JPH0515769B2 - - Google Patents

Info

Publication number
JPH0515769B2
JPH0515769B2 JP59121300A JP12130084A JPH0515769B2 JP H0515769 B2 JPH0515769 B2 JP H0515769B2 JP 59121300 A JP59121300 A JP 59121300A JP 12130084 A JP12130084 A JP 12130084A JP H0515769 B2 JPH0515769 B2 JP H0515769B2
Authority
JP
Japan
Prior art keywords
slag
copper
smelting
ore
pine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59121300A
Other languages
Japanese (ja)
Other versions
JPS61531A (en
Inventor
Akira Yazawa
Kimiaki Utsunomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP12130084A priority Critical patent/JPS61531A/en
Publication of JPS61531A publication Critical patent/JPS61531A/en
Publication of JPH0515769B2 publication Critical patent/JPH0515769B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は硫化銅鉱石を酸化溶融製錬を行なつ
て一挙に鉄含有量の少ない所謂白かわに近いマツ
トを得る溶錬方法に関する。 〔従来の技術〕 従来銅の溶融製錬では硫化銅精鉱を酸化溶融
し、鉱石中のFeの一部を酸化しスラグとして除
去すると共に、Sの一部をSO2とし、Cu2SとFeS
の共融体であるマツトとして銅の濃縮する溶錬炉
で行なうマツト溶練の段階、次いで溶練炉で得ら
れたマツトを酸化脱鉄して白かわと呼ばれる硫化
銅(Cu2S)を得る白かわ製造の段階、この白か
わを更に吹錬して粗銅を得る造銅の段階とから成
り白かわ製造及び造銅の段階は通常転炉で行なわ
れている。 マツト溶錬の行なわれる溶錬炉としては、溶鉱
炉、反射炉、自溶炉が一般的に用いられ、このう
ち溶鉱炉、反射炉では溶剤として珪酸鉱と石灰石
を用いて鉄の一部をFeO−SiO2−CaO系スラグ
を形成せしめ、また自溶炉においては溶剤として
珪酸鉱を用いて、FeO−SiO2系スラグを形成さ
せて銅を40〜60重量%Cu程度のマツトに濃縮分
離する。このマツトは溶錬炉から抜取つて転炉に
移し、溶剤として珪酸鉱を添加して酸化吹錬して
鉄分をFeO−SiO2系スラグとして排出後、残留
した硫化銅即ち白かわを更に酸化吹錬して粗銅と
している。 然るに従来これらの溶錬炉、転炉工程で形成さ
れている鉄珪酸塩系スラグは、前述のように珪酸
鉱の他に石灰石も併用するFeO−SiO2−CaO系
スラグを形成させる場合と珪酸鉱のみを用いて
FeO−SiO2系スラグを形成させる場合とがある
が、 特に、(1)FeO−SiO2−CaO系スラグを形成さ
せる溶鉱炉、反射炉の場合にはFeは35重量%な
いしそれ以下であり、またFeO−SiO2系スラグ
を形成させる自溶炉の場合でもFeは40重量%程
度ないしそれ以下と酸化鉄の保有能が低くスラグ
の発生量が多くなること。(2)スラグの粘性が高い
こと。(3)前記(1)、(2)の相乗的理由でスラグへの銅
の損失量が多くなること。(4)3価の鉄の溶解量が
少ないため炉内に固体のFe3O4を析出しやすく、
炉底などにマグネタイトが堆積する所謂マグネタ
イトトラブルを起し易いこと。(5)酸性のSiO2
基本となつているためAs、Sbなどの酸化物のス
ラグへの溶解量が少ないためAs、Sbなどの除去
率が低く粗銅にまで残留しやすいことなどの多く
の欠点があつた。 しかしながらこれ迄は他に選択の余地は無いも
のとして、この鉄珪酸塩系スラグが使われてきて
いるため、マツト溶錬段階で1回、転炉における
白かわ製造段階では一般に数回と云うように、段
階的にスラグを分離排出することが行なわれ、銅
製錬工程を複雑なものとするのみならず、熱損失
も多く、間欠的なスラグ排出を行なう際の漏洩ガ
スの処理など環境上不利益な問題などが多かつ
た。 近年提案され実操業に移されている三菱連続製
銅法は3種類の炉を連続化することによつて溶体
を移し替えることなく銅鉱石から一挙に粗銅を得
ることができ、従来の問題点をかなり合理化した
ものではあるが、マツト溶錬段階では珪酸鉱を溶
剤として使用してFe40重量%、SiO231重量%程
度の鉄珪酸塩スラグが造られる為、マツトの銅品
位は65重量%以上は望めなかつた。これはマツト
の銅品位をこれ以上とすると固相のマグネタイト
の析出が著しくなるため実操業を継続することが
困難となるためである。 この方法においては、Cu約65重量%のマツト
は、生成したスラグを分離した後製銅炉に連続的
に供給して、これに石灰石を溶剤として添加して
Cu2O−CaO−Fe3O4系スラグを形成させること
により粗銅とスラグとが共存する製銅炉におい
て、スラグの流動性が高く、含銅量が比較的低い
スラグが得らえると云われているが(特公昭51−
5337号)、実状では製銅炉のスラグはCu16重量%
程度と高く、これは全量固化してマツト溶錬段階
に繰返す必要があり、銅の歩留が悪くなる他製銅
炉において不純物の吸収能の大きい金属銅を一挙
に得るためにPb、As、Sbなどの不純物が不充分
となり易いなどの問題点があつた。 〔発明の目的〕 本発明は硫化銅鉱石を溶錬する場合の前記した
欠点を解消し、銅溶錬工程にカルシウムフエライ
トスラグを生成させることによつて硫化銅鉱石か
ら鉄含有量の少ない実質上白かわに近いマツトを
得ることを目的とする。 〔問題点を解決するための手段〕 この目的を達成するために本発明は、硫化銅鉱
石に溶剤として珪酸鉱を使用することなく石灰石
のようなCaO系溶剤を鉱石中の節分の大部分を酸
化してカルシウムフエライトスラグを形成せしめ
るに足る量を加え、且つ銅分を鉄含有量の少ない
実質上白かわに近いマツトとするに必要な量の酸
素を添加して酸化溶錬するようにしたものであ
る。 発明者等は種々研究の結果、発明者等が先に研
究発表した「カルシウムフエライトスラグ、マツ
トおよび溶銅間の相平衡」(東北大学選鉱製錬研
究所彙報第39巻第2号、昭和58年12月115〜122
頁)によれば、一般にフエライトスラグとマツト
とは溶錬温度における相互溶解が甚だ多く、多量
の硫化銅がスラグ相に溶解するため、Cu40〜65
重量%程度のマツトを得るマツト溶錬工程でフエ
ライトスラグを生成させると多大の銅損失を招く
ため、このようなマツト溶錬法は採用できぬもの
と考えられていた。 然しながら発明者等は更に種々研究の結果、前
記のフエライトスラグを生成せしめる場合、マツ
トの銅品位をさらに高めると、相互溶解度が減少
し、鉄を殆んど含有しない白かわになり、共存す
るスラグ中への銅の含有量は通常の転炉スラグ中
の銅含有量(Cu3%程度)ないしそれ以下になる
ことを見出して本発明に到達した。 本発明方法においては硫化銅鉱石、通常は硫化
銅精鉱を空気、酸素又は酸素富化空気と共に炉内
にフラツシユさせるか又はノズルを介して溶融物
内に吹込むが、その際に溶剤として珪酸鉱を全く
使用せず、石灰石のような石灰系溶剤を添加して
溶融する。石灰系容剤の添加量は硫化銅鉱石中に
含有されている鉄分のうちマツトとして含有され
るFe5重量%程度ないしそれ以下の鉄を除いた鉄
分が酸化物となつてカルシウムフエライトスラグ
(FeO−Fe2O3−CaO)を形成するに十分な量が
必要で、CaO源を量は前記酸化物となるFe重量
に対して0.24〜0.80重量程度が必要である。 一方スラグを形成するための鉄の酸化、鉱石中
の硫黄分のうちマツトを形成するのに必要な硫黄
以外の硫黄の酸化、その他スラグ化ないし揮散す
る不純物の酸化等の要する酸素は、高純度酸素、
酸素富化空気又は空気として前記鉱石と共にある
いは鉱石とは別に炉内に導入することが必要であ
るが、この際鉄の酸化熱、硫黄の燃焼熱、スラグ
形成による発熱等により炉内が溶錬温度に維持で
きる酸素量を供給することが好ましく、あるいは
高濃度で炉から排出されるSO2ガスの一部を抜出
してSO2−O2混合ガスとして炉の熱バランスを維
持できるようにするのが好ましい。しかしながら
供給する高純度酸素、あるいは酸素富化空気によ
る酸素の供給量が不足すると炉内を所望の溶錬温
度に保つことができないので、このようなときは
