JPH07146189A - Surface heat flux measuring instrument - Google Patents

Surface heat flux measuring instrument

Info

Publication number
JPH07146189A
JPH07146189A JP29327793A JP29327793A JPH07146189A JP H07146189 A JPH07146189 A JP H07146189A JP 29327793 A JP29327793 A JP 29327793A JP 29327793 A JP29327793 A JP 29327793A JP H07146189 A JPH07146189 A JP H07146189A
Authority
JP
Japan
Prior art keywords
heat
holding member
depth direction
heat flux
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29327793A
Other languages
Japanese (ja)
Inventor
Nobuhiro Uchida
伸宏 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29327793A priority Critical patent/JPH07146189A/en
Publication of JPH07146189A publication Critical patent/JPH07146189A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a surface heat flux measuring instrument which can measure the surface temperature and heat flux of a heat-resistance material accurately and for a long time and obtain an improved measurement result in real time without spending much time. CONSTITUTION:A plurality of thermocouples 51-53 are buried to a retention member 6 along the depth direction with a specific spacing and a sensor part 1 where a heat-insulating material 7 is provided so that the side surface and the lower surface of the retention member 6 are covered is buried to a heat- resistance material 9 to be measured while only a measurement surface 11 of one edge in the depth direction of the retention member 6 is exposed. The measurement surface 11 of the sensor part 1 and the surface of the heat- resistance material 9 around it are covered with a heat-resistance coating 8, temperature data measured by thermocouples 51-53 of the sensor part 1 are sent to an operation part 3 via a scanner amplifier 2, the operation part 3 calculates the surface temperature and heat flux via heat conduction inverse analysis operation, and then the operation result by the operation part 3 is fed to a display 4 for showing in real time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱材料開発等に適用
される表面熱流束計測に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to surface heat flux measurement applied to development of heat resistant materials and the like.

【0002】[0002]

【従来の技術】最近、極超音速機の開発が進められてい
るが、これとともにこのような極超音速機に使用される
耐熱材料の開発もさかんに行われている。ところで、こ
のような耐熱材料開発にあたっては、耐熱材料の長時間
にわたる表面温度および熱流束の計測が不可欠である。
しかし、耐熱材料の表面において直接センサにより温度
および熱流束の計測を行なうことはできない現状であ
る。
2. Description of the Related Art Recently, a hypersonic aircraft has been developed, and along with this, a heat-resistant material used in such a hypersonic aircraft has been vigorously developed. By the way, in developing such a heat-resistant material, it is essential to measure the surface temperature and heat flux of the heat-resistant material for a long time.
However, the temperature and heat flux cannot be measured directly on the surface of the heat resistant material by the sensor.

【0003】なぜなら、耐熱材料の表面にセンサを埋め
込むには、センサ自身に熱に対する耐久性がなかった
り、耐熱材料とセンサで表面輻射率が異なったり、気流
と耐熱材料表面との相互作用の度合いが異なる等の理由
による。
This is because when the sensor is embedded in the surface of the heat-resistant material, the sensor itself does not have resistance to heat, the surface emissivity differs between the heat-resistant material and the sensor, and the degree of interaction between the air flow and the surface of the heat-resistant material. Due to different reasons.

【0004】しかして、従来耐熱材料の表面温度および
熱流束の計測には、図2または図3に示すような方法が
用いられている。図2に示すものは、耐熱材料24内部
に、表面より所定の距離をもって複数の熱電対21乃至
23を並べて埋め込み、これら熱電対21乃至23によ
り耐熱材料24内部の温度変化を所定時間連続的に計測
し、その計測デ−タを基に温度分布解析を行ない、耐熱
材料24の表面の温度および熱流束を求めるようにして
いる。
However, conventionally, the method shown in FIG. 2 or 3 has been used to measure the surface temperature and heat flux of the heat-resistant material. In FIG. 2, a plurality of thermocouples 21 to 23 are embedded side by side within the heat resistant material 24 at a predetermined distance from the surface, and these thermocouples 21 to 23 continuously change the temperature inside the heat resistant material 24 for a predetermined time. The temperature is measured and the temperature distribution is analyzed based on the measured data to determine the temperature and heat flux of the surface of the heat resistant material 24.

