JPH05157636A - Spatial temperature distribution measuring instrument - Google Patents

Spatial temperature distribution measuring instrument

Info

Publication number
JPH05157636A
JPH05157636A JP3347869A JP34786991A JPH05157636A JP H05157636 A JPH05157636 A JP H05157636A JP 3347869 A JP3347869 A JP 3347869A JP 34786991 A JP34786991 A JP 34786991A JP H05157636 A JPH05157636 A JP H05157636A
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
space
surface emissivity
spatial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3347869A
Other languages
Japanese (ja)
Other versions
JP2889416B2 (en
Inventor
Yasuo Ozawa
保夫 小沢
Yasuhiro Miyata
康弘 宮田
Satoru Yamamoto
哲 山本
Koichi Sugiyama
耕一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP3347869A priority Critical patent/JP2889416B2/en
Publication of JPH05157636A publication Critical patent/JPH05157636A/en
Application granted granted Critical
Publication of JP2889416B2 publication Critical patent/JP2889416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a spatial temperature distribution measuring instrument which can measure a spatial temperature without generating any error between a measured temperature value and actual spatial temperature. CONSTITUTION:The title measuring instrument is provided with a measuring means 6 which measures a first and second spatial temperatures of values corresponding to the first and second surface radiation efficiencies of optical fibers 3 respectively having the first and second surface radiation efficiencies by using the optical fibers 3 and an arithmetic means 7 which calculates spatial temperatures based on the measured values of the first and second spatial temperatures and the first and second surface radiation efficiencies.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空間温度分布測定装置に
関し、特に、光ファイバの輻射率特性を利用して空間の
温度を高い精度で測定する空間温度分布測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a space temperature distribution measuring device, and more particularly to a space temperature distribution measuring device for measuring a space temperature with high accuracy by utilizing the emissivity characteristic of an optical fiber.

【0002】[0002]

【従来の技術】従来の空間温度を測定する装置として、
例えば、熱電対等のスポット型センサを測定の対象とす
る空間に設置して、空間温度を測定するものがある。
2. Description of the Related Art As a conventional device for measuring space temperature,
For example, there is a device in which a spot type sensor such as a thermocouple is installed in a space to be measured and the space temperature is measured.

【0003】ところが、センサを空間に設置する装置で
は、複数の測定対象区間にそれぞれセンサを設置する
と、センサ数が増加して装置のコストが高価になり、ま
た、センサを複数の測定対象区間に移動させると測定に
時間を要するという問題があった。
However, in a device in which a sensor is installed in a space, if the sensor is installed in each of a plurality of measurement target sections, the number of sensors increases and the cost of the apparatus increases, and the sensor is installed in a plurality of measurement target sections. There is a problem in that it takes time to measure when moved.

【0004】また、スポット型センサの代わりに連続性
のある光ファイバを温度センサとして測定の対象とする
空間に設置する測定装置がある。この装置では光ファイ
バに所定の信号光を入力し、この信号光の特性の変化か
ら光ファイバの長さ方向に生じている温度分布を測定す
る。
Further, there is a measuring device in which a continuous optical fiber is installed as a temperature sensor in the space to be measured instead of the spot type sensor. In this device, a predetermined signal light is input to the optical fiber, and the temperature distribution generated in the length direction of the optical fiber is measured from the change in the characteristic of the signal light.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の光ファ
イバを使用した空間温度を測定する装置では測定される
温度測定値が空間温度以外の、例えば輻射熱等の影響に
よる値を含んだ温度測定値であることが多い。この場
合、空間温度について輻射熱の影響を分離して測定する
ことができないため、光ファイバによって測定された温
度測定値と実際の空間温度の間に状況によって誤差が生
じるという問題がある。従って、本発明の目的は温度測
定値と空間温度の間に誤差を生じないようにする空間温
度分布測定装置を提供することにある。
However, in the conventional apparatus for measuring the space temperature using the optical fiber, the temperature measurement value to be measured includes a value other than the space temperature, for example, a value due to the influence of radiation heat or the like. Often In this case, since it is not possible to separately measure the effect of radiant heat on the space temperature, there is a problem that an error occurs depending on the situation between the temperature measurement value measured by the optical fiber and the actual space temperature. Therefore, it is an object of the present invention to provide a space temperature distribution measuring device which prevents an error between the temperature measurement value and the space temperature.

