈折率の透明基板上に
高屈折率の線状経路を形成することにより得られる。透
明基板としては一般に、石英ガラス、アルミノ珪酸ガラ
スに代表される非晶質材料やニオブ酸リチウム(LiN
bO3)、サファイア(Al23)、水晶(SiO2)な
どの酸化物誘電体結晶が用いられてきた。
Optical waveguides are usually obtained by forming high-refractive-index linear paths on a low-refractive-index transparent substrate. As a transparent substrate, generally, an amorphous material typified by quartz glass, aluminosilicate glass, or lithium niobate (LiN) is used.
Oxide dielectric crystals such as bO 3 ), sapphire (Al 2 O 3 ) and quartz (SiO 2 ) have been used.

【0005】また光透過性材料ではないが、近年、砒化
ガリウム(GaAs)、燐化インジウム(InP)、シ
リコン(Si)などの半導体結晶基板も、その表面に透
明で低屈折率のバッファ層を形成した後、その表面に高
屈折率のコア層を積層するという構造で導波路形成に用
いられるようになった。
Although not a light-transmitting material, in recent years, a semiconductor crystal substrate made of gallium arsenide (GaAs), indium phosphide (InP), silicon (Si) or the like has a transparent buffer layer having a low refractive index on its surface. After the formation, a structure in which a core layer having a high refractive index is laminated on the surface has come to be used for forming a waveguide.

【0006】なかでも、Siウエハー(単結晶)上に形
成した石英ガラス(SiO2)系導波路は、低損失のも
のが得られ易い、機能素子を作るのに適しているほか、
石英系の光ファイバーとは屈折率がほぼ同じため接続に
伴う損失を最小にできる等の利点があるため、特に注目
を集めるようになった。
Among them, the silica glass (SiO 2 ) waveguide formed on a Si wafer (single crystal) is suitable for producing a functional element because it is easy to obtain a low loss one, and
Since silica-based optical fibers have almost the same refractive index, there are advantages such as minimizing the loss associated with splicing.

【0007】ところで、Siウエハー上にSiO2系導
波路を形成する方法としては、多くの場合Siウエハー
を900℃以上の温度で熱酸化することで低屈折率のバ
ッファ層上に積層した後、ドライエッチング法により選
択エッチングして導波路をスリット状に残す方法がとら
れてきた。
By the way, in many cases, as a method of forming a SiO 2 waveguide on a Si wafer, after the Si wafer is thermally oxidized at a temperature of 900 ° C. or higher to be laminated on a buffer layer having a low refractive index, A method has been adopted in which a waveguide is left in a slit shape by selective etching by a dry etching method.

【0008】また最近では、より高純度で低損失の導波
路形成方法として、Siウエハー上に、SiCl4、T
iCl4、BCl3などを主成分とする原料ガスの火炎加
水分解反応によりSiO2微粒子を堆積する方法も試み
られるようになった。この方法では、堆積したSiO2
微粒子層を約1200℃の高温に加熱することで透明化
するが、微粒子層堆積時の原料ガス組成を選ぶことでバ
ッファ層・コア層と作り分けることができる。
Recently, as a method of forming a waveguide of higher purity and low loss, SiCl 4 , T on a Si wafer is formed.
A method of depositing SiO 2 fine particles by a flame hydrolysis reaction of a raw material gas containing iCl 4 , BCl 3 or the like as a main component has also been tried. In this method, the deposited SiO 2
The fine particle layer is made transparent by heating it to a high temperature of about 1200 ° C., but it can be made into a buffer layer and a core layer separately by selecting the source gas composition at the time of depositing the fine particle layer.

【0009】このようにSiウエハー基板の場合は、ま
ず低屈折率のバッファ層を形成した後、高屈折率のコア
層を積層することで導波路を形成するが、一般にはバッ
ファ層とコア層の間の屈折率差が0.7%以上あれば光
導波路の形成が可能となる。
As described above, in the case of a Si wafer substrate, a buffer layer having a low refractive index is first formed, and then a waveguide is formed by laminating a core layer having a high refractive index. Generally, the buffer layer and the core layer are formed. If the refractive index difference between the two is 0.7% or more, the optical waveguide can be formed.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、Siウ
エハーの熱酸化あるいはSiO2微粒子層の加熱による
ガラス化といった方法では、高温度により基板が反り易
いといった問題に加え、光部品の微小化・集積化の要求
に対し、より高価な設備を用い、一層厳密な管理を要す
るという問題が無視できなくなってきた。
However, in the method of vitrification by thermal oxidation of Si wafer or heating of SiO 2 fine particle layer, in addition to the problem that the substrate is easily warped due to high temperature, miniaturization and integration of optical parts In response to the above requirement, the problem of using more expensive equipment and requiring more strict control cannot be ignored.

