JPS61131342A - Electron gun for color picture tube - Google Patents

Electron gun for color picture tube

Info

Publication number
JPS61131342A
JPS61131342A JP25180884A JP25180884A JPS61131342A JP S61131342 A JPS61131342 A JP S61131342A JP 25180884 A JP25180884 A JP 25180884A JP 25180884 A JP25180884 A JP 25180884A JP S61131342 A JPS61131342 A JP S61131342A
Authority
JP
Japan
Prior art keywords
electron
electrode
electron beam
lens
electron gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25180884A
Other languages
Japanese (ja)
Inventor
Satoru Endo
遠藤 了
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25180884A priority Critical patent/JPS61131342A/en
Publication of JPS61131342A publication Critical patent/JPS61131342A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane

Abstract

PURPOSE:To obtain an electron gun, having a main lens enlarged aperture and capable of having a slantly directional non-point aberration removed, by moving back correcting electrode plates and forming the shape of lens-forming-opening parts in three-series circle. CONSTITUTION:On the facing sides of electrodes 30 and 40, with each end being bent inside with a bending height H, each of three-series circular openings 311 and 411 is formed respectively in the shape in which three circular holes are piled up and communicated to each other at the neighboring regions. The center distance between circles is identical with the arranging distance S on the beam point. Inside cup electrodes 31 and 41, correcting electrode plates 33 and 43 are installed, by welding assembly, vertically to the tube axis direction and at the position in which they are moved back in the direction apart from the respective facing sides, by the assigned distances d1 and d2. The correcting electrode plates 33 and 43 respectively consist of an elliptic opening 331, which is longer in the vertical direction and providing a passage for the central electron beams, and semi-elliptic openings 332 of cutting shape, which is longer in the vertical direction and surrounding almost half the peripheral regions of both side beams. The distance between the center of the semi-elliptic openings 332 and that of the elliptic opening 331 is identical with the S distance.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はカラー受像管用電子銃に関し、特にシャビワマ
スク形カラー受像管に装着される3本の電子ビームを一
列に射出するインライン形電子銃の主電子レンズ部を形
成する電極の構造に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to an electron gun for a color picture tube, and in particular to a main electron gun of an in-line type electron gun that emits three electron beams in a line, which is attached to a Shabiwa mask type color picture tube. The present invention relates to the structure of an electrode forming a lens portion.

〔発明の背景〕[Background of the invention]

この種のカラー受像管用電子銃において、解像度を改良
したものとして、従来例えば特開昭57−103246
号公報に示されるように、対向する主レンズ電極がそれ
ぞれその対向側に周辺リムを有し、この周辺リムと後退
させて配置した開孔形成面との凹所で長円状レンズ空間
を形成する方式のものが知られている。
Conventionally, as an electron gun for color picture tubes of this type with improved resolution, for example, Japanese Patent Application Laid-Open No. 57-103246
As shown in the publication, the opposing main lens electrodes each have a peripheral rim on the opposite side thereof, and an elliptical lens space is formed by the recess between the peripheral rim and the aperture forming surface that is set back. There is a known method to do this.

この方式においては、上記長円状レンズ空間部に対向す
る電極側の電位が深く浸入し、1つの大口径化したレン
ズが形成でき、球面収差を減少させ得ることから電子ビ
ームスポット径を小さくすることに対して有効であるが
、集束電界が長円状空間を通過して浸入するために、こ
こでのスロット効果による非点収差を生じる。
In this method, the potential on the electrode side facing the elliptical lens space penetrates deeply, forming one lens with a large diameter, which can reduce spherical aberration, thereby reducing the electron beam spot diameter. However, since the focused electric field penetrates through the elliptical space, astigmatism occurs due to the slot effect here.

この解決策として、G、電極の出口に水平方向のスロッ
ト状開孔を別途設けて非点収差の修正を図っているが、
水平・垂直両方向の非点収差は修正されても斜め方向の
非点収差の問題は放置されており、′またスロット状開
孔形成用の電極部品を追加しているため、電子銃組立工
程の繁雑さもめいまって、製造コストの上昇を招くとい
う問題も有していた。
As a solution to this problem, a horizontal slot-shaped opening is separately provided at the exit of the G electrode in order to correct the astigmatism.
Even though astigmatism in both the horizontal and vertical directions has been corrected, the problem of astigmatism in the diagonal direction has been left unaddressed.In addition, the addition of electrode parts for forming slot-shaped apertures has made it difficult to assemble the electron gun. There was also the problem that the complexity led to an increase in manufacturing costs.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に鑑みてなされたもので、その
目的は、拡大された主レンズ口径をもち。
The present invention has been made in view of these circumstances, and its object is to have an enlarged main lens aperture.