【0006】[0006]

【課題を解決するための手段】本発明は温度測定値と空
間温度の間に誤差を生じないようにするため、第1の表
面輻射率と第2の表面輻射率を有する光ファイバを装置
に使用した空間温度分布測定装置を提供する。本発明の
空間温度分布測定装置は、測定空間に布設された第1の
表面輻射率と第2の表面輻射率を有する光ファイバに接
続された測定手段と、この測定手段によって測定された
温度測定値から外部輻射熱を分離して空間温度を算出す
る演算手段より構成される。
According to the present invention, an optical fiber having a first surface emissivity and a second surface emissivity is provided in an apparatus in order to prevent an error between a temperature measurement value and a space temperature. A spatial temperature distribution measuring device used is provided. The spatial temperature distribution measuring device of the present invention comprises a measuring means connected to an optical fiber having a first surface emissivity and a second surface emissivity laid in a measuring space, and a temperature measurement measured by the measuring means. It is composed of a calculation means for separating the external radiant heat from the value and calculating the space temperature.

【0007】[0007]

【作用】光ファイバの表面輻射率を所定の輻射率にする
と、測定の対象となる光ファイバが布設された空間の空
間温度と輻射熱の間に以下の式が成立する。 ε・qr=ε・σ(T4 −Ta 4 )+α(T−Ta )‥‥(1) ここに ε :センサ用光ファイバの表面輻射率 qr :光ファイバへの輻射熱 σ :ステファン・ボルツマン定数 α :センサ用光ファイバ表面の熱伝導率 T :センサ用光ファイバによる温度測定値(輻射熱の
影響を含む) Ta :空間温度(輻射熱の影響を含まない) この式において輻射熱qrと空間温度Ta は未知数であ
り、表面輻射率の異なる2本の光ファイバを同じ空間に
布設したとき、以下の連立方程式が成立する。 ε1 ・qr=ε1 ・σ(T1 4−Ta 4 )+α(T1 −Ta )−−(2) ε2 ・qr=ε2 ・σ(T2 4−Ta 4 )+α(T2 −Ta )−−(3) ここに ε1 :第1のセンサ用光ファイバの表面輻射率 ε2 :第2のセンサ用光ファイバの表面輻射率 α :センサ光ファイバ表面の熱伝導率 T1 :第1のセンサ用光ファイバによる温度測定値 T2 :第2のセンサ用光ファイバによる温度測定値 この2つの式(2),(3) による連立方程式を解くことによ
って正確な空間温度Ta を検出できる。必要に応じて輻
射熱qrを算出することもできる。
When the surface emissivity of the optical fiber is set to a predetermined emissivity, the following formula is established between the space temperature and the radiant heat of the space where the optical fiber to be measured is laid. ε ・ qr = ε ・ σ (T 4 −T a 4 ) + α (T−T a ) ... (1) where ε: surface emissivity of optical fiber for sensor qr: radiant heat to optical fiber σ: Stefan ・Boltzmann constant alpha: thermal conductivity of the optical fiber for the sensor surface T: temperature measured by the optical fiber sensor (including the effects of radiant heat) T a: space temperature (not including the effects of radiant heat) radiation heat qr and space in this formula The temperature T a is an unknown number, and when two optical fibers having different surface emissivities are laid in the same space, the following simultaneous equations hold. ε 1 · qr = ε 1 · σ (T 1 4 −T a 4 ) + α (T 1 −T a ) −− (2) ε 2 · qr = ε 2 · σ (T 2 4 −T a 4 ) + α (T 2 −T a ) −− (3) where ε 1 : surface emissivity of the first sensor optical fiber ε 2 : surface emissivity of the second sensor optical fiber α: heat of the sensor optical fiber surface Conductivity T 1 : Temperature measurement value by the first optical fiber for sensor T 2 : Temperature measurement value by the second optical fiber for sensor Accurate by solving the simultaneous equations by these two equations (2) and (3) The space temperature T a can be detected. The radiant heat qr can also be calculated as needed.