不足する熱量を補助燃料によつて補なうことが必
要で、この補助燃料燃焼用の酸素を供給すること
が必要となることは論を俟たない。 原料となる硫化銅鉱石中に含有されるSiO2
は3重量%以下であることが生成されるカルシウ
ムフエライトスラグをなるべく純粋の状態で保つ
ておくために好ましい。 このようにすることによつて生成するマツトは
Cu約75重量%、S約20重量%、Fe約5重量%な
いしそれ以下であり、スラグとしてCu約3重量
%程度を含有したカルシウムフエライトスラグが
得られる。スラグ中のCuはスラグを固化粉砕し
て浮選分離するか、溶体のまゝ還元溶錬して銅を
回収し、放棄するスラグ分はCu0.5重量%以下に
低下させることができる。Cu約75重量%に濃縮
されたマツトは引続き酸化吹錬することにより容
易に粗銅に転換することができる。 〔効果〕 本発明の方法によれば次のような利点がある。 (1) カルシウムフエライトスラグを生成させるこ
とにより、溶錬工程でのスラグ量を従来に比し
て、2/3以下に減らすことができ、総合的に銅
ロスが減少する。 (2) スラグの粘性を著しく低くすることができ
る。 (3) カルシウムフエライトスラグを生成させるこ
とにより溶錬統計で一挙に鉄分の少ない白かわ
に近い高品位のマツトを得ることができる。 (4) 塩基性のスラグであるため酸性の砒素やアン
チモンの酸化物を溶かし易く、マツト中へのこ
れらの不純物の分配率を従来よりも低くするこ
とができる。 (5) 溶錬工程でのマグネタイトに起因するトラブ
ルが起こりにくい。 (6) スラグの生成量が少ないので省エネルギーの
効果が大である。 〔実施例〕 以下実施例について説明する。 実施例 1 約1300℃に保持されたマグネシア製ルツボ内に
第1表に示す組成の溶融マツト30gと溶融スラグ
43gを用意し、溶融浴中に同じく第1表に示す組
成の硫化銅精鉱とCaO(CaO純分98%以上)とを
ランスパイプを用いて95%O2−5%N2(いずれも
容量%)と共にランスを浸漬せず吹込んだ。
[Industrial Field of Application] The present invention relates to a smelting method for oxidizing and smelting copper sulfide ore to obtain pine with a low iron content and close to so-called white glue. [Conventional technology] In conventional copper smelting, copper sulfide concentrate is oxidized and melted, part of the Fe in the ore is oxidized and removed as slag, and part of the S is converted into SO 2 and converted into Cu 2 S. FES
The matuto smelting stage is carried out in a smelting furnace where copper is concentrated as matuto, which is a eutectic material of The process consists of a step of producing white glue to obtain blister copper, and a step of producing copper by further blowing this white glue to obtain blister copper.The steps of producing white glue and producing copper are usually carried out in a converter. Blast furnaces, reverberatory furnaces, and flash smelting furnaces are generally used as smelting furnaces in which pine smelting is carried out. Among these, blast furnaces and reverberatory furnaces use silicate ore and limestone as solvents to convert part of the iron into FeO- A SiO 2 -CaO slag is formed, and in a flash furnace, silicate ore is used as a solvent to form an FeO-SiO 2 slag and copper is concentrated and separated into matte containing about 40 to 60% Cu by weight. This pine is taken out from the smelting furnace and transferred to a converter, silicate ore is added as a solvent and oxidized blowing is performed to remove the iron content as FeO-SiO 2 slag. It is refined into coarse copper. However, the iron silicate-based slag conventionally formed in these smelting furnace and converter processes is different from the case where FeO-SiO 2 -CaO-based slag is formed using limestone in addition to silicate ore, and the case where slag is formed using silicate ore. using only ore
There are cases in which FeO-SiO 2 -based slag is formed, but in particular, (1) in the case of blast furnaces and reverberatory furnaces in which FeO-SiO 2 -CaO-based slag is formed, the Fe content is 35% by weight or less; Furthermore, even in the case of a flash smelting furnace that forms FeO-SiO 2 system slag, Fe is about 40% by weight or less, which means that the ability to retain iron oxide is low and a large amount of slag is generated. (2) High viscosity of slag. (3) Due to the synergistic reasons of (1) and (2) above, the amount of copper lost to the slag increases. (4) Since the amount of trivalent iron dissolved is small, solid Fe 3 O 4 is likely to precipitate in the furnace,