【0011】また光導波路以外にも、例えば極めて微小
なレンズを二次元的に多数配列したマイクロレンズアレ
イ等微小な光学素子が求められている。
Further, in addition to the optical waveguide, a minute optical element such as a microlens array in which a large number of extremely minute lenses are two-dimensionally arranged is required.

【0012】[0012]

【課題を解決するための手段】上記の問題を解決する本
発明の方法では、まずSiウエハーと、二酸化珪素を過
飽和に含む珪弗化水素酸(H2SiF6)の水溶液とを接
触させることにより、Siウエハー表面に低屈折率のS
iO2膜を形成する。
In the method of the present invention for solving the above problems, first, a Si wafer is brought into contact with an aqueous solution of hydrosilicofluoric acid (H 2 SiF 6 ) containing silicon dioxide in a supersaturated state. Allows the low refractive index S on the surface of the Si wafer.
An iO 2 film is formed.

【0013】この場合、二酸化珪素を過飽和に含むH2
SiF6の水溶液は、H2SiF6の水溶液に二酸化珪素
を飽和した溶液にホウ酸(H3BO3)、アンモニア水
(NH4OH)、塩化アルミニウム(AlCl3)に代表
される金属ハライドあるいは水素よりイオン化傾向の大
きい金属を添加することによって得られる。あるいは、
15℃以下の温度でH2SiF6の水溶液に二酸化珪素を
飽和した後、この溶液の温度を30℃以上に加熱する
(温度差法)ことによっても得られる。
In this case, H 2 containing silicon dioxide in supersaturation
An aqueous solution of SiF 6 is a solution obtained by saturating an aqueous solution of H 2 SiF 6 with silicon dioxide, boric acid (H 3 BO 3 ), aqueous ammonia (NH 4 OH), a metal halide typified by aluminum chloride (AlCl 3 ), or It is obtained by adding a metal having a higher ionization tendency than hydrogen. Alternatively,
It can also be obtained by saturating silicon dioxide in an aqueous solution of H 2 SiF 6 at a temperature of 15 ° C. or lower and then heating the temperature of this solution to 30 ° C. or higher (temperature difference method).

【0014】これらいずれの方法によって二酸化珪素を
過飽和に含むH2SiF6水溶液の濃度は、得られるSi
2膜の緻密性を考えれば1.5モル/リットル以上の
濃度 が適当である。このようにして得られたSiO2
の屈折率は1.42〜1.43である。
By any of these methods, the concentration of the H 2 SiF 6 aqueous solution containing silicon dioxide in the supersaturation can be determined by
Considering the denseness of the O 2 film, a concentration of 1.5 mol / liter or more is suitable. The SiO 2 film thus obtained has a refractive index of 1.42 to 1.43.

【0015】次いで光導波路等の光学素子形成のため
に、基板表面のSiO2膜上に水不溶性の材料を塗布す
るとともに、周知のフォトリソグラフィー等を用いて、
所望の光学素子パターンの開口を形成し、素子領域外を
マスキングする。
Then, in order to form an optical element such as an optical waveguide, a water-insoluble material is applied on the SiO 2 film on the surface of the substrate, and well-known photolithography or the like is used.
An opening having a desired optical element pattern is formed and the outside of the element region is masked.

【0016】その後、上記基板を水に浸してSiO2
膜中に予め含まれている弗素を一部除去することによ
り、マスキング開口に露出しているSiO2膜の屈折率
は1.43以上に高められる。
Then, the substrate is dipped in water to partially remove the fluorine contained in the SiO 2 thin film, so that the SiO 2 film exposed in the masking opening has a refractive index of 1.43 or more. To be enhanced.

【0017】[0017]

【作用】上記の弗素除去処理で屈折率が高められたSi
2膜のマスキング外領域が光導波路、レンズ等の光学
素子として機能する。
Function: Si whose refractive index is increased by the above fluorine removal treatment
The area outside the masking of the O 2 film functions as an optical element such as an optical waveguide or a lens.

【0018】[0018]

【実施例】先ず、市販の弗化水素酸溶液(半導体工業用
の含有量47%のもの)1000gにSiO2粉末(オ
プトエレクトロニクス用の純度99.999%のもの)
を340g入れ、攪拌子の回転速度を800rpm程度
として48時間攪拌する。
EXAMPLES First, 1000 g of a commercially available hydrofluoric acid solution (having a content of 47% for the semiconductor industry) was added to SiO 2 powder (having a purity of 99.999% for optoelectronics).
340 g, and the stirring speed is set to about 800 rpm and the mixture is stirred for 48 hours.

