JPS59160788A - Method and apparatus for measuring direction and velocity of flow of ground water - Google Patents

Method and apparatus for measuring direction and velocity of flow of ground water

Info

Publication number
JPS59160788A
JPS59160788A JP58034251A JP3425183A JPS59160788A JP S59160788 A JPS59160788 A JP S59160788A JP 58034251 A JP58034251 A JP 58034251A JP 3425183 A JP3425183 A JP 3425183A JP S59160788 A JPS59160788 A JP S59160788A
Authority
JP
Japan
Prior art keywords
heater
velocity
ground water
temperature
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58034251A
Other languages
Japanese (ja)
Other versions
JPH0619472B2 (en
Inventor
Shigeo Yamazaki
茂雄 山崎
Kaoru Furusawa
古沢 薫
Mitsumaro Koike
小池 光麿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP58034251A priority Critical patent/JPH0619472B2/en
Publication of JPS59160788A publication Critical patent/JPS59160788A/en
Publication of JPH0619472B2 publication Critical patent/JPH0619472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
    • G01V9/02Determining existence or flow of underground water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To measure direction and velocity of flow of ground water at an observation well by providing a heater and three or more temperature sensors non- linearly on the same surface of surrounding water in an observation well. CONSTITUTION:Ground water 17 is standing in an observation well about 50cm in diameter and several tens of meters deep. A detecting section 10 is fixed horizontally by a cable 18 and immersed in ground water 17. A heater 12 is provided at the center of the detecting section 10, and four temperature sensors 13- 16 are arranged at a distance of 90 deg. and at equal distance from the heater 12 in the same surface of surrounding water. Temperature information is frequency converted by an electronic circuit 19 and inputted to a signal processing device on the ground. These are protected by a reticulated sensor protector 11. Temperature of ground water is raised by the heater 12, and temperatur rise at points of specified distance is measured by sensors. Thus, direction and velocity of flow of ground water can be measured.

Description

【発明の詳細な説明】 本発明は地下数10mの地下水の流向及び流速を測定す
る方法及びその装装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for measuring the flow direction and velocity of groundwater several tens of meters underground.

第1図で従来の測定方法を説明する。第1図は平面図で
1〜5は観測井で、中心に位置する観測井1に一時的に
食塩水を投入し、その周囲の観測井2〜5で時間と共に
観測井内の水の塩分濃度変化を調べることにより地下水
の流向流速を検知していた。
A conventional measurement method will be explained with reference to FIG. Figure 1 is a plan view, and 1 to 5 are observation wells.Saline water is temporarily injected into the observation well 1 located in the center, and the salinity of the water in the observation well increases over time in the surrounding observation wells 2 to 5. The flow direction and speed of groundwater was detected by examining changes.

このような従来の方法は複数の観測井を必要とすること
、観測井の内部にある舟定の成分を待つ液体又は固体を
注入する必要があり地下水を汚染する恐れがあること、
等の多くの欠点を有している。不発明は従来の欠点全解
消すべくなされたもので取扱いが拌易で、複数の観測井
を必要としない経済的な測定方法と該測定方法による地
下水流向流速計を提案するものである。
Such conventional methods require multiple observation wells, and require injection of liquid or solid to wait for the components present inside the observation well, which may contaminate groundwater;
It has many drawbacks such as. The present invention has been made to eliminate all the drawbacks of the conventional method, and proposes an economical measurement method that is easy to handle and does not require multiple observation wells, and a groundwater current meter using the measurement method.

本発明を第2図及び第3図を用いて説明する。The present invention will be explained using FIGS. 2 and 3.

第2図において約5t)mの直住で深さ数10mの観測
井lに地下水17が貯留している。検知部10が地下水
17に埋没し、検知部10が水平になるようにケーブル
18で固定する。
In Figure 2, groundwater 17 is stored in an observation well l several tens of meters deep, with a surface area of approximately 5 t)m. The detection part 10 is buried in groundwater 17 and fixed with a cable 18 so that the detection part 10 is horizontal.