It is easy to cause so-called magnetite trouble, where magnetite accumulates at the bottom of the furnace. (5) Since acidic SiO 2 is used as the basis, the amount of oxides such as As and Sb dissolved in the slag is small, so the removal rate of As and Sb is low, and they tend to remain in blister copper. There were flaws. However, until now this iron silicate slag has been used as there was no other choice, so it is used once in the pine smelting stage and generally several times in the white glue production stage in the converter. In addition, slag is separated and discharged in stages, which not only complicates the copper smelting process, but also causes a large amount of heat loss, and requires environmentally inconvenient disposal of leaked gas during intermittent slag discharge. There were many profitable issues. The Mitsubishi Continuous Copper Manufacturing Process, which has been proposed in recent years and has been put into actual operation, uses three types of furnaces in series to obtain blister copper from copper ore all at once without transferring the solution, and it overcomes the problems of the conventional method. However, in the matuto smelting stage, silicate ore is used as a solvent to create iron silicate slag containing about 40% by weight of Fe and 31% by weight of SiO 2 , so the copper grade of matuto is 65% by weight. I couldn't have hoped for more. This is because if the copper content of the pine exceeds this level, the precipitation of solid phase magnetite will become significant, making it difficult to continue actual operation. In this method, pine containing approximately 65% Cu by weight is continuously fed to a copper making furnace after separating the slag produced, and limestone is added to it as a solvent.
It is said that by forming Cu 2 O-CaO-Fe 3 O 4 system slag, slag with high fluidity and relatively low copper content can be obtained in copper making furnaces where blister copper and slag coexist. Although it is
No. 5337), in reality, the slag of copper making furnaces is Cu16% by weight.
It is necessary to solidify the entire amount and repeat it in the pine smelting stage, resulting in a poor copper yield. There were problems such as the fact that impurities such as Sb were likely to be insufficient. [Object of the Invention] The present invention solves the above-mentioned drawbacks when smelting copper sulfide ore, and by producing calcium ferrite slag in the copper smelting process, copper sulfide ore can be made from copper sulfide ore with substantially less iron content. The aim is to obtain pine that is close to white glue. [Means for Solving the Problems] In order to achieve this object, the present invention uses CaO-based solvents such as limestone to remove most of the fraction in copper sulfide ore without using silicate ore as a solvent. Oxidation and smelting was carried out by adding an amount sufficient to oxidize and form calcium ferrite slag, and adding an amount of oxygen necessary to convert the copper content into matt with a low iron content, which was almost like white glue. It is something. As a result of various researches, the inventors and others have previously published their research titled "Phase Equilibrium Between Calcium Ferrite Slag, Matte, and Molten Copper" (Tohoku University Mineral Processing and Smelting Research Institute Bulletin Vol. 39, No. 2, 1982). December 115-122
According to the slag phase, ferrite slag and pine generally dissolve significantly into each other at the smelting temperature, and a large amount of copper sulfide dissolves in the slag phase.
It was thought that such a pine smelting method could not be adopted because the production of ferrite slag in the pine smelting process to obtain pine of about 10% by weight would result in a large loss of copper. However, as a result of various studies, the inventors have found that when producing the above-mentioned ferrite slag, if the copper quality of the pine is further increased, the mutual solubility decreases, and the coexisting slag becomes white and contains almost no iron. The present invention was achieved by discovering that the copper content in the converter slag is equal to or less than that in ordinary converter slag (about 3% Cu). In the process of the invention, copper