【0005】また、図3は、耐熱材料の熱流束のみを衝
撃波風洞を用いて計測する場合に適用されるもので、薄
膜ゲ−ジ31を熱抵抗体32の表面に貼付けた薄膜ゲ−
ジタイプのセンサ30を耐熱材料34表面に埋め込み、
リ−ド線33を介して数msec程度の短時間で薄膜ゲ
−ジ31の電気抵抗変化を計測し、耐熱材料34表面の
熱流束を求めるようにしている。
Further, FIG. 3 is applied to the case where only the heat flux of the heat resistant material is measured by using the shock wave wind tunnel, and the thin film gauge 31 in which the thin film gauge 31 is attached to the surface of the thermal resistor 32 is used.
The di-type sensor 30 is embedded in the surface of the heat resistant material 34,
The electrical resistance change of the thin film gauge 31 is measured through the lead wire 33 in a short time of about several msec, and the heat flux on the surface of the heat resistant material 34 is obtained.

【0006】[0006]

【発明が解決しようとする課題】ところが、図2の方法
では、耐熱材料24の表面温度および熱流束を求めるの
に、多くの計測デ−タを必要とするため、長時間にわた
り計測を行ない、繰り返しその計測デ−タを基に温度分
布解析を行なわなければならないため、表面温度、熱流
束を求めるのに多大な時間を要するとともに、計測結果
の精度を高度のものとするには相当の経験を有する計測
者を必要とするという問題点があった。
However, in the method of FIG. 2, a large amount of measurement data is required to obtain the surface temperature and heat flux of the heat resistant material 24, and therefore, the measurement is performed for a long time, Since it is necessary to repeatedly analyze the temperature distribution based on the measured data, it takes a lot of time to obtain the surface temperature and heat flux, and considerable experience is required to improve the accuracy of the measurement results. There was a problem that a measurer having

【0007】また図3の方法では、長時間にわたる計測
を行なうと薄膜ゲ−ジ31が熱的に耐えられず溶融して
しまうおそれがあり、またこの方法で計測しうるのは熱
流束のみであり、適用できる範囲が限定されてしまうと
いう問題点があった。
In the method of FIG. 3, the thin film gauge 31 may not be thermally endured and may be melted when the measurement is performed for a long time, and only the heat flux can be measured by this method. However, there is a problem that the applicable range is limited.

【0008】本発明は上記のような事情に鑑みてなされ
たもので、耐熱材料の表面温度および熱流束を長時間に
わたって計測でき、良好な計測結果を時間をかけずにリ
アルタイムで得られる表面熱流束計測装置を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to measure the surface temperature and heat flux of a heat-resistant material over a long period of time, and obtain a good measurement result in real time without taking time. An object is to provide a bundle measuring device.

【0009】[0009]

【課題を解決するための手段】本発明は、熱物性値が既
知の保持部材、この保持部材の深さ方向に沿って所定間
隔で埋設された複数の熱検知素子、前記保持部材を囲む
ように設けられた断熱部材を有するセンサ部を具備し、
このセンサ部を、前記保持部材の深さ方向の一端を測定
面とし該測定面が計測対象の断熱材料表面に露出するよ
うに前記断熱材料中に埋め込むようにしている。
SUMMARY OF THE INVENTION According to the present invention, a holding member having a known thermophysical property value, a plurality of heat detecting elements embedded along the depth direction of the holding member at predetermined intervals, and the holding member are surrounded. A sensor unit having a heat insulating member provided in
This sensor portion is embedded in the heat insulating material so that one end of the holding member in the depth direction is a measurement surface and the measurement surface is exposed on the surface of the heat insulating material to be measured.

