JPH051575B2 - - Google Patents

Info

Publication number
JPH051575B2
JPH051575B2 JP25180984A JP25180984A JPH051575B2 JP H051575 B2 JPH051575 B2 JP H051575B2 JP 25180984 A JP25180984 A JP 25180984A JP 25180984 A JP25180984 A JP 25180984A JP H051575 B2 JPH051575 B2 JP H051575B2
Authority
JP
Japan
Prior art keywords
electron
electron beam
electrode
plate
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25180984A
Other languages
Japanese (ja)
Other versions
JPS61131343A (en
Inventor
Satoru Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25180984A priority Critical patent/JPS61131343A/en
Publication of JPS61131343A publication Critical patent/JPS61131343A/en
Publication of JPH051575B2 publication Critical patent/JPH051575B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はカラー受像管用電子銃に関し、特にシ
ヤドウマスク形カラー受像管に装着される3本の
電子ビームを一列に射出するインライン形電子銃
の主電子レンズ部を形成する電極の構造に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an electron gun for a color picture tube, and more particularly to a main electron gun of an in-line type electron gun that is attached to a shadow mask type color picture tube and emits three electron beams in a line. The present invention relates to the structure of an electrode forming a lens portion.

〔発明の背景〕[Background of the invention]

この種のカラー受像管用電子銃において、解像
度を改良したものとして、従来例えば特開昭57−
103246号公報に示されるように、対向する主レン
ズ電極がそれぞれの対向側に周辺リムを有し、こ
の周辺リムと後退させて配置した開孔形成面との
凹所で長円状レンズ空間を形成する方式のものが
知られている。
In this type of electron gun for color picture tubes, conventionally, for example, Japanese Patent Application Laid-Open No. 1983-1983
As shown in Japanese Patent No. 103246, opposing main lens electrodes have peripheral rims on their opposite sides, and an elliptical lens space is formed in the concave area between the peripheral rims and the aperture forming surface that is set back. There are known methods of forming

この方式においては、上記長円状レンズ空間部
に対向する電極側の電位が深く浸入し、1つの大
口径化したレンズが形成でき、球面収差を減少さ
せ得ることから電子ビームスポツト径を小さくす
ることに対して有効であることが開示されてい
る。
In this method, the potential on the electrode side facing the elliptical lens space penetrates deeply, forming one lens with a large diameter, which can reduce spherical aberration, thereby reducing the electron beam spot diameter. It has been disclosed that it is effective against this.

しかし、この方式では主レンズ電極部品の強度
特性および製造コストの問題については必ずしも
配慮されていない。
However, this method does not necessarily consider the strength characteristics and manufacturing cost of the main lens electrode component.

すなわち、強度特性についていえば前記対向面
側に形成した凹所は筒状の周辺リムで構成され、
従来一般の主レンズ電極部品に用いられているよ
うな複数のビーム通過開孔を備えた有底筒状容器
に比較して機械的強度が低いため、特に電子銃組
立工程において凹所長円輪郭寸法の変化を生じや
すく一様の解像度が得難い問題がある。
That is, in terms of strength characteristics, the recess formed on the opposing surface side is composed of a cylindrical peripheral rim,
Since the mechanical strength is lower than that of a bottomed cylindrical container with multiple beam passage apertures, which is conventionally used in general main lens electrode parts, the concave rectangular profile size is particularly important in the electron gun assembly process. There is a problem in that it is difficult to obtain a uniform resolution because the resolution tends to change easily.

また、製造コストについては、外側の2本のビ
ームを中央のビームに静的に集中させるために長
円状レンズ空間寸法を対向する主レンズ電極間で
異ならせてあり、一方を他方に比べて大きな寸法
に変位させてある。しかもこの変位量は一般にカ
ー受像管の画面サイズにほぼ対応させて異ならせ
る必要があることから、それぞれに適合した多数
の主レンズ電極部品製作用プレス金型が必要とな
り製造コストの上昇を招く。
In addition, regarding manufacturing costs, in order to statically concentrate the two outer beams into a central beam, the spatial dimensions of the elliptical lens are made different between the opposing main lens electrodes, and one side is made smaller than the other. It has been displaced to a large size. In addition, since the amount of displacement generally needs to be varied to approximately correspond to the screen size of the Kerr picture tube, a large number of press molds for manufacturing the main lens electrode parts that are adapted to each are required, leading to an increase in manufacturing costs.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に鑑みてなされたもの
で、その目的は、主電子レンズ口経の拡大とレン
ズ電極部品の機械的強度を向上させることにより
カラー受像管の解像度の改良と変動の防止を図る
ことができ、しかも電極部品の一様化により製造
コストを低減することが可能なカラー受像管用電
子銃を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to improve the resolution of a color picture tube and prevent fluctuations by enlarging the main electron lens opening and improving the mechanical strength of the lens electrode parts. It is an object of the present invention to provide an electron gun for a color picture tube, which is capable of reducing manufacturing costs by making electrode parts uniform.