【0019】攪拌後、溶液の飽和度を調べるために、既
に酸化膜の付いているSi基板をこの溶液中に1分間浸
漬し、SiO2がエッチングされるかどうかテストを行
う。
After stirring, in order to examine the saturation of the solution, a Si substrate already having an oxide film is dipped in this solution for 1 minute to test whether SiO 2 is etched.

【0020】エッチテストを行い、SiO2がエッチン
グされなかったらこの溶液はSiO2飽和と見なし、溶
液からSiO2粒子を濾過したのち超純水で希釈して所
定の濃度のH2SiF6溶液を作る。
An etch test was conducted, and if SiO 2 was not etched, this solution was regarded as SiO 2 saturated, SiO 2 particles were filtered from the solution, and then diluted with ultrapure water to obtain a H 2 SiF 6 solution having a predetermined concentration. create.

【0021】ここで注意しなければならないのは、溶液
を希釈する際に超純水を攪拌しながらゆっくりH2Si
6を添加すること、希釈終了後も約30分攪拌し続け
ること、溶液の温度を室温程度に保たなければいけない
こと、の3点である。この時に温度が上がってしまうと
平衡が変化し、昇温もしくはH3BO3添加の前にSiO
2が析出してしまうことがある。
It should be noted here that when diluting the solution, H 2 Si is slowly added while stirring ultrapure water.
The three points are that F 6 is added, that stirring is continued for about 30 minutes after the completion of dilution, and that the temperature of the solution must be maintained at about room temperature. If the temperature rises at this time, the equilibrium changes, and before the temperature is raised or H 3 BO 3 is added, SiO 2 is added.
2 may be precipitated.

【0022】H3BO3を添加する場合は、H2SiF6
液を超純水で希釈する際に、加える超純水の中から10
cc程度を残しておき、それに所定量のH3BO3を溶解
させてから、ゆっくりH2SiF6溶液に添加する。
When H 3 BO 3 is added, 10 out of the ultrapure water added when the H 2 SiF 6 solution is diluted with ultrapure water are added.
After leaving about cc, a predetermined amount of H 3 BO 3 is dissolved therein, and then slowly added to the H 2 SiF 6 solution.

【0023】所定の濃度のH2SiF6溶液ができたら、
図1に示すように、予め有機洗浄と弗酸処理をしておい
たシリコン基板1(p形、100面抵抗率3〜5Ω・c
m)を、容器2に入れたSiO2を過飽和に含むH2Si
6溶液3中に、表面を下に向けて容器2の内壁に立て
かけるようにして浸漬する。このようにすると、SiO
2粒子が基板表面に付着せず、きれいに膜が堆積する。
以上の処理により、シリコン基板1上に膜厚1μmの
SiO2膜4を形成した。ついで、このSiO2膜4の表
面を、導波路パターンの開口部6を残して水不溶性材料
からなる皮膜5でマスキングし、水中に入れて加熱する
と、開口部6に露出しているSiO2膜4の部分から弗
素(F)が溶出し、溶出量が多いほど 該部分の屈折率
は高くなる。
When a H 2 SiF 6 solution having a predetermined concentration is prepared,
As shown in FIG. 1, a silicon substrate 1 (p-type, 100 surface resistivity 3 to 5 Ω · c) that has been previously subjected to organic cleaning and hydrofluoric acid treatment.
m) is H 2 Si containing SiO 2 in supersaturation in the container 2
It is immersed in the F 6 solution 3 so as to lean against the inner wall of the container 2 with the surface facing downward. By doing this, SiO
2 Particles do not adhere to the substrate surface and the film is deposited cleanly.
By the above processing, the SiO 2 film 4 having a film thickness of 1 μm was formed on the silicon substrate 1. Then, the surface of the SiO 2 film 4 is masked with a film 5 made of a water-insoluble material while leaving the opening 6 of the waveguide pattern, and the mask is placed in water and heated to expose the SiO 2 film in the opening 6. Fluorine (F) elutes from the portion of No. 4, and the larger the amount of elution, the higher the refractive index of this portion.

【0024】このようにして水中加熱処理の後、マスキ
ング開口部6直下のSiO2膜内に、周囲よりも相対的
に高屈折率の領域7、すわち光導波路が形成される。
In this way, after the underwater heat treatment, the region 7 having a relatively higher refractive index than the surroundings, that is, the optical waveguide is formed in the SiO 2 film immediately below the masking opening 6.