検知部10には中心にヒータ12を、当該ヒ−タ12の
周囲にヒータ12と同一水平面内90゜間隔でヒータ1
2から等距離に4個の温1」センサ13〜16が配置樅
され、当該4個の温度センサ13〜16はヒータ12と
共に電子回路部19に接続され、各点の温度情報は前記
電子回路部19でし11えば周波数信号に変換し、ケー
ブル18で観測井1の外へ取り出され、図示していない
が地上の適宜のイ8°号処理装置に入力される。
The detection unit 10 has a heater 12 in the center, and heaters 1 are arranged around the heater 12 at 90° intervals in the same horizontal plane as the heater 12.
Four temperature sensors 13 to 16 are arranged equidistantly from the temperature sensor 2, and the four temperature sensors 13 to 16 are connected to the electronic circuit section 19 together with the heater 12, and the temperature information at each point is transmitted to the electronic circuit section 19. The signal is converted into a frequency signal by the section 19 and taken out of the observation well 1 via a cable 18, and is input to an appropriate processing device on the ground (not shown).

′重子回路部19及び温度センサ13〜16の周囲は筒
状のセンサプロテクタ11で保護されており、特にセン
サプロテクタ11の渦1イセ/す13〜16がd向する
部分は地下水の(i+t7′1.をさまた′v′fない
程度に網目状に構成されている。
The surroundings of the multiplex circuit section 19 and temperature sensors 13 to 16 are protected by a cylindrical sensor protector 11, and in particular, the part of the sensor protector 11 where the vortices 1/s 13 to 16 are in the d direction is exposed to groundwater (i+t7' 1. It is constructed in a mesh-like manner to the extent that it does not interfere with ``v''f.

次に本装置候を用いた流向、流速測定法ケ第2図及び第
3図を用いて説明する。第3図の1はヒータ12の動作
状態を示し、期間t1間たけヒータ12が動作し−Cい
ることを表わしている。
Next, a flow direction and flow velocity measurement method using this apparatus will be explained with reference to FIGS. 2 and 3. 1 in FIG. 3 indicates the operating state of the heater 12, and indicates that the heater 12 is operating during the period t1.

第3図の2は温度センサ14.3は温度セ/す16、i
は温度センサ13、及び5は温度セ/−太15が時間の
経過につれて感応し、変化している様子を示している。
2 in FIG. 3 is a temperature sensor 14.3 is a temperature sensor 16, i
5 shows how the temperature sensor 13 and temperature sensor 15 react and change over time.

すなわち、測定はヒータ12に時間t!間通′市し、ヒ
ータ12に接する地下水を温度上昇させ、ヒータ12か
ら一定距離隔った点の温度上昇を却ることで地下水の流
量流速を知るものであるり地下水17の流れがどの方向
にもなければ4個の温度センサ13〜・16が時間の経
過とともにほぼ同じようにヒータ加熱による温度変化に
感応し、ヒータ12に通電後t2で最高温度を検出し、
以後次第に低くなる、この様子を第3図2〜5の実線で
表わしている。
That is, the measurement is performed on the heater 12 for a time t! By increasing the temperature of the groundwater in contact with the heater 12 and calculating the temperature rise at a point a certain distance away from the heater 12, the flow velocity of the groundwater can be determined and the direction in which the groundwater 17 is flowing can be determined. If not, the four temperature sensors 13 to 16 respond to temperature changes due to heater heating in almost the same way over time, and detect the maximum temperature at t2 after energizing the heater 12.
This state of gradually decreasing thereafter is shown by the solid lines in FIGS. 3-5.