〔発明の概要〕[Summary of the invention]

このような目的を達成するために、本発明は、
対向する1対の主レンズ電極構造を、それぞれ所
定厚の板状部材と容器状部材とに分離して前者を
対向面側に配置したものである。
In order to achieve such an objective, the present invention
A pair of opposing main lens electrode structures is separated into a plate-like member and a container-like member each having a predetermined thickness, and the former is placed on the opposing surface side.

すなわち、板状部材が有する単一の長円状開孔
部で広大なレンズ空間を形成するとともに、対向
する一対の板状部材の厚さを相互に違えることで
静コンバーゼンスを確保して上記長円状開孔寸法
は一様なものとすることが可能であり、併せて長
円状レンズ空間形成部を板状部材とすることで機
械的強度を必要十分なものとし、電子銃組立時の
変形を防止することが可能となつた。
In other words, a vast lens space is formed by a single oval opening in the plate-like member, and static convergence is ensured by making the thickness of the pair of opposing plate-like members different from each other. The size of the circular opening can be made uniform, and by making the elliptical lens space forming part a plate-like member, the necessary and sufficient mechanical strength can be achieved, making it easier to assemble the electron gun. It has become possible to prevent deformation.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明をバイポランシヤル形電子銃に
適用した一実施例の主レンズ電極構造を示す。同
図aが管軸方向および3本の電子ビームの配列方
向(水平方向)を含む平面で切つた断面図、同図
bが管軸方向および管軸方向を上記電子ビームの
配列方向とに垂直な方向(垂直方向)とを含む平
面で切つた断面図、同図cがG4電極側から見た
G3電極の正面図である。
FIG. 1 shows the main lens electrode structure of an embodiment in which the present invention is applied to a bipolarity type electron gun. Figure a is a cross-sectional view taken along a plane that includes the tube axis direction and the arrangement direction (horizontal direction) of the three electron beams, and figure b is a cross-sectional view taken along a plane that includes the tube axis direction and the direction in which the three electron beams are arranged (horizontal direction). (c) is a cross-sectional view taken along a plane that includes the direction ( vertical direction).
FIG. 3 is a front view of the G3 electrode.

同図aについて、G3電極30とG4電極40と
は間隔gをもつて対向し、G3電極30は、下部
電極素子33と上部電極素子34との溶接組立体
からなり、さらに上部電極素子34は第1の板状
部材31と第2の容器状部材32とから構成され
る。G4電極40は、第1の板状部材41と第2
の容器状部材42とから構成され、第2の容器状
部材42の上部にシールドカツプ50を備えてい
る。
Regarding a in the same figure, the G 3 electrode 30 and the G 4 electrode 40 are opposed to each other with a gap g, and the G 3 electrode 30 is composed of a welded assembly of a lower electrode element 33 and an upper electrode element 34, and the upper electrode The element 34 is composed of a first plate-like member 31 and a second container-like member 32. The G 4 electrode 40 includes a first plate member 41 and a second plate member 41.
A shield cup 50 is provided on the upper part of the second container-shaped member 42.

次にG3電極30の上部電極素子34を例にと
り本実施例の主レンズ電極構造を第2図および第
3図を用いて説明する。
Next, the main lens electrode structure of this embodiment will be explained using FIGS. 2 and 3, taking the upper electrode element 34 of the G 3 electrode 30 as an example.