【0010】本発明は、熱物性値が既知の保持部材、こ
の保持部材の深さ方向に沿って所定間隔で埋設された複
数の熱検知素子、前記保持部材を囲むように設けられた
断熱部材を有し、前記保持部材の深さ方向の一端を測定
面とし該測定面が計測対象の断熱材料表面に露出するよ
うに前記断熱材料中に埋め込まれるセンサ部と、前記各
熱検知素子で測定される温度デ−タを所定時間間隔で出
力するスキャナと、このスキャナより与えられる各熱検
知素子からの温度デ−タに基づいて表面温度および熱流
束を演算する演算手段と、この演算手段での演算結果を
表示する表示手段により構成されている。
According to the present invention, a holding member having a known thermophysical property value, a plurality of heat detecting elements embedded at predetermined intervals along the depth direction of the holding member, and a heat insulating member provided so as to surround the holding member. And a sensor unit embedded in the heat insulating material so that one end in the depth direction of the holding member is a measurement surface and the measurement surface is exposed on the surface of the heat insulating material to be measured, and the measurement is performed by each of the heat sensing elements A scanner for outputting the temperature data to be output at a predetermined time interval, a calculation means for calculating the surface temperature and the heat flux based on the temperature data from each heat detection element provided by the scanner, and this calculation means. It is composed of display means for displaying the calculation result of.

【0011】[0011]

【作用】この結果、本発明によれば、熱物性値が既知の
保持部材、この保持部材の深さ方向に沿って所定間隔で
埋設された複数の熱検知素子、前記保持部材を囲むよう
に設けられた断熱部材を有するセンサ部を、前記保持部
材の深さ方向の一端を測定面とし該測定面が計測対象の
断熱材料表面に露出するように前記断熱材料中に埋め込
むようにしたので、各熱検知素子により断熱材料の表面
温度、熱流束に相当する熱流を正確にとらえることがで
きる。
As a result, according to the present invention, a holding member having a known thermophysical property value, a plurality of heat detecting elements embedded at predetermined intervals along the depth direction of the holding member, and the holding member are surrounded. Since the sensor unit having the provided heat insulating member is embedded in the heat insulating material so that one end in the depth direction of the holding member is the measurement surface and the measurement surface is exposed at the surface of the heat insulating material to be measured, Each heat detecting element can accurately detect the surface temperature of the heat insulating material and the heat flow corresponding to the heat flux.

【0012】また、本発明によれば、熱物性値が既知の
保持部材、この保持部材の深さ方向に沿って所定間隔で
埋設された複数の熱検知素子、前記保持部材を囲むよう
に設けられた断熱部材を有するセンサ部を、前記保持部
材の深さ方向の一端を測定面とし該測定面が計測対象の
断熱材料表面に露出するように前記断熱材料中に埋め込
み、前記各熱検知素子で測定される温度デ−タをスキャ
ナにより所定時間間隔で出力し、このスキャナより与え
られる各熱検知素子からの温度デ−タに基づいて演算手
段により表面温度および熱流束を演算し、この演算手段
での演算結果を表示手段による表示するようにしたの
で、センサ部で検出される耐熱材料の表面温度および熱
流束をリアルタイムで演算、表示できる。
Further, according to the present invention, a holding member having a known thermophysical property value, a plurality of heat detecting elements embedded at predetermined intervals in the depth direction of the holding member, and the holding member are provided so as to surround the holding member. A sensor unit having a heat insulating member is embedded in the heat insulating material so that one end of the holding member in the depth direction is a measurement surface and the measurement surface is exposed on the surface of the heat insulating material to be measured, and each of the heat sensing elements The temperature data measured by the scanner is output at a predetermined time interval by the scanner, the surface temperature and the heat flux are calculated by the calculating means based on the temperature data from each heat detecting element provided by the scanner, and this calculation is performed. Since the calculation result of the means is displayed by the display means, the surface temperature and heat flux of the heat resistant material detected by the sensor unit can be calculated and displayed in real time.

【0013】[0013]

【実施例】以下、本発明の一実施例を図面に従い説明す
る。図1は、本実施例における表面熱流束計測装置の概
略構成を示した断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of a surface heat flux measuring device in this embodiment.