次にヒータ12に前記したと同じ占うに1.間通電し、
温度センサ13〜16で温度を測定したとき、第3図2
〜5の点線のような結果が得られ、温度センサ14.1
6.13及び15が最も高い温度に達した時間がヒータ
12に通電後それぞれt31t41tl!%及びt6と
する(この時間は前記した地上の信号処理装置で痺出す
るう)○ヒータ12の表面から各温度センサ13〜16
までの距離をtとし、温度センサ13々14を結ぶ線を
X軸、1品度センサ15と温度センサ16を結ぶ線をY
軸とすると、 一方、流速υは or + try’ %その方向はX
軸となす角度で表わすとθ−jan  1丁であり、こ
れらの式に上記2つの関係を代入することで地下水の流
速、流向を知ることができる。
Next, apply the same fortune-telling to the heater 12 as described above. energized for a while,
When the temperature is measured by the temperature sensors 13 to 16, Fig. 3 2
A result like the dotted line of ~5 is obtained, and the temperature sensor 14.1
6. The time when 13 and 15 reached the highest temperature is t31t41tl after energizing the heater 12, respectively! % and t6 (this time is determined by the above-mentioned signal processing device on the ground) ○ Each temperature sensor 13 to 16 is
The distance from
On the other hand, the flow velocity υ is or + try' %, and its direction is
Expressed as an angle with the axis, it is θ-jan 1, and by substituting the above two relationships into these equations, the flow velocity and flow direction of groundwater can be determined.

以上の実施例は温゛+wセンサを4個設けf′C,り1
jを示わたが、3個以上あれば計測可能である。また、
測定方法についていえば、温度センサば1個とし、この
温度センサの位置を変えることで3個所以上の地下水温
を測定することによっても本発明の測定方法全実施する
ことができる0このように本発明によれに、地下水の流
向及び流速が単独の観測井で測定可能となり、観測費用
が大幅に削減でき、しかも地下水の水質Vこ及ばす影響
がほとんどないこと等の利益が得られ、本発明の効果は
極めて顕著である。
In the above embodiment, four temperature +w sensors are provided, f'C, ri1
j is shown, but it can be measured if there are three or more. Also,
Regarding the measurement method, the entire measurement method of the present invention can be carried out by using only one temperature sensor and measuring the groundwater temperature at three or more locations by changing the position of this temperature sensor. According to the invention, the flow direction and velocity of groundwater can be measured with a single observation well, the observation cost can be significantly reduced, and there are advantages such as almost no influence on the quality of groundwater. The effect is extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を説明するだめのもので複数の観測井を
示している。第2図及び第3図は本発明を説明するため
のもので、第2図は検知部の構成を示し、第3図は測定
結果を示すグラフである。 1、・・・観測井     10・・・検知部12・・
・ヒータ    13〜16・・・温度センサ。 代理人  谷 山 輝 雄゛・ 巳−二−ち 手続補正書 昭和ぐS平行 JM願第、M−2り7号3、補正をする
者 “l f’lとの関係  出 願 人 4、代理人 住 所  東京都f代1t1区丸の内2丁目6番2号丸
の内へ重洲ビル330−−右→廿−−−十一 補    正    書 本願明細書中下記事項を補正いたします。 記 1、第2頁下から4〜3行目に 「検知部10が・・・・・が」とあるを「検知部10は
地下水17に埋没し、かつJと訂正する。 2、第3貴下から6行目に [第3図の1]とあるを 「第3図の(1)」と訂正する。 3、第3頁下から3行目に 「第3図の2・・・・・3はjとあるを「第3図の(2
)は温度センサ14、(3)はjと訂正する。 4、第3頁下から2行目に 「4は・・・・・及び5はコとあるを 「(4)は温度センサ13、及び(5)に1と訂正する
。 5、箕4頁11行目及び144行目 「2〜5」とあるをそれぞれ 「(2)〜(5)]と訂正する。 6.第5頁3行目に 「X軸1とあるを 「X軸1と訂正する。 7、第5頁4行目に [?/軸1とあるを 「Y軸」と訂正する。 1:、−、−、:’a
FIG. 1 is for illustration purposes only and shows a plurality of observation wells. FIGS. 2 and 3 are for explaining the present invention; FIG. 2 shows the configuration of the detection section, and FIG. 3 is a graph showing the measurement results. 1. Observation well 10... Detection section 12...
- Heater 13-16...Temperature sensor. Agent Teru Taniyama Yuji Mi-2 Procedural Amendment Document Showa Gus Parallel JM Application No. M-2-7 No. 3, Relationship with the person making the amendment “l f'l” Applicant 4, Agent Address: 2-6-2 Marunouchi, 2-6-2, Fyo 1t1-ku, Tokyo Shigesu Building 330 - Right → 廿 - Eleventh Amendment The following matters in the specification of this application are amended. Notes 1 and 1 On the 4th to 3rd lines from the bottom of page 2, the statement "The detection unit 10 is..." is corrected to "The detection unit 10 is buried in the groundwater 17, and J." 2. From No. 3 to 6 In the first line, ``1 in Figure 3'' is corrected to ``(1) in Figure 3''. 3. In the third line from the bottom of the third page, ``2...3 in Figure 3 is j'' is changed to ``(2 in Figure 3)''.
) is corrected as temperature sensor 14, and (3) is corrected as j. 4. In the second line from the bottom of page 3, "4 is ... and 5 is ko" is corrected to "(4) is temperature sensor 13, and (5) is 1." 5. Minoh page 4 In lines 11 and 144, “2-5” should be corrected as “(2)-(5)” respectively. 6. On page 5, line 3, “X-axis 1” should be changed to “X-axis 1”. Correct. 7. In the 4th line of page 5, correct [?/Axis 1] to ``Y-axis.'' 1:, -, -, :'a