まず、電極素子34を構成する第1の部材31
は、第2図に示すように、所定の厚さt1を有する
板状金属板に水平方向寸法h、垂直方向寸法vか
らなる単一の長円状開孔311が穿孔された有孔
板状部材からなり、この長円状開孔311の水平
方向両端部は半径が垂直方向寸法vの1/2となる
半円状で、半円部の中心位置はそれぞれ両側のビ
ーム通路の配列間隔sと一致している。
First, the first member 31 that constitutes the electrode element 34
As shown in FIG. 2, this is a perforated plate-like metal plate having a predetermined thickness t1 and a single oblong hole 311 having a horizontal dimension h and a vertical dimension v. Both horizontal ends of this elliptical hole 311 are semicircular with a radius of 1/2 of the vertical dimension v, and the center position of the semicircle is equal to the arrangement interval s of the beam passages on both sides. is consistent with

一方、第2の部材32は、第3図に示すように
第1の部材31に接触固定される面側に底面32
1を有する容器状部材からなり、上記底面321
には、両側の電子ビーム適路のそれぞれ外側半分
を構成する前記第1の部材31が有する長円状開
孔311の水平方向両端部と同一寸法の半円と、
両側の電子ビーム通路の内側半分を構成する垂直
方向に長径をもつ半楕円との連接した異形孔32
2および中央の電子ビーム通路を構成する垂直方
向に長径をもつ楕円孔323を備えている。
On the other hand, as shown in FIG.
1, the bottom surface 321
a semicircle having the same dimensions as both horizontal ends of the oblong aperture 311 of the first member 31 constituting each outer half of the electron beam path on both sides;
Irregularly shaped holes 32 connected to semi-ellipsoids with long diameters in the vertical direction forming the inner half of the electron beam passages on both sides
2 and an elliptical hole 323 having a long diameter in the vertical direction and forming a central electron beam path.

以上G3電極を例に説明したが、G4電極を構成
する第1の部材41および第2の部材42も全く
同様の構成を有している。ただ、G3電極側の第
1の部材31の厚さt1に対しG4電極側の第1の
部材41は後述するようにt1よりも小さいt2とし
てある点のみが異なる。
Although the explanation has been given above using the G 3 electrode as an example, the first member 41 and the second member 42 that constitute the G 4 electrode have exactly the same configuration. However, the only difference is that the thickness t1 of the first member 31 on the G3 electrode side is set to t2, which is smaller than t1 on the first member 41 on the G4 electrode side, as will be described later.

上記構成において、単一の長円状開孔を有する
板状部材を対向させたことにより、主レンズ口径
拡大による球面収差低減の効果が達成される。す
なわち、第1図bにおいて第1の板状部材31,
41がそれぞれ有する長円状開孔311,411
においては、対向電極の電位が深く浸入して広大
なレンズ空間、主電子レンズが形成される。つま
り、G3電極の長円状開孔311にはG4電極の高
圧側電位がG4電極の長円状開孔411にはG3
極の低圧側電位がそれぞれ長円状開孔311,4
11の開孔内で連続して延びており、そのため、
主電子レンズの優勢な部分は3本の電子ビーム通
路を通つて延びる1つの大きいレンズとして現わ
れる。
In the above configuration, by arranging the plate members having a single elliptical aperture to face each other, the effect of reducing spherical aberration by enlarging the aperture of the main lens can be achieved. That is, in FIG. 1b, the first plate member 31,
41 have oval openings 311, 411, respectively.
In this case, the potential of the counter electrode penetrates deeply to form a vast lens space, a main electron lens. In other words, the high voltage side potential of the G 4 electrode is connected to the oblong hole 311 of the G 3 electrode, and the low voltage side potential of the G 3 electrode is connected to the oblong hole 311 of the G 4 electrode. 4
It extends continuously within the 11 apertures, so that
The predominant portion of the main electron lens appears as one large lens extending through three electron beam paths.