【0014】図1における1は、本発明における表面熱
流束計測装置のセンサ部を示している。センサ部1にお
いて6は、例えば銅等の熱物性値が既知の材料からなる
熱検出素子保持部材で、この保持部材6には、その深さ
方向に沿って熱検出素子である複数(図示例では3個)
の熱電対51乃至53を所定の間隔をもって埋め込んで
いる。そして、このような保持部材6は側面および下面
を囲むように断熱材7を設けている。
Reference numeral 1 in FIG. 1 shows a sensor portion of the surface heat flux measuring device according to the present invention. In the sensor section 1, 6 is a heat detecting element holding member made of a material having a known thermophysical property value such as copper, and the holding member 6 has a plurality of heat detecting elements along the depth direction (illustrated example). Then 3)
The thermocouples 51 to 53 are embedded at a predetermined interval. Further, such a holding member 6 is provided with a heat insulating material 7 so as to surround the side surface and the lower surface.

【0015】このように構成したセンサ部1は計測対象
である耐熱材料9中に保持部材6の深さ方向の一端の測
定面11のみを露出させて埋め込むようにする。この場
合、センサ部1の測定面11と耐熱材料9表面とが面一
になるようにしている。そして、センサ部1の測定面1
1とその周辺の耐熱材料9の表面を耐熱コ−ティング8
で被覆している。この耐熱コ−ティング8は表面におけ
る輻射率を耐熱材料9と同じものが用いられている。
In the sensor portion 1 thus constructed, only the measurement surface 11 at one end in the depth direction of the holding member 6 is exposed and embedded in the heat resistant material 9 to be measured. In this case, the measurement surface 11 of the sensor unit 1 and the surface of the heat resistant material 9 are flush with each other. Then, the measurement surface 1 of the sensor unit 1
Heat-resistant coating 8 on the surface of heat-resistant material 1 and its surroundings
It is covered with. The heat resistant coating 8 has the same emissivity on the surface as the heat resistant material 9.

【0016】一方、センサ部1の各熱電対51乃至53
で計測された温度デ−タはスキャナ・アンプ2を介して
演算部3に送られるようにしている。スキャナ・アンプ
2は、各熱電対51乃至53で計測された温度デ−タを
所定時間間隔で出力するもので、演算部3は、この所定
時間間隔で与えられる各熱電対51乃至53からの温度
デ−タに基づいた熱伝導逆解析演算を通して表面温度お
よび熱流束を演算するようにしている。
On the other hand, the thermocouples 51 to 53 of the sensor section 1
The temperature data measured in (1) is sent to the calculation section 3 via the scanner / amplifier 2. The scanner / amplifier 2 outputs the temperature data measured by the thermocouples 51 to 53 at predetermined time intervals, and the arithmetic unit 3 outputs the temperature data from the thermocouples 51 to 53 provided at the predetermined time intervals. The surface temperature and heat flux are calculated through the inverse heat conduction analysis calculation based on the temperature data.

【0017】そして、この演算部3での演算結果を表示
部4に与えるようにしている。この表示部4は、演算部
3からの演算結果をリアルタイムで表示するようにして
いる。
The calculation result of the calculation unit 3 is given to the display unit 4. The display unit 4 displays the calculation result from the calculation unit 3 in real time.

【0018】このような構成において、耐熱材料9表面
が極超音速流にさらされると、熱流Hが耐熱コ−ティン
グ8を介して耐熱材料9表面に、その垂直方向から与え
られる。この熱流Hは、耐熱コ−ティング8を介してセ
ンサ部1の測定面11からも与えられ、保持部材6中の
熱電対51乃至53に伝えられ、それぞれ熱電対51乃
至53より温度デ−タとして検出される。
In such a structure, when the surface of the heat-resistant material 9 is exposed to the hypersonic flow, the heat flow H is applied to the surface of the heat-resistant material 9 through the heat-resistant coating 8 in the vertical direction. The heat flow H is also given from the measurement surface 11 of the sensor unit 1 via the heat resistant coating 8 and transmitted to the thermocouples 51 to 53 in the holding member 6, and the temperature data is supplied from the thermocouples 51 to 53, respectively. Detected as.