Claims (1)

【特許請求の範囲】 1 地下水中の1点を加熱し、加熱点から離隔した当該
加熱点の周囲で、かつ配置関係が非直線的な3ケ所以上
で、上記地下水の温度変化を計測することにより流向、
流速を測定するようにしたことを特徴とする地下水の部
間、流速測定方法。 2 地F水の流向、流速を測定する装置において、同一
水平面内に非直線状に設定された3個以上の温鍵センサ
と、当該3個以上の温度センサで囲まれる内部に配置さ
れたヒータとで構成されたこと全特徴とする地下水の流
向、流速測定装置。
[Claims] 1. Heating one point in the groundwater and measuring temperature changes in the groundwater at three or more locations around the heating point that are separated from the heating point and in a non-linear arrangement relationship. Due to the flow direction,
A method for measuring the flow velocity of underground water, characterized by measuring the flow velocity. 2 In a device that measures the flow direction and velocity of ground water, three or more temperature key sensors set in a non-linear manner in the same horizontal plane and a heater placed inside the area surrounded by the three or more temperature sensors. A device for measuring groundwater flow direction and velocity.
JP58034251A 1983-03-02 1983-03-02 Groundwater flow direction and flow velocity measuring method and device Expired - Lifetime JPH0619472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58034251A JPH0619472B2 (en) 1983-03-02 1983-03-02 Groundwater flow direction and flow velocity measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58034251A JPH0619472B2 (en) 1983-03-02 1983-03-02 Groundwater flow direction and flow velocity measuring method and device

Publications (2)

Publication Number Publication Date
JPS59160788A true JPS59160788A (en) 1984-09-11
JPH0619472B2 JPH0619472B2 (en) 1994-03-16

Family

ID=12408945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58034251A Expired - Lifetime JPH0619472B2 (en) 1983-03-02 1983-03-02 Groundwater flow direction and flow velocity measuring method and device

Country Status (1)