ただ、このような長円状空間内に浸入して形成
される主レンズでは、その空間の形状からスロツ
ト効果により非点収差を生じる。すなわち、一般
にレンズ強度は開孔の寸法が小さいほど強くなる
から、第2図において垂直方向寸法vが水平方向
寸法hよりも小さい開孔311,411でのレン
ズ強度は水平方向に比較して垂直方向で強くな
る。ただし、長円状開孔311,411の水平方
向両端部はその中心が両側のビーム中心と一致す
る半円であることから、上記非点収差の影響は中
央の電子ビームおよび両側の電子ビームの内側半
分に現われる効果となる。
However, in a main lens formed by penetrating into such an elliptical space, astigmatism occurs due to the slot effect due to the shape of the space. That is, in general, the lens strength becomes stronger as the size of the aperture is smaller, so in FIG. Become stronger in direction. However, since both ends of the elliptical apertures 311 and 411 in the horizontal direction are semicircles whose centers coincide with the beam centers on both sides, the influence of the astigmatism is affected by the central electron beam and the electron beams on both sides. The effect appears on the inner half.

この非点収差を補正するため、本発明では容器
状部材からなる第2の部材32,42に穿設する
開孔を非円形としている。すなわち、これらを前
述したような楕円孔および異形孔としたことによ
り、そこにおけるレンズ強度は垂直方向に比較し
て開孔幅の小さい水平方向で強いものとなり、上
述した第1の部材が有する長円状開孔部とのバラ
ンスがとれ、非点収差を除くことができる。
In order to correct this astigmatism, in the present invention, the openings formed in the second members 32, 42, which are container-shaped members, are made non-circular. That is, by making these elliptical holes and irregularly shaped holes as described above, the lens strength therein is stronger in the horizontal direction where the aperture width is smaller than in the vertical direction, and the lens strength therein is stronger in the horizontal direction where the opening width is smaller than in the vertical direction. It is well balanced with the circular aperture and can eliminate astigmatism.

次に電子銃を組立てる際に起こる電極強度の問
題について説明すると、一般に電子銃を組立てる
際には、図上省略したが適当な組立治具に各電極
を組込み、管軸方向に圧力を加えて固定した状態
で、例えば溶融ガラスからなる電極支持体に各電
極の植設部を挿入し融着させる方法がとられてい
る。この工程で、電極は種々の機械的圧力を受け
る。すなわち、組立治具に組込む際の治具からの
応力、電極支持体に融着する際の圧着応力などが
それである。これらの機械的応力により、電極は
組立てる以前の状態に対し少なからず歪みをもつ
ことは必至であるが、とりわけ先に示した公知文
献に開示されているような凹所を有する電極部品
においてはその歪量は他の一般の有底容器状電極
部品に比較して大きく、解像度の変動を招きやす
い。
Next, to explain the problem of electrode strength that occurs when assembling an electron gun, generally when assembling an electron gun, each electrode is assembled into a suitable assembly jig (not shown in the diagram), and pressure is applied in the tube axis direction. In a fixed state, the implanted portion of each electrode is inserted into an electrode support made of molten glass, for example, and fused. During this process, the electrodes are subjected to various mechanical pressures. That is, stress from the jig when assembling into an assembly jig, compression stress when fusing to an electrode support, etc. Due to these mechanical stresses, it is inevitable that the electrode will have some degree of distortion compared to its state before assembly, but this is especially true for electrode parts with recesses such as those disclosed in the above-mentioned known documents. The amount of distortion is larger than that of other general bottomed container-shaped electrode parts, which tends to cause fluctuations in resolution.

これに対し本発明の電極構造においては、上記
凹所相当部が所定の厚さの1枚の板状部材で形成
されているため、上述した周辺リム形成電極に比
較してはもちろん、従来一般の有底容器状電極に
比較しても機械的強度が優れることは自明であ
る。また、楕円孔を形成した第2の部材について
も、その開孔形成面は上記板状部材に密接して溶
接固定されているためここでも十分な強度が保て
ることになる。
On the other hand, in the electrode structure of the present invention, since the portion corresponding to the recess is formed of a single plate-like member having a predetermined thickness, it is not only compared with the peripheral rim forming electrode described above, but also It is obvious that the mechanical strength is superior to that of the bottomed container-shaped electrode. Furthermore, since the second member having the elliptical hole formed therein is welded and fixed in close contact with the plate-shaped member, sufficient strength can be maintained here as well.

さらに、本発明の他の利点はその静コンバーゼ
ンス方式にある。次にこれを従来例と比較しなが
ら説明する。
Additionally, another advantage of the present invention is its static convergence approach. Next, this will be explained while comparing it with a conventional example.