【0019】この場合、センサ部1は、熱物性値が既知
の保持部材6周囲を断熱材7で囲むようにしているの
で、センサ部1に与えられる熱流Hは、耐熱材料9の存
在で周囲からの影響を受けることなく保持部材6中を進
むようになり、これによりセンサ部1内部での熱流は、
このセンサ部1の深さ方向に近似できるようになる。そ
して各熱電対51乃至53により、センサ部1の深さ方
向に対応する熱流を検出し、温度デ−タとして出力する
ことになる。
In this case, since the sensor portion 1 surrounds the periphery of the holding member 6 having a known thermophysical property value with the heat insulating material 7, the heat flow H given to the sensor portion 1 due to the presence of the heat-resistant material 9 from the surroundings. The heat flow in the holding member 6 is made to proceed without being affected, so that the heat flow inside the sensor unit 1 is
It becomes possible to approximate the depth direction of the sensor unit 1. The thermocouples 51 to 53 detect the heat flow corresponding to the depth direction of the sensor unit 1 and output it as temperature data.

【0020】各熱電対51乃至53で測定される温度デ
−タは、スキャナ・アンプ2より所定時間間隔で出力さ
れ、演算部3に送られ、ここで各熱電対51乃至53か
らの温度デ−タに基づいた熱伝導逆解析演算を通して表
面温度および熱流束が演算され、この演算結果が表示部
4に送られ、リアルタイムで表示される。
The temperature data measured by each of the thermocouples 51 to 53 is output from the scanner / amplifier 2 at a predetermined time interval and sent to the arithmetic unit 3, where the temperature data from each of the thermocouples 51 to 53 is output. -The surface temperature and the heat flux are calculated through the heat conduction inverse analysis calculation based on the data, and the calculation result is sent to the display unit 4 and displayed in real time.

【0021】従って、このような実施例によれば、保持
部材6にその深さ方向に沿って複数の熱電対51乃至5
3を所定の間隔をもって埋め込み、保持部材6の側面お
よび下面を囲むように断熱材7を設けたセンサ部1を計
測対象である耐熱材料9中に保持部材6の深さ方向の一
端の測定面11のみを露出させて埋め込むことにより、
センサ部1に与えられる熱流Hを保持部材6中を進むよ
うにできるので、各熱電対51乃至53により耐熱材料
9の表面温度、熱流束に相当する熱流を正確にとらえる
ことができ、耐熱材料9の表面温度および熱流束を精度
よく長時間にわたって計測でき、良好な計測結果を得ら
れる。
Therefore, according to such an embodiment, a plurality of thermocouples 51 to 5 are formed on the holding member 6 along the depth direction thereof.
3 is embedded at a predetermined interval, and the sensor portion 1 provided with the heat insulating material 7 so as to surround the side surface and the lower surface of the holding member 6 is placed in the heat-resistant material 9 to be measured. By exposing and embedding only 11,
Since the heat flow H given to the sensor unit 1 can be made to travel through the holding member 6, the surface temperature of the heat-resistant material 9 and the heat flow corresponding to the heat flux can be accurately captured by the thermocouples 51 to 53. The surface temperature and heat flux of No. 9 can be measured accurately over a long period of time, and good measurement results can be obtained.

【0022】また、センサ部1の各熱電対51乃至53
で計測された温度デ−タはスキャナ・アンプ2を介して
演算部3に送られ、演算部3は熱伝導逆解析演算を通し
て表面温度および熱流束を演算し、この演算結果を表示
部4に表示するようにしているので、計測結果をリアル
タイムで知ることができる。
The thermocouples 51 to 53 of the sensor section 1 are also provided.
The temperature data measured in step 2 is sent to the calculation part 3 via the scanner / amplifier 2, and the calculation part 3 calculates the surface temperature and the heat flux through the heat conduction inverse analysis calculation, and the calculation result is displayed on the display part 4. Since it is displayed, the measurement result can be known in real time.