sulfide ore, usually copper sulfide concentrate, is flashed into a furnace together with air, oxygen or oxygen-enriched air, or is blown into the melt through a nozzle, using silica as a solvent. No ore is used at all, and a lime-based solvent such as limestone is added to melt it. The amount of lime-based filler added is determined by the amount of iron contained in the copper sulfide ore, excluding about 5% by weight or less of Fe contained in the form of matte, which is converted into oxides to form calcium ferrite slag (FeO- A sufficient amount is required to form CaO (Fe2O3 -CaO), and the amount of CaO source is required to be approximately 0.24 to 0.80% by weight relative to the weight of Fe that will become the oxide. On the other hand, the oxygen required for the oxidation of iron to form slag, the oxidation of sulfur other than the sulfur necessary to form pine out of the sulfur content in the ore, and the oxidation of other impurities that turn into slag or volatilize are highly purified. oxygen,
It is necessary to introduce oxygen-enriched air or air into the furnace together with or separately from the ore, but at this time, the inside of the furnace is smelted due to heat of oxidation of iron, heat of combustion of sulfur, heat generated by slag formation, etc. It is preferable to supply an amount of oxygen that can maintain the temperature, or to extract a part of the SO 2 gas discharged from the furnace in high concentration and make it possible to maintain the thermal balance of the furnace as an SO 2 − O 2 mixed gas. is preferred. However, if the amount of oxygen supplied by high-purity oxygen or oxygen-enriched air is insufficient, it will not be possible to maintain the furnace at the desired smelting temperature. It goes without saying that it is necessary to supply oxygen for this auxiliary fuel combustion. It is preferable that the content of SiO 2 in the raw material copper sulfide ore is 3% by weight or less in order to keep the produced calcium ferrite slag as pure as possible. The pine produced by doing this is
The content is about 75% by weight of Cu, about 20% by weight of S, and about 5% by weight of Fe or less, and a calcium ferrite slag containing about 3% by weight of Cu is obtained as slag. Cu in slag can be recovered by solidifying and crushing the slag and flotation separation, or by reducing and smelting the slag while remaining in solution, and the amount of slag that is discarded can be reduced to 0.5% by weight or less of Cu. Mat concentrated to about 75% Cu by weight can be easily converted to blister copper by subsequent oxidative blowing. [Effects] The method of the present invention has the following advantages. (1) By generating calcium ferrite slag, the amount of slag in the smelting process can be reduced to 2/3 or less compared to conventional methods, and copper loss is reduced overall. (2) The viscosity of slag can be significantly lowered. (3) By generating calcium ferrite slag, it is possible to obtain high-quality pine with low iron content, close to white glue, all at once in terms of smelting statistics. (4) Since it is a basic slag, it easily dissolves acidic arsenic and antimony oxides, making it possible to lower the distribution rate of these impurities into the mat than before. (5) Problems caused by magnetite during the smelting process are less likely to occur. (6) Since the amount of slag produced is small, the energy saving effect is large. [Example] Examples will be described below. Example 1 30 g of molten matte and molten slag having the composition shown in Table 1 were placed in a magnesia crucible maintained at approximately 1300°C.
Prepare 43g of copper sulfide concentrate and CaO (98% or more pure CaO content) in a molten bath using a lance pipe to add 95%O 2 -5%N 2 (both % by volume) and the lance was injected without being immersed.