まず第4図は、従来公知の電子銃における静コ
ンバーゼンス方式を説明するものであるが、従来
例では同図に示したようにG4電極110の凹部
111の幅AはG3電極120の凹部121の幅
Bよりもわずかに大きい。このようにG4電極の
凹部の幅をG3電極の凹部の幅よりも大きく変位
させると、両電極の対向端面間では傾斜静電レン
ズ作用により両側のビームが内側へ屈曲し、周知
の静コンバーゼンスが行なわれる。このとき屈曲
量はAとBの比で定まり、一般にはG3電極12
0の凹部121の幅Bを一定とし、カラー受像管
の画面サイズに応じて適合したG4電極110の
凹部111の幅Aを使い分けている。このため、
変位量ごと、換言すれば画面サイズごとに異なつ
ためG4電極部品を必要とすることになり、電極
部品製造コストが増大する問題を生じていた。な
お従来例ではG3、G4電極ともF寸法で示す凹所
の深さは一致している。
First, FIG . 4 explains the static convergence method in a conventionally known electron gun. It is slightly larger than the width B of 121. When the width of the concave portion of the G 4 electrode is displaced to be larger than the width of the concave portion of the G 3 electrode, the beams on both sides are bent inward between the opposing end surfaces of both electrodes due to the action of the tilted electrostatic lens. Convergence takes place. At this time, the amount of bending is determined by the ratio of A and B, and generally G 3 electrode 12
The width B of the recess 121 of the G 4 electrode 110 is kept constant, and the width A of the recess 111 of the G 4 electrode 110 is used depending on the screen size of the color picture tube. For this reason,
Since the displacement varies depending on the amount of displacement, in other words, depending on the screen size, G4 electrode parts are required, resulting in the problem of increased electrode part manufacturing costs. Note that in the conventional example, the depth of the recess indicated by the F dimension is the same for both the G 3 and G 4 electrodes.

これに対し、第5図は本実施例の電子銃におけ
る静コンバーゼンス方式を説明するたのもので、
第1図のG3、G4電極の対向部分を拡大したもの
に相当する断面図であるが、同図においてG3
極側の板状部材の厚さt1=3mmに対し、G4電極
側の板状部材の厚さをt2=2mmとしている。この
場合、前述した通りそれぞれの板状部材で形成さ
れる長円状レンズ空間部には対向電極電位が深く
浸入し1つの大口径化した主電子レンズを形成し
ているが、この際、量側電子ビームの通過口近辺
では、長円状開孔縁部の壁の影響で、対向電位の
浸入は中央ビーム通過口近辺に比較して浅くな
る。この結果、両側の電子ビームはG3電極の広
大なレンズ空間域で傾斜した等電位線60に遭遇
するため、ここでの傾斜静電レンズ作用による集
中作用を受け、外側の電子ビーム8,10は内側
へ屈曲する。しかし、この際従来例のようにt2が
t1と一致(t1=t2=F)していると、G3電極で内
側への屈曲を受けても電子ビーム8,10はG4
電極の広大なレンズ空間で同様に傾斜した等電位
線70に遭遇するため、G4電極での発散レンズ
作用で上述した内側への集中作用が相殺されるこ
とになる。そのため、本実施例ではt2をt1に対し
て1mm小さく設定し、G4電極側空間域での等電
位線70を、G3側等電位線60に比較してその
傾斜を緩やかなものとしている。この結果、G3
電極側でのビーム集中作用はG4電極側でのビー
ム発散作用に対して優勢なものとなり、第5図に
その電子ビームの通路を破線8′,10′で示した
ように静コンバーゼンスが行なわれる。なお、本
実施例のt1=3mm、t2=2mmの値は、20形カラー
受像管における静コンバーゼンスに対応するもの
であるが、他サイズのカラー受像管においても、
両板状部材の厚さt1、t2の比を適当に選択するこ
とで対応できる。
On the other hand, FIG. 5 is for explaining the static convergence method in the electron gun of this embodiment.
This is a cross-sectional view corresponding to an enlarged view of the opposing portions of the G 3 and G 4 electrodes in Figure 1. In the figure, the thickness of the plate member on the G 3 electrode side is t1 = 3 mm, while the thickness on the G 4 electrode side is 3 mm. The thickness of the plate member is t2 = 2 mm. In this case, as described above, the counter electrode potential penetrates deeply into the elliptical lens space formed by each plate member, forming one main electron lens with a large diameter. In the vicinity of the side electron beam passage opening, the penetration of the counter potential is shallower than in the vicinity of the central beam passage opening due to the influence of the wall of the edge of the oblong opening. As a result, the electron beams on both sides encounter the inclined equipotential line 60 in the vast lens space area of the G3 electrode, and are therefore concentrated by the inclined electrostatic lens action here, and the outer electron beams 8, 10 bends inward. However, in this case, t2 is
If it matches t1 (t1 = t2 = F), even if the electron beams 8 and 10 are bent inward by the G 3 electrode, the electron beams 8 and 10 will remain in the G 4
The diverging lensing effect at the G 4 electrode will offset the inward focusing effect described above, since similarly inclined equipotential lines 70 are encountered in the vast lens space of the electrodes. Therefore, in this example, t2 is set 1 mm smaller than t1, and the slope of the equipotential line 70 in the G 4 electrode side spatial area is made gentler than that of the G 3 side equipotential line 60. . As a result, G 3
The beam concentration effect on the electrode side becomes dominant over the beam divergence effect on the G4 electrode side, and static convergence occurs as shown in Figure 5 by the broken lines 8' and 10' of the electron beam path. It will be done. Note that the values of t1 = 3 mm and t2 = 2 mm in this example correspond to static convergence in a 20-inch color picture tube, but they also apply to color picture tubes of other sizes.
This can be achieved by appropriately selecting the ratio between the thicknesses t1 and t2 of both plate-like members.