【0008】[0008]

【実施例】以下、本発明の空間温度分布測定装置を詳細
に説明する。図1は本発明の一実施例を示し、光ファイ
バ3a,3bに信号光を入力する光源1,光ファイバ3
a,3bからの受信光を受光器5に導く光方向性結合器
2,2本の光ファイバ3a,3bを選択する光スイッチ
4,受光器5で光信号から変換された電気信号に基づい
て温度測定を行う温度測定回路6,測定された温度より
輻射熱と空間温度を算出する演算処理回路7,そして光
源1,温度測定装置6,演算処理回路7等を制御する制
御回路8を有する。
EXAMPLES The spatial temperature distribution measuring apparatus of the present invention will be described in detail below. FIG. 1 shows an embodiment of the present invention, in which a light source 1 for inputting signal light to optical fibers 3a and 3b, an optical fiber 3
Based on the electrical signal converted from the optical signal by the optical directional coupler 2, the optical switch 4 for selecting the two optical fibers 3a and 3b for guiding the received light from It has a temperature measuring circuit 6 for measuring temperature, an arithmetic processing circuit 7 for calculating radiant heat and space temperature from the measured temperature, and a control circuit 8 for controlling the light source 1, the temperature measuring device 6, the arithmetic processing circuit 7 and the like.

【0009】図2は本発明の一実施例で使用される光フ
ァイバを示し、輻射率の異なる光ファイバ3a,3bを
2本密着し、ターン部3の間隔lを一定にするように支
持線9によって保持されており、これを間隔lの寸法線
の矢印方向に沿って布設する。
FIG. 2 shows an optical fiber used in one embodiment of the present invention, in which two optical fibers 3a and 3b having different emissivities are closely adhered to each other, and a supporting wire is provided so that a space 1 between the turn portions 3 is constant. It is held by 9 and is laid along the direction of the arrow of the dimension line of the interval l.

【0010】以下、本発明の空間温度分布測定装置の動
作を説明する。制御回路8は光源1を起動させるパルス
を送り、光スイッチ4に2本の光ファイバのいずれかを
選択させる。選択された光ファイバ3aあるいは3bに
光源1から信号光が入力される。入力された信号光は赤
外線の影響に応じて後方散乱光を生じる。この後方散乱
光を光方向性結合器2によって受光器5に導き受光す
る。受光された後方散乱光は電気信号として温度測定回
路6へ送られて制御回路8の信号により選択された光フ
ァイバによって温度測定が行われる。
The operation of the spatial temperature distribution measuring apparatus of the present invention will be described below. The control circuit 8 sends a pulse to activate the light source 1 and causes the optical switch 4 to select one of the two optical fibers. The signal light is input from the light source 1 to the selected optical fiber 3a or 3b. The input signal light produces backscattered light according to the influence of infrared rays. This backscattered light is guided to the light receiver 5 by the optical directional coupler 2 and received. The received backscattered light is sent to the temperature measuring circuit 6 as an electric signal, and the temperature is measured by the optical fiber selected by the signal of the control circuit 8.

【0011】同様の測定をもう一方の光ファイバについ
て行い。光ファイバ3aおよび3bについて測定された
温度測定値に基づいて制御回路8の信号により演算処理
装置7を駆動し、所定の演算式(後述)に基づいて輻射
熱と空間温度を算出する。
The same measurement was performed on the other optical fiber. The arithmetic processing unit 7 is driven by the signal of the control circuit 8 based on the temperature measurement values measured for the optical fibers 3a and 3b, and the radiant heat and the space temperature are calculated based on a predetermined arithmetic expression (described later).