【0025】SiO2膜4からの弗素の溶出量と屈折率
変化との関係を調べるため、以下のような実験を行っ
た。上述した処理条件で一様厚みのSiO2膜4を表面
に形成したSiウエハーを8個に切断し、このうち7個
については純水中に浸し95℃に加熱し、それぞれ2、
4、6、8、24、30、48時間処理した後、エリプ
ソメーターでSiO2 膜の屈折率を測定した。結果を図
2、図3、図4に示す。
The following experiment was conducted in order to investigate the relationship between the elution amount of fluorine from the SiO 2 film 4 and the change in the refractive index. The Si wafer having the SiO 2 film 4 of uniform thickness formed on the surface thereof under the above-mentioned processing conditions was cut into 8 pieces, and 7 pieces of these were soaked in pure water and heated to 95 ° C.
After treatment for 4, 6, 8, 24, 30 and 48 hours, the refractive index of the SiO 2 film was measured by an ellipsometer. The results are shown in FIGS. 2, 3 and 4.

【0026】これらの図から明らかなように、本発明の
方法で得られたSiO2膜は、弗素の溶出量に従って屈
折率が増加しており、純水95℃中における24時間以
上の処理で屈折率は1.435以上となり、屈折率差に
して0.7%以上の差が得られ、光導波路としての条件
を備えている。
As is clear from these figures, the SiO 2 film obtained by the method of the present invention has a refractive index increasing with the elution amount of fluorine, and can be treated in pure water at 95 ° C. for 24 hours or more. The refractive index is 1.435 or more, and a difference in refractive index of 0.7% or more is obtained, and the condition as an optical waveguide is provided.

【0027】以上光導波路を例にとり説明したが、これ
に限定されることなく本発明方法は種々の微小光学素子
の製造に応用することができる。例えば図5に示すよう
に本発明方法によってSiO2膜4中に高屈折率部分7
を高密度で多数配列形成することにより、マイクロレン
ズアレイが得られる。
Although the optical waveguide has been described above as an example, the method of the present invention is not limited to this and can be applied to the manufacture of various micro optical elements. For example, as shown in FIG. 5, a high refractive index portion 7 is formed in the SiO 2 film 4 by the method of the present invention.
A microlens array is obtained by forming a large number of high density arrays.

【0028】すなわち、マスキング開口6を通してSi
2膜4から弗素が溶出する現象は等方的に生じるか
ら、開口6の大きさが充分小さければ高屈折率領域7の
外縁形状はほぼ半球状となり、球面レンズとして機能す
る。
That is, through the masking opening 6, Si
Since the phenomenon that fluorine is eluted from the O 2 film 4 isotropically occurs, if the size of the opening 6 is sufficiently small, the outer edge shape of the high refractive index region 7 becomes substantially hemispherical and functions as a spherical lens.

【0029】[0029]

【発明の効果】本発明方法は、100℃以下という低温
度で処理できるため、基板に反り等の熱変形を生じるこ
とがなく、このため基板変形に伴う素子の位置ずれとい
った問題を回避でき、高精度の微小光学素子が得られ
る。
Since the method of the present invention can be carried out at a temperature as low as 100 ° C. or lower, thermal deformation such as warpage does not occur on the substrate, and therefore the problem of element displacement due to substrate deformation can be avoided. A highly accurate micro optical element can be obtained.

【0030】さらに、設備及び処理用原材料が非常に安
価で済むという生産上の有利性がある。
Furthermore, there is a production advantage that the equipment and raw materials for processing are very inexpensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を用いて光導波路を形成する方法を
段階的に示す断面図
FIG. 1 is a sectional view showing stepwise a method of forming an optical waveguide using the method of the present invention.

【図2】本発明方法による処理時間とSi膜の屈折率変
化との関係の一例を示すグラフ
FIG. 2 is a graph showing an example of the relationship between the processing time and the change in the refractive index of the Si film by the method of the present invention.

【図3】本発明方法による処理時間とSi膜からの弗素
溶出量との関係の一例を示すグラフ
FIG. 3 is a graph showing an example of the relationship between the processing time and the elution amount of fluorine from the Si film by the method of the present invention.

【図4】本発明方法によるSi膜からの弗素溶出量と屈
折率との関係の一例を示すグラフ
FIG. 4 is a graph showing an example of the relationship between the elution amount of fluorine from the Si film and the refractive index according to the method of the present invention.