このように本実施例においては、板状部材の厚
さを選択することで画面サイズごとに適合した静
コンバーゼンスが行なわれることから、板状部材
が有する長円状開孔および容器状部材が有する楕
円状開孔等は画面サイズに無関係に一定寸法の電
極部品で対応できるため、電極部品の製造コスト
を低減する上できわめて大きい効果をもたらす。
In this way, in this embodiment, static convergence suitable for each screen size is performed by selecting the thickness of the plate-like member. Since elliptical openings and the like can be handled with electrode parts of a fixed size regardless of the screen size, this has an extremely large effect in reducing the manufacturing cost of electrode parts.

一方、板状部材のプレス打抜き加工に関連し
て、3個のビーム通過開孔を打抜きで形成して強
度特性を向上させようとする提案が既に行なわれ
ているが(特開昭57−11459号)、この場合、開孔
径を大きくしようとすれば隣接開孔間がきわめて
近接するため、個々の開孔真円度等、打抜き加工
精度をビームスポツト形状に悪影響を与えない精
度に打抜くことが困難で生産性が低いという問題
を有しているが、本発明によれば、板状部材の打
抜きはその厚さが2〜4mmと厚くなるものの、そ
の打抜き形状は上述したような近接部をもたない
単一の長円状開孔であることから、上記板厚の範
囲程度では通常の打抜き加工技術で十分製作可能
である。なお、画面サイズの違いには、板状部材
の厚さ、つまり金属材料厚を選定するのみで対応
でき打抜き輪郭寸法は画面サイズには無関係であ
ることは前述した通りであるから、板状部材製作
用プレス金型に関しては、同一金型の利用が可能
であり、この点でも製作コストの低減を図ること
ができる。
On the other hand, in connection with press punching of plate-shaped members, a proposal has already been made to improve strength characteristics by forming three beam passage holes by punching (Japanese Patent Laid-Open No. 57-11459). In this case, if you try to increase the hole diameter, the adjacent holes will be very close to each other, so the punching accuracy such as the roundness of each hole should be adjusted to an accuracy that does not adversely affect the beam spot shape. However, according to the present invention, although the thickness of the plate member is 2 to 4 mm when punched, the shape of the punched member is similar to that of the adjacent part as described above. Since it is a single oval hole with no holes, it can be sufficiently manufactured using normal punching techniques within the above-mentioned plate thickness range. Note that differences in screen size can be accommodated simply by selecting the thickness of the plate-shaped member, that is, the thickness of the metal material, and as mentioned above, the punching contour dimensions are unrelated to the screen size. As for the press mold for production, it is possible to use the same mold, and in this respect also it is possible to reduce the production cost.