Country Link
JP (1) JPH0619472B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281571A (en) * 1985-10-04 1987-04-15 Rion Co Ltd Apparatus for detecting fluid
JPH01153965A (en) * 1987-12-11 1989-06-16 Jdc Corp Method and instrument for measuring flow direction and flow velocity of underground water
JP2004507753A (en) * 2000-09-01 2004-03-11 ハネウェル・インターナショナル・インコーポレーテッド Microsensor for measuring velocity and angular direction of incident airflow
JP2007271325A (en) * 2006-03-30 2007-10-18 Ngk Insulators Ltd Flow sensor for high temperature
WO2016068736A1 (en) 2014-10-31 2016-05-06 Neostrain Spółka Z Ograniczona Odpowiedzialnoscia Method, system and prefabricated multi-sensor integrated cable for detection and monitoring of a fluid flow, in particular of a fluid flow in filtration processes, especially of leakage in constructions and/or in ground
CN106769779A (en) * 2017-01-22 2017-05-31 中国建筑设计咨询有限公司 A kind of device and method for calculating seepage action of ground water speed and direction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510034A (en) * 1978-07-07 1980-01-24 Hitachi Ltd Moving vane of gas turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510034A (en) * 1978-07-07 1980-01-24 Hitachi Ltd Moving vane of gas turbine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281571A (en) * 1985-10-04 1987-04-15 Rion Co Ltd Apparatus for detecting fluid
JPH01153965A (en) * 1987-12-11 1989-06-16 Jdc Corp Method and instrument for measuring flow direction and flow velocity of underground water
JP2004507753A (en) * 2000-09-01 2004-03-11 ハネウェル・インターナショナル・インコーポレーテッド Microsensor for measuring velocity and angular direction of incident airflow
JP2007271325A (en) * 2006-03-30 2007-10-18 Ngk Insulators Ltd Flow sensor for high temperature
JP4667286B2 (en) * 2006-03-30 2011-04-06 日本碍子株式会社 High-temperature flow sensor
WO2016068736A1 (en) 2014-10-31 2016-05-06 Neostrain Spółka Z Ograniczona Odpowiedzialnoscia Method, system and prefabricated multi-sensor integrated cable for detection and monitoring of a fluid flow, in particular of a fluid flow in filtration processes, especially of leakage in constructions and/or in ground
CN106769779A (en) * 2017-01-22 2017-05-31 中国建筑设计咨询有限公司 A kind of device and method for calculating seepage action of ground water speed and direction

Also Published As

Publication number Publication date
JPH0619472B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
US20030010126A1 (en) Non-intrusive method and device for characterising flow pertubations of a fluid inside a pipe
CN109708564B (en) Gas-liquid/oil-gas-water multiphase flow liquid film thickness distributed conductivity measurement method
JPS59160788A (en) Method and apparatus for measuring direction and velocity of flow of ground water
US4741209A (en) Apparatus for detecting the boundary between two substances
US3995480A (en) Thermal sensor for measurement of ocean current direction
EP1496352B1 (en) Method and apparatus for temperature monitoring of a physical structure
US20170254782A1 (en) Identification of Water Pipe Material Based on Stress Wave Propagation
US7032455B2 (en) Capacitive sensor device
RU2548135C1 (en) Thermal wind-gage determination of fluid or gas flow velocity and direction and device to this end
JP3028941B2 (en) Multi-sheath type sodium leak detection device
KR101379934B1 (en) Apparatus and method for measuring the thickness of the scale in a pipe
JPH03180731A (en) Heat medium leakage detecting method for piping for heat medium transportation
KR100474372B1 (en) Propeller type current meter and its current measurement method
JPH07146189A (en) Surface heat flux measuring instrument
GB2275773A (en) Video thermography for detecting subsurface flaws
Thabet Thermodynamic transducer for measurement of paraffin deposit thickness in oil pipelines
JP3738303B2 (en) Bubble detector for filling grout of PC steel
JPS60210753A (en) Method and apparatus for measuring average void ratio of flowline of gas-liquid two-phase stream
CA1172872A (en) Groundwater flow meter
JP3540279B2 (en) Flowmeter
JPS6355448A (en) Method and device for deciding deterioration of covering of buried object
JPH04136731A (en) Detecting system of position of occurrence of water leakage
JPH03181829A (en) Method for detecting leakage of heating medium of heating medium transport piping
JPH0797052B2 (en) Heat medium leakage detection method for heat medium transport piping
JPH04109329U (en) Liquid level position detection device in container