【0012】演算処理回路7において、測定値から空間
温度と輻射熱を算出する演算式として以下に示す連立方
程式を立てる。これによって、未知数である空間温度と
輻射熱を算出することができる。 ε1 ・qr=ε1 ・σ(T1 4−Ta 4 )+α(T1 −Ta )−−(4) ε2 ・qr=ε2 ・σ(T2 4−Ta 4 )+α(T2 −Ta )−−(5) ここに ε1 :センサ用光ファイバ3aの輻射率 ε2 :センサ用光ファイバ3bの輻射率 qr :光ファイバへの輻射熱 σ :ステファン・ボルツマン定数 α :センサ光ファイバ表面の熱伝導率 T1 :センサ用光ファイバ3aによる温度測定値 T2 :センサ用光ファイバ3bによる温度測定値 Ta :空間温度 上述した2つの式(4),(5) による連立方程式を解くこと
によって未知数である空間温度Ta および輻射熱qrが算
出されるので、輻射熱の影響を受けない空間温度Ta
検出できる。以上の実施例では、2本の光ファイバを並
列に設置したが、2本の光ファイバを直列に設置しても
良い。この場合、光スイッチ4を省略することができ
る。
In the arithmetic processing circuit 7, the following simultaneous equations are established as arithmetic expressions for calculating the space temperature and the radiant heat from the measured values. With this, the unknown space temperature and radiant heat can be calculated. ε 1 · qr = ε 1 · σ (T 1 4 −T a 4 ) + α (T 1 −T a ) −− (4) ε 2 · qr = ε 2 · σ (T 2 4 −T a 4 ) + α (T 2 −T a ) −− (5) where ε 1 : emissivity of the sensor optical fiber 3 a ε 2 : emissivity of the sensor optical fiber 3 b qr: radiant heat to optical fiber σ: Stefan-Boltzmann constant α : the thermal conductivity of the sensor optical fiber surface T 1: temperature measurement value by the optical fiber 3a sensor T 2: temperature measurements by optical fiber 3b sensor T a: space temperature above two equations (4), (5) the space temperature T a and radiant heat qr is unknown is calculated by solving the simultaneous equations by, it can detect the spatial temperature T a is not affected by the radiant heat. In the above embodiment, two optical fibers are installed in parallel, but two optical fibers may be installed in series. In this case, the optical switch 4 can be omitted.

【0013】[0013]

【発明の効果】以上説明した通り、本発明の空間温度分
布測定装置によると、第1の表面輻射率と第2の表面輻
射率を有する光ファイバを装置に使用し、各表面輻射率
に応じた測定結果を所定の演算式によって演算処理する
ようにしたため、温度測定値と空間温度の間に誤差を生
じずに空間温度の測定ができる。
As described above, according to the spatial temperature distribution measuring apparatus of the present invention, the optical fiber having the first surface emissivity and the second surface emissivity is used in the apparatus and the surface emissivity is adjusted according to each surface emissivity. Since the measured result is calculated by a predetermined calculation formula, the space temperature can be measured without causing an error between the temperature measurement value and the space temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例の、空間温度分布測定
装置の全体図である。
FIG. 1 is an overall view of a spatial temperature distribution measuring device according to an embodiment of the present invention.