【図5】本発明方法で得られる微小光学素子の他の例と
してマイクロレンズアレイを示す断面図
FIG. 5 is a cross-sectional view showing a microlens array as another example of the micro optical element obtained by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 容器 3 二酸化珪素を過飽和に含む珪弗化水素酸の水溶液 4 Si膜 5 マスキング膜 6 開口 7 高屈折率領域(微小光学素子) 1 Silicon Substrate 2 Container 3 Hydrofluoric Acid Aqueous Solution Containing Silicon Dioxide in Supersaturation 4 Si Film 5 Masking Film 6 Opening 7 High Refractive Index Region (Micro Optical Element)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 二酸化珪素を過飽和に含む珪弗化水素酸
の水溶液とシリコン基板を接触させることにより、該シ
リコン基板上に二酸化珪素薄膜を形成し、しかる後該薄
膜の表面に、水不溶性材料を用いて所望の光学素子パタ
ーン部分を残してマスキングを形成し、次いでこの基板
を水中に浸すことによりマスキング開口部分の前記膜中
に含まれる弗素を一部除去して屈折率を高めることによ
り、微小光学素子を形成することを特徴とする微小光学
素子の製造方法。
1. A silicon dioxide thin film is formed on a silicon substrate by bringing an aqueous solution of hydrofluoric acid containing silicon dioxide into supersaturation into contact with the silicon substrate, and then a water-insoluble material is formed on the surface of the thin film. To form a mask while leaving a desired optical element pattern portion, and then to immerse this substrate in water to partially remove the fluorine contained in the film of the masking opening portion to increase the refractive index, A method of manufacturing a micro optical element, which comprises forming a micro optical element.
JP3319455A 1991-12-03 1991-12-03 Production of microoptical element Pending JPH05157924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3319455A JPH05157924A (en) 1991-12-03 1991-12-03 Production of microoptical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3319455A JPH05157924A (en) 1991-12-03 1991-12-03 Production of microoptical element

Publications (1)

Publication Number Publication Date
JPH05157924A true JPH05157924A (en) 1993-06-25

Family

ID=18110393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3319455A Pending JPH05157924A (en) 1991-12-03 1991-12-03 Production of microoptical element

Country Status (1)

Country Link
JP (1) JPH05157924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022518112A (en) * 2019-01-29 2022-03-14 インターナショナル・ビジネス・マシーンズ・コーポレーション Cubit-optical-CMOS integration using a structured substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022518112A (en) * 2019-01-29 2022-03-14 インターナショナル・ビジネス・マシーンズ・コーポレーション Cubit-optical-CMOS integration using a structured substrate
US11730067B2 (en) 2019-01-29 2023-08-15 International Business Machines Corporation Qubit-optical-CMOS integration using structured substrates

Similar Documents

Publication Publication Date Title
US4375312A (en) Graded index waveguide structure and process for forming same
US4524127A (en) Method of fabricating a silicon lens array
US6553170B2 (en) Method and system for a combination of high boron and low boron BPSG top clad fabrication process for a planar lightwave circuit
KR100446171B1 (en) Optical waveguide device and a method of manufacturing there0f
US4895615A (en) Monolithic fabrication techniques for front face optoelectronic couplers and/or optical components including ridge structured waveguides
WO2002010814A1 (en) Method for fabrication of vertically coupled integrated optical structures
JPH05157924A (en) Production of microoptical element
JPH06222229A (en) Optical waveguide element and its manufacture
JPH1039151A (en) Optical waveguide and its production
US20040083948A1 (en) Method for low temperature photonic crystal structures
JP3283922B2 (en) Manufacturing method of planar optical waveguide and obtained device
JP3070018B2 (en) Quartz optical waveguide and method of manufacturing the same
US5194117A (en) Lithium niobate etchant
CN110908037B (en) Optical waveguide and method for manufacturing the same
JPS5960405A (en) Optical waveguide and its manufacture
JPH05181031A (en) Optical waveguide and its production
JPH05164928A (en) Production of optical waveguide
JP2003344685A (en) Optical switching element and method for manufacturing the same
JP2603652B2 (en) Optical waveguide manufacturing method
JPH06234514A (en) Production of silicon dioxide coating film
JP4259963B2 (en) Semiconductor device and manufacturing method thereof
JP2002196171A (en) Optical waveguide and method for manufacturing the same
JPH05150129A (en) Production of glass waveguide
JPH11194221A (en) Forming method of optical waveguide and optical waveguide element
JP3840835B2 (en) Method for manufacturing silica-based glass waveguide element