【0023】なお、本発明は上記実施例のみに限定され
ず、要旨を変更しない範囲で適時変形して実施できる。
例えば、上記実施例では3つの熱電対を用いたが、任意
の数の熱電対を用いることができ、多数であればより精
度の高い計測結果が得られる。
The present invention is not limited to the above-mentioned embodiments, and can be carried out by appropriately modifying it within the scope of the invention.
For example, although three thermocouples are used in the above-described embodiment, any number of thermocouples can be used, and if the number is large, a more accurate measurement result can be obtained.

【0024】[0024]

【発明の効果】本発明によれば、熱物性値が既知の保持
部材、この保持部材の深さ方向に沿って所定間隔で埋設
された複数の熱検知素子、前記保持部材を囲むように設
けられた断熱部材を有するセンサ部を、前記保持部材の
深さ方向の一端を測定面とし該測定面が計測対象の断熱
材料表面に露出するように前記断熱材料中に埋め込むよ
うにしたので、各熱検知素子により断熱材料の表面温
度、熱流束に相当する熱流を正確にとらえることがで
き、耐熱材料の表面温度および熱流束を精度よく長時間
にわたって計測できる。
According to the present invention, a holding member having a known thermophysical property value, a plurality of heat detecting elements embedded at predetermined intervals along the depth direction of the holding member, and the holding member are provided so as to surround the holding member. Since the sensor portion having the heat insulating member is embedded in the heat insulating material so that one end in the depth direction of the holding member is the measurement surface and the measurement surface is exposed on the surface of the heat insulating material to be measured, The heat sensing element can accurately detect the surface temperature of the heat insulating material and the heat flow corresponding to the heat flux, and the surface temperature and the heat flux of the heat resistant material can be accurately measured for a long time.

【0025】また、本発明によれば、熱物性値が既知の
保持部材、この保持部材の深さ方向に沿って所定間隔で
埋設された複数の熱検知素子、前記保持部材を囲むよう
に設けられた断熱部材を有するセンサ部を、前記保持部
材の深さ方向の一端を測定面とし該測定面が計測対象の
断熱材料表面に露出するように前記断熱材料中に埋め込
み、前記各熱検知素子で測定される温度デ−タをスキャ
ナにより所定時間間隔で出力し、このスキャナより与え
られる各熱検知素子からの温度デ−タに基づいて演算手
段により表面温度および熱流束を演算し、この演算手段
での演算結果を表示手段による表示するようにしたの
で、センサ部で検出される耐熱材料の表面温度および熱
流束をリアルタイムで演算表示でき、これら計測のため
の作業能率を大幅の向上させることができる。
Further, according to the present invention, a holding member having a known thermophysical property value, a plurality of heat detecting elements embedded at predetermined intervals along the depth direction of the holding member, and the holding member are provided so as to surround the holding member. A sensor unit having a heat insulating member is embedded in the heat insulating material so that one end of the holding member in the depth direction is a measurement surface and the measurement surface is exposed on the surface of the heat insulating material to be measured, and each of the heat sensing elements The temperature data measured by the scanner is output at a predetermined time interval by the scanner, the surface temperature and the heat flux are calculated by the calculating means based on the temperature data from each heat detecting element provided by the scanner, and this calculation is performed. Since the calculation result by the means is displayed by the display means, the surface temperature and heat flux of the heat-resistant material detected by the sensor can be calculated and displayed in real time, and the work efficiency for these measurements can be significantly improved. It is possible to above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における表面熱流束計測装置
の構成を示す断面図。
FIG. 1 is a cross-sectional view showing the configuration of a surface heat flux measuring device according to an embodiment of the present invention.

【図2】従来の耐熱材料の表面温度および熱流束の計測
方法を示す図。
FIG. 2 is a diagram showing a conventional method for measuring the surface temperature and heat flux of a heat-resistant material.

【図3】従来の耐熱材料の熱流束の計測方法を示す図。FIG. 3 is a diagram showing a conventional method for measuring the heat flux of a heat resistant material.