【表】 吹込みランスパイプは二重管を用い、内管から
は37.5g/分の硫化銅精鉱と、3.9g/分のCaO
を0.46/分のN2ガスと共に流送して吹込みを
行ない、外管からは8.76/分のO2ガスを31.0
m/秒の流速で吹込んだ。 上記の条件で吹込みを40分間継続して5分間静
止した後、冷却凝固させてスラグ及びマツトの重
量並びに分析品位を求め、最初に装入したマツ
ト、スラグの量ならびに品位から各成分量を差引
いて、反応により生成したマツト量、スラグ量並
びにその品位を計算した結果を第2表に示す。
[Table] A double pipe is used for the injection lance pipe, and 37.5 g/min of copper sulfide concentrate and 3.9 g/min of CaO are supplied from the inner pipe.
Blow is carried out by flowing with N 2 gas at 0.46/min, and O 2 gas at 8.76/min from the outer tube at 31.0/min.
It was injected at a flow rate of m/sec. After continuing blowing under the above conditions for 40 minutes and stopping for 5 minutes, the slag and matte were cooled and solidified, and the weight and analytical quality of the slag and matte were determined, and the amount of each component was determined from the amount and quality of the matte and slag initially charged. Table 2 shows the results of calculating the amount of pine, the amount of slag produced by the reaction, and the quality thereof.