また、容器状部材32,42は、プレス成形に
より一体的に形成し低もよいが、その底面部を構
成するビーム通過開孔を打抜いた所定の厚さの板
状部材と単なる筒状部材とに分離して形成し、そ
れらを溶接固定して一体としてもよい。
The container-like members 32 and 42 may be integrally formed by press molding and may be made low, but the container-like members 32 and 42 may be made of a plate-like member of a predetermined thickness with a beam passing hole punched out forming the bottom surface thereof, or a simple cylindrical member. They may be formed separately and then welded and fixed to form a single unit.

さらに、水平・垂直方向間のレンズ強度の違い
による非点収差の解消のために別の方法、例えば
前述した公知文献に記載されるようにスロツト状
開口を別に設ける等の方法をとるものとすれば、
容器状部材32,42のビーム通過開孔は必ずし
も第3図に示したような楕円孔および異形孔とす
る必要はなく、単なる円形とすることも可能であ
る。
Furthermore, in order to eliminate astigmatism caused by the difference in lens strength between the horizontal and vertical directions, another method may be used, such as providing a separate slot-shaped aperture as described in the above-mentioned known document. Ba,
The beam passage openings of the container members 32, 42 do not necessarily have to be elliptical holes or irregularly shaped holes as shown in FIG. 3, but may be simply circular.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、対向さ
せた板状部材にそれぞれ単一の長円状開孔を設け
ることで主電子レンズ口径を拡大して解像度を改
良することができ、また静コンバーゼンスについ
ては、各板状部材および容器状部材の開孔寸法等
を一様にしたまま、ただ板状部材の厚さを、低圧
側に対して高圧側で小さくすることで画面サイズ
の違いに対応でき、製造コストを低減させること
ができる。のみならず機械的強度の面でも優れた
ものであることから、解像度の変動も防止でき
る。
As explained above, according to the present invention, by providing a single elliptical hole in each of the facing plate members, the main electron lens aperture can be enlarged and resolution can be improved, and the resolution can be improved. Regarding convergence, while keeping the aperture dimensions of each plate member and container member the same, the thickness of the plate member is made smaller on the high pressure side than on the low pressure side, so that the difference in screen size can be avoided. It is possible to reduce manufacturing costs. Since it is excellent not only in terms of mechanical strength but also in terms of mechanical strength, fluctuations in resolution can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは本発明の一実施例を示す主レン
ズ電極の断面図、同図cは要部正面図、第2図お
よび第3図は各主レンズ電極素子の構成を示す正
面図と断面図、第4図および第5図は静コンバー
ゼンスを説明するための図である。 30……G3電極、40……G4電極、31,4
1……板状部材、32,42……容器状部材、3
11,411……長円状開孔、323,423…
…楕円孔、322,422……異形孔。
Figures 1a and 1b are cross-sectional views of a main lens electrode showing an embodiment of the present invention, Figure 1c is a front view of main parts, and Figures 2 and 3 are front views showing the configuration of each main lens electrode element. , a cross-sectional view, and FIGS. 4 and 5 are diagrams for explaining static convergence. 30...G 3 electrode, 40...G 4 electrode, 31,4
1... Plate-shaped member, 32, 42... Container-shaped member, 3
11,411...Oval hole, 323,423...
...Oval hole, 322,422...Unusual hole.

Claims (1)