【符号の説明】[Explanation of symbols]

H…熱流、 1…センサ部、 2…スキャナ・アンプ、 3…演算部、 4…表示部、 51…熱電対、 52…熱電対、 53…熱電対、 6…保持部材、 7…断熱材、 8…耐熱コ−ティング、 9…耐熱材料、 11…測定面、 21…熱電対、 22…熱電対、 23…熱電対、 24…耐熱材料、 30…センサ、 31…薄膜ゲ−ジ、 32…熱抵抗体、 33…リ−ド線、 34…耐熱材料。 H ... Heat flow, 1 ... Sensor part, 2 ... Scanner amplifier, 3 ... Arithmetic part, 4 ... Display part, 51 ... Thermocouple, 52 ... Thermocouple, 53 ... Thermocouple, 6 ... Holding member, 7 ... Insulating material, 8 ... Heat resistant coating, 9 ... Heat resistant material, 11 ... Measuring surface, 21 ... Thermocouple, 22 ... Thermocouple, 23 ... Thermocouple, 24 ... Heat resistant material, 30 ... Sensor, 31 ... Thin film gauge, 32 ... Thermal resistor, 33 ... Lead wire, 34 ... Heat resistant material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱物性値が既知の保持部材、この保持部
材の深さ方向に沿って所定間隔で埋設された複数の熱検
知素子、前記保持部材を囲むように設けられた断熱部材
を有するセンサ部を具備し、 このセンサ部は、前記保持部材の深さ方向の一端を測定
面とし該測定面が計測対象の断熱材料表面に露出するよ
うに前記断熱材料中に埋め込まれることを特徴とする表
面熱流束計測装置。
1. A holding member having a known thermophysical property value, a plurality of heat detecting elements embedded at predetermined intervals along the depth direction of the holding member, and a heat insulating member provided so as to surround the holding member. A sensor unit is provided, wherein the sensor unit is embedded in the heat insulating material such that one end in the depth direction of the holding member is a measurement surface and the measurement surface is exposed on the surface of the heat insulating material to be measured. A surface heat flux measuring device.
【請求項2】 熱物性値が既知の保持部材、この保持部
材の深さ方向に沿って所定間隔で埋設された複数の熱検
知素子、前記保持部材を囲むように設けられた断熱部材
を有し、前記保持部材の深さ方向の一端を測定面とし該
測定面が計測対象の断熱材料表面に露出するように前記
断熱材料中に埋め込まれるセンサ部と、 前記各熱検知素子で測定される温度デ−タを所定時間間
隔で出力するスキャナと、 このスキャナより与えられる各熱検知素子からの温度デ
−タに基づいて表面温度および熱流束を演算する演算手
段と、 この演算手段での演算結果を表示する表示手段とを具備
したことを特徴とする表面熱流束計測装置。
2. A holding member having a known thermophysical property value, a plurality of heat detecting elements embedded at predetermined intervals in a depth direction of the holding member, and a heat insulating member provided so as to surround the holding member. Then, the one end in the depth direction of the holding member is used as a measurement surface, and the measurement portion is embedded in the heat insulating material so that the measurement surface is exposed to the surface of the heat insulating material to be measured. A scanner which outputs temperature data at a predetermined time interval, a calculation means for calculating the surface temperature and heat flux based on the temperature data from each heat detection element provided by this scanner, and calculation by this calculation means A surface heat flux measuring device, comprising: a display unit for displaying a result.
JP29327793A 1993-11-24 1993-11-24 Surface heat flux measuring instrument Withdrawn JPH07146189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29327793A JPH07146189A (en) 1993-11-24 1993-11-24 Surface heat flux measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29327793A JPH07146189A (en) 1993-11-24 1993-11-24 Surface heat flux measuring instrument

Publications (1)

Publication Number Publication Date
JPH07146189A true JPH07146189A (en) 1995-06-06

Family

ID=17792750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29327793A Withdrawn JPH07146189A (en) 1993-11-24 1993-11-24 Surface heat flux measuring instrument