【表】 この試験においてダスト発生率は約5重量%で
あつた。この間マグネタイトの生成によるトラブ
ルは全く認められなかつた。 比較例 実施例1と同じ組成の溶融マツト30gとFe/
SiO21.4のFeO−Fe2O3−SiO2系を主体とする溶
融スラグ45gを用意し、1300℃に保持した溶融浴
中に、同じく第1表に示す組成の硫化銅精鉱を実
施例1と同量を、また溶剤として純度97%の
SiO2を7.6g/分の割合で同様のガスを用いて吹
込んだところ5分後にはスラグの湧き上る現象が
生じ、その後マツトと生成マグネタイトの混合し
た高融点物質の形成により、供給源量の融体中へ
の吹込みが不可能となり、更にこれ等の物質のた
めランスパイプの閉塞がおこり実験の継続が不可
能となつた。
[Table] In this test, the dust generation rate was about 5% by weight. During this period, no troubles due to the formation of magnetite were observed. Comparative example 30g of molten matte with the same composition as Example 1 and Fe/
Example 45 g of molten slag mainly composed of FeO- Fe2O3 - SiO2 system with SiO2 1.4 was prepared, and copper sulfide concentrate having the composition shown in Table 1 was added to the molten bath kept at 1300℃. Add the same amount as 1 and 97% purity as a solvent.
When SiO 2 was injected at a rate of 7.6 g/min using the same gas, slag rose up after 5 minutes, and then the amount of the supply source decreased due to the formation of a high melting point substance mixed with matte and generated magnetite. It became impossible to inject these substances into the melt, and furthermore, these substances caused blockage of the lance pipe, making it impossible to continue the experiment.