【特許請求の範囲】[Claims] 1 3本の電子ビームを一列に放射する電子ビー
ム源と、この電子ビーム源からの電子ビームをけ
い光面上に集束するための主電子レンズ部とを備
えたカラー受像管用電子銃において、主電子レン
ズ部を形成する管軸方向に一定の間隔をおいて対
向して配置された1対の電極を、対向面側に位置
した電子ビームの配列方向に長い単一の長円状電
子ビーム通過開孔が穿設された所定厚の板状部材
と、この板状部材に接する底面部に各電子ビーム
通過開孔をもつ容器状部材とによつて構成し、前
記板状部材の厚さを、1対の対向電極間で、高電
圧側電極において低電圧側電極においてより小さ
くなるように異ならしめ、前記、容器状部材底面
部の電子ビーム通過開孔が、中央の電子ビームの
通路となる電子ビームの配列方向に垂直方向に長
径を有する楕円孔および両側の電子ビームのほぼ
外側半周を取り囲む半円と当該電子ビームのほぼ
内側半周を取り囲む上記垂直方向に長径を有する
半楕円との連接した異形孔であることを特徴とす
るカラー受像管用電子銃。
1. In an electron gun for a color picture tube, which is equipped with an electron beam source that emits three electron beams in a line, and a main electron lens section that focuses the electron beam from this electron beam source onto a phosphorescent surface, A single elliptical electron beam passes through a pair of electrodes that are placed opposite each other at a constant interval in the direction of the tube axis forming the electron lens section, and is elongated in the direction in which the electron beams are arranged on the opposing surfaces. It is composed of a plate-like member having a predetermined thickness with openings, and a container-like member having electron beam passing holes on the bottom surface in contact with the plate-like member, and the thickness of the plate-like member is , the difference between the pair of opposing electrodes is such that the high voltage side electrode is smaller than the low voltage side electrode, and the electron beam passage opening in the bottom of the container-shaped member serves as a passage for the central electron beam. An elliptical hole having a major axis in the direction perpendicular to the arrangement direction of the electron beams, a semicircle surrounding approximately the outer half circumference of the electron beam on both sides, and a semiellipse having the major axis in the vertical direction surrounding approximately the inner half circumference of the electron beam, connected to each other. An electron gun for color picture tubes characterized by an irregularly shaped hole.
JP25180984A 1984-11-30 1984-11-30 Electron gun for color picture tube Granted JPS61131343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25180984A JPS61131343A (en) 1984-11-30 1984-11-30 Electron gun for color picture tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25180984A JPS61131343A (en) 1984-11-30 1984-11-30 Electron gun for color picture tube

Publications (2)

Publication Number Publication Date
JPS61131343A JPS61131343A (en) 1986-06-19
JPH051575B2 true JPH051575B2 (en) 1993-01-08

Family

ID=17228244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25180984A Granted JPS61131343A (en) 1984-11-30 1984-11-30 Electron gun for color picture tube

Country Status (1)

Country Link
JP (1) JPS61131343A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744014B2 (en) * 1986-07-23 1995-05-15 日本電気株式会社 Electron gun electrode
JPH0744015B2 (en) * 1986-09-29 1995-05-15 三菱電機株式会社 Inline electron gun
KR920005828Y1 (en) * 1990-01-31 1992-08-22 삼성전관 주식회사 Electron gun structure of color crt
KR920013565A (en) * 1990-12-18 1992-07-29 김정배 Electron gun for cathode ray tube
JPH04322041A (en) * 1991-04-23 1992-11-12 Mitsubishi Electric Corp Electron gun for cathode-ray tube
JP2962893B2 (en) * 1991-09-24 1999-10-12 三菱電機株式会社 In-line type electron gun

Also Published As

Publication number Publication date
JPS61131343A (en) 1986-06-19

Similar Documents

Publication Publication Date Title
GB2112564A (en) Electron gun for color picture tube
JPH03152834A (en) Color image receiving electron gun
JPH051575B2 (en)
JPS6019103B2 (en) In-line electron gun for color picture tube
JPS61131342A (en) Electron gun for color picture tube
JPH021338B2 (en)
JPH0586019B2 (en)
JPH044686B2 (en)
JPS6332838A (en) Electron-gun electrode
KR100492789B1 (en) Electron gun for CPT
KR900000352B1 (en) Electron gun
JPH0337941A (en) Electron gun for color television picture tube
KR930007365B1 (en) Color picture tube
KR930008122Y1 (en) In-line type electron gun for cathode-ray tube
JP2666723B2 (en) Color picture tube
JPH0782815B2 (en) Electron gun for color picture tube
KR100829734B1 (en) Electrodes and color cathode ray tube utilizing the same
JP3562305B2 (en) In-line type electron gun
JPH03156835A (en) Electron gun electrode structure
JPS6131480Y2 (en)
JPH0578130B2 (en)
JPS6324294B2 (en)
JPH0568054B2 (en)
JPS63168938A (en) Electron gun structure for in-line type color cathode-ray tube
JPH02291646A (en) Structural body of electron gun

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term