【図2】図2は本発明の一実施例の、センサ用光ファイ
バの布設例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of laying an optical fiber for a sensor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 光方向性結
合器 3 光ファイバ 3a,3b セン
サ用光ファイバ 4 光スイッチ 5 受光器 6 温度測定回路 7 演算処理回
路 8 制御回路 9 支持線
1 Light Source 2 Optical Directional Coupler 3 Optical Fibers 3a, 3b Sensor Optical Fiber 4 Optical Switch 5 Light Receiver 6 Temperature Measuring Circuit 7 Arithmetic Processing Circuit 8 Control Circuit 9 Support Line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 哲 茨城県日立市日高町5丁目1番1号 日立 電線株式会社オプトロシステム研究所内 (72)発明者 杉山 耕一 茨城県日立市日高町5丁目1番1号 日立 電線株式会社オプトロシステム研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Yamamoto 5-1-1 Hidaka-cho, Hitachi-shi, Ibaraki Hitachi Cable Co., Ltd., Optro System Research Laboratory (72) Inventor Koichi Sugiyama Hidaka-cho, Hitachi-shi, Ibaraki 5th-1st No. 1 in Hitachi Cable Ltd.'s Optro System Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 測定空間に布設された第1の表面輻射率
と第2の表面輻射率を有した光ファイバと、 前記光ファイバに入力した信号光の後方散乱光に基づい
て前記光ファイバの前記第1および第2の表面輻射率に
応じた値の第1および第2の空間温度を測定する測定手
段と、 前記第1および第2の空間温度と前記第1および第2の
表面輻射率とに基づいて外部輻射熱に影響されない空間
温度を演算する演算手段より構成されることを特徴とす
る空間温度分布測定装置。
1. An optical fiber having a first surface emissivity and a second surface emissivity laid in a measurement space, and an optical fiber of the optical fiber based on backscattered light of signal light input to the optical fiber. Measuring means for measuring the first and second space temperatures having values corresponding to the first and second surface emissivity; the first and second space temperatures and the first and second surface emissivity A space temperature distribution measuring device comprising a calculation means for calculating a space temperature that is not affected by external radiant heat based on
【請求項2】 前記光ファイバは前記第1の表面輻射率
を有する第1の光ファイバと前記第2の表面輻射率を有
する第2の光ファイバより構成され、前記第1および第
2の光ファイバが直列に接続された単一の光ファイバお
よび並列に配置された2本の光ファイバから選択された
光ファイバであることを特徴とする請求項第1記載の空
間温度分布測定装置。
2. The optical fiber comprises a first optical fiber having the first surface emissivity and a second optical fiber having the second surface emissivity, and the first and second light beams. 2. The spatial temperature distribution measuring apparatus according to claim 1, wherein the fiber is an optical fiber selected from a single optical fiber connected in series and two optical fibers arranged in parallel.
JP3347869A 1991-12-03 1991-12-03 Space temperature distribution measurement device Expired - Lifetime JP2889416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3347869A JP2889416B2 (en) 1991-12-03 1991-12-03 Space temperature distribution measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3347869A JP2889416B2 (en) 1991-12-03 1991-12-03 Space temperature distribution measurement device

Publications (2)

Publication Number Publication Date
JPH05157636A true JPH05157636A (en) 1993-06-25
JP2889416B2 JP2889416B2 (en) 1999-05-10

Family

ID=18393151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3347869A Expired - Lifetime JP2889416B2 (en) 1991-12-03 1991-12-03 Space temperature distribution measurement device

Country Status (1)

Country Link
JP (1) JP2889416B2 (en)

Also Published As

Publication number Publication date
JP2889416B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
US4644173A (en) Flame quality analyzer with fiber optic array
DK0404567T3 (en) Connection site for a multi-channel temperature sensing system
US5464284A (en) Autocalibrating non-contact temperature measuring technique employing dual recessed heat flow sensors
JPH0242179B2 (en)
JP2889416B2 (en) Space temperature distribution measurement device
Levick et al. A fibre-optic based laser absorption radiation thermometry (LART) instrument for surface temperature measurement
JPH08215982A (en) Machine tool with thermal displacement correcting function
JP3370598B2 (en) Fire alarm
JP3099470B2 (en) Non-contact temperature measurement system for centrifuge
JP2542781B2 (en) Infrared sensor calibration device
JPH0676922B2 (en) Radiation temperature measuring device
JPH04318432A (en) Distribution temperature measuring method by optical fiber sensor
JPH04145333A (en) Method for monitoring temperature of conductor of laid power cable
JP2001083019A (en) Temperature measurement apparatus
JPH0523703B2 (en)
KR100252012B1 (en) System and method for detecting object location using thermo-electron device
JPH07140008A (en) Radiation thermometer
JP4365503B2 (en) Fixed in-core measuring device
RU1222022C (en) Method of measuring surface temperature of structure in heat-strength testing
JPS5817367A (en) Method of and apparatus for measuring speed
JPH07146189A (en) Surface heat flux measuring instrument
JP2988533B2 (en) Room temperature controller
JP4481413B2 (en) Fixed in-core measuring device
KR100667035B1 (en) Defect monitoring apparatus and method of metallic material
JPS59111025A (en) Temperature measuring apparatus