Country Status (1)

Country Link
JP (1) JPH07146189A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013092792A1 (en) 2011-12-21 2013-06-27 Institut De Radioprotection Et De Surete Nucleaire Self-calibrated flow meter
WO2014104077A1 (en) * 2012-12-27 2014-07-03 三菱重工業株式会社 Heat flux sensor and method for manu facturing same
JP2019032297A (en) * 2017-04-24 2019-02-28 ザ・ボーイング・カンパニーThe Boeing Company Apparatus and method for emulating temperature during thermal cure cycle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013092792A1 (en) 2011-12-21 2013-06-27 Institut De Radioprotection Et De Surete Nucleaire Self-calibrated flow meter
FR2985019A1 (en) * 2011-12-21 2013-06-28 Irsn SELF-CALIBRATION FLUXMETER
JP2015502548A (en) * 2011-12-21 2015-01-22 インスティテュート ドゥ ラディオプロテクション エ ドゥ シュルテ ヌクレア Process for estimating thermophysical value of material, measurement process including the estimation process, and self-adjusting flow meter
US9835506B2 (en) 2011-12-21 2017-12-05 Institut De Radioprotection Et De Sûreté Nucléaire Self-calibrated flow meter
WO2014104077A1 (en) * 2012-12-27 2014-07-03 三菱重工業株式会社 Heat flux sensor and method for manu facturing same
JP2014126545A (en) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Heat flux sensor and method for manufacturing heat flux sensor
US9909936B2 (en) 2012-12-27 2018-03-06 Mitsubishi Heavy Industries, Ltd. Heat flux sensor and method for manufacturing same
JP2019032297A (en) * 2017-04-24 2019-02-28 ザ・ボーイング・カンパニーThe Boeing Company Apparatus and method for emulating temperature during thermal cure cycle
US11338480B2 (en) 2017-04-24 2022-05-24 The Boeing Company Apparatus and method for emulating temperature during a thermal cure cycle

Similar Documents

Publication Publication Date Title
EP1947450A1 (en) Method and device for measuring thermal conductivity, and gas component ratio measuring device
ATE208036T1 (en) ACCURATE HIGH SPEED TEMPERATURE MEASUREMENT DEVICE
EP0159438A2 (en) Multi-layered thin film heat transfer gauge
EP0663586A1 (en) Gas flow and temperature probe, and gas flow and temperature monitor system including one or more such probes
US4522512A (en) Thermal conductivity measurement method
US5044764A (en) Method and apparatus for fluid state determination
US11193901B2 (en) Thermal conductivity measuring device, thermal conductivity measuring method and vacuum evaluation device
US4276768A (en) Relates to apparatus for measuring the dew point
US4050302A (en) Thermoelectric heat flow transducer
US7377687B2 (en) Fluid temperature measurement
US7234860B2 (en) Dynamic dew point analysis method and a device for determining the dew point temperature and relative humidity
US3382714A (en) Heat-sensing instrument
US5217304A (en) Electrical network method for the thermal or structural characterization of a conducting material sample or structure
JPH07146189A (en) Surface heat flux measuring instrument
EP0026673B1 (en) A method for measurement of temperature distribution over the surface of a sample, and a system for performing such measurement
US4475392A (en) Skin friction gage for time-resolved measurements
JPH09329503A (en) Temperature measuring apparatus with function for correction of heat transfer
JP2006071565A (en) Method and apparatus for testing heat insulation performance of heat insulating material
US3299275A (en) Measuring surface temperatures of ablating materials with thermocouple and photocell
US3691833A (en) Device for detecting velocity of gas thermoelectrically
JP3969647B2 (en) Defect inspection method and apparatus
JPS59160788A (en) Method and apparatus for measuring direction and velocity of flow of ground water
JP2577110B2 (en) Street accuracy measuring device and street accuracy measuring method at construction site
Pennypacker Instrumentation for epidemiology
JP3246861B2 (en) Thermal characteristic measuring device and soil moisture content measuring device using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130