Claims (1)

【特許請求の範囲】[Claims] 1 硫化銅鉱石に溶剤として珪酸鉱を使用するこ
となく、鉱石中の大部分の鉄分をカルシウムフエ
ライトスラグとするに充分な量の石灰質溶剤と、
銅分を鉄含有量が少なく、白かわに近いマツトと
するに充分な量の酸素とを添加して白かわに近い
マツトに酸化溶融精錬することを特徴とする硫化
銅鉱石の溶錬方法。
1. A sufficient amount of calcareous solvent to convert most of the iron in the ore into calcium ferrite slag without using silicate ore as a solvent for copper sulfide ore,
A method for smelting copper sulfide ore, which is characterized in that copper is oxidized and refined into pine with a low iron content and a sufficient amount of oxygen to form pine with a white color.
JP12130084A 1984-06-12 1984-06-12 Method for smelting copper sulfide ore Granted JPS61531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12130084A JPS61531A (en) 1984-06-12 1984-06-12 Method for smelting copper sulfide ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12130084A JPS61531A (en) 1984-06-12 1984-06-12 Method for smelting copper sulfide ore

Publications (2)

Publication Number Publication Date
JPS61531A JPS61531A (en) 1986-01-06
JPH0515769B2 true JPH0515769B2 (en) 1993-03-02

Family

ID=14807840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12130084A Granted JPS61531A (en) 1984-06-12 1984-06-12 Method for smelting copper sulfide ore

Country Status (1)

Country Link
JP (1) JPS61531A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3682166B2 (en) * 1998-08-14 2005-08-10 住友金属鉱山株式会社 Method for smelting copper sulfide concentrate
FI120157B (en) * 2007-12-17 2009-07-15 Outotec Oyj A process for refining copper concentrate
JP4949343B2 (en) 2008-09-04 2012-06-06 パンパシフィック・カッパー株式会社 Copper smelting method
US20140256811A1 (en) 2013-03-05 2014-09-11 Ecolab Usa Inc. Efficient stabilizer in controlling self accelerated decomposition temperature of peroxycarboxylic acid compositions with mineral acids
US10165774B2 (en) 2013-03-05 2019-01-01 Ecolab Usa Inc. Defoamer useful in a peracid composition with anionic surfactants

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741333A (en) * 1980-08-25 1982-03-08 Akira Yazawa Smelting method for sulfide ore
JPS6214017A (en) * 1985-07-12 1987-01-22 Canon Inc Ranging instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741333A (en) * 1980-08-25 1982-03-08 Akira Yazawa Smelting method for sulfide ore
JPS6214017A (en) * 1985-07-12 1987-01-22 Canon Inc Ranging instrument

Also Published As

Publication number Publication date
JPS61531A (en) 1986-01-06

Similar Documents

Publication Publication Date Title
US3725044A (en) Method of continuous processing of sulfide ores
CA2624670A1 (en) Method and apparatus for lead smelting
US10428404B2 (en) Method of converting copper containing material
SU1544829A1 (en) Method of processing fine-grain lead and lead-zinc copper-containing sulfide concentrates
US3437475A (en) Process for the continuous smelting and converting of copper concentrates to metallic copper
US4521245A (en) Method of processing sulphide copper- and/or sulphide copper-zinc concentrates
JPH0515769B2 (en)
JPH05214460A (en) Copper smelting system
FI119515B2 (en) Smelting process for copper sulphide concentrate
EA007445B1 (en) Method for producing blister copper
JP3682166B2 (en) Method for smelting copper sulfide concentrate
US4515631A (en) Method for producing blister copper
SU1735408A1 (en) Process for treating slags for production of heavy nonferrous metals
JPS5950737B2 (en) Continuous copper smelting method
FI73741C (en) Process for continuous production of raw cups.
US3032411A (en) Metallurgical process
US692310A (en) Method of treating copper ores.
RU2169202C1 (en) Method of continuous processing of copper concentrate into blister copper
JPS62174338A (en) Refining method for copper
RU2224034C1 (en) Platinum metal extraction method
JPS6045694B2 (en) Method of producing metallic lead from sulfide concentrate
JPS5950736B2 (en) Continuous steel smelting method
JP3698044B2 (en) Method for smelting copper sulfide concentrate
SU954469A1 (en) Charge for melting sulfide copper-bearing materials
KR800001299B1 (en) Continuous smelting method for sulfide minerals