しかも特に電極部品を追加することなく、これまで解消
されなかった斜め方向の非点収差を解消することができ
るカラー受像管用電子銃を提供することにある。
Moreover, it is an object of the present invention to provide an electron gun for a color picture tube that can eliminate oblique astigmatism, which has not been eliminated so far, without adding any electrode parts.

〔発明の概要〕[Summary of the invention]

このような目的を達成するために、本発明は。 In order to achieve such an object, the present invention.

対向する1対の主レンズ電極を、筒状電極とその対向面
から相互に遠ざかるように袂退させて筒状電極内に配置
した補正電極板とに分離して構成し、筒状電極が有する
単一の開孔部で広大なレンズ空間を確保する一方、当該
開孔の形状を3個の円孔が電子ビームの配列方向に沿っ
て連通した3連円形状としたものである。
A pair of opposing main lens electrodes is configured by being separated into a cylindrical electrode and a correction electrode plate disposed within the cylindrical electrode by retracting it so as to move away from the opposing surface of the cylindrical electrode, and the cylindrical electrode has While a vast lens space is ensured by a single aperture, the aperture has a triple circular shape in which three circular holes communicate with each other along the direction in which the electron beams are arranged.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明をパイポテンンヤル形電子銃に適用した
一実施例の主レンズ電極構造を示す。同図(、)が管軸
方向および3本の電子ビームの配列方向(水平方向)を
含む平面で切った断面図、同図(b)が管軸方向および
管軸方向と上記電子ビームの配列方向とに垂直な方向(
垂直方向)とを含む平面で切った断面図、同図(c)が
G、電極側から見たら電極の正面図、同図(d)が同図
6)のd−d部分に対応する断面図、同図(、)が08
電極における補正電極板の取り付は例を示す一部破断斜
視図である。
FIG. 1 shows the main lens electrode structure of an embodiment in which the present invention is applied to a pipotential type electron gun. The figure (,) is a sectional view taken along a plane including the tube axis direction and the arrangement direction (horizontal direction) of the three electron beams, and the figure (b) is the tube axis direction and the tube axis direction and the arrangement of the electron beams. direction and the direction perpendicular to (
(c) is a front view of the electrode when viewed from the electrode side, and (d) is a cross section corresponding to the d-d section of Fig. 6). Figure, same figure (,) is 08
This is a partially cutaway perspective view showing an example of how the correction electrode plate is attached to the electrode.

同図(a)において、G8電極30とG4゛醒極40と
は間隔gをもって対向し、G8電極30は、筒状電極(
以下カップ電極と称する)31と下部t 礪32との溶
接組立体からなり、G、電極40はカップ電極41上部
に7−ルドカツプ50を備えている。
In the same figure (a), the G8 electrode 30 and the G4゛ awakening electrode 40 face each other with an interval g, and the G8 electrode 30 is a cylindrical electrode (
The electrode 40 consists of a welded assembly of a cup electrode 31 (hereinafter referred to as a cup electrode) and a lower trough 32, and the electrode 40 is provided with a 7-fold cup 50 on the upper part of the cup electrode 41.

G、およびG、fi極3G、40の対向面側には、それ
ぞれ縁部が曲げ高さHで内側に曲げ込まれ、かつ3個の
円形孔が隣接部間で相互に重合して連通した1個の3連
円形開孔311 、411を有する。この3連円形開孔
311.411は、相互に全く同一寸法を有し、それぞ
れの円形の中心間隔はビーム通路の配列間隔Sと一致し
ている。さらに、G8および04カップ電極31.41
内には、それぞれ対向面側から所定距離d1+dlだけ
相互に離れる方向に後退した位置に管軸方向に対して垂
直に補正電極板33.43を溶接組立により設けである
。この補正電極板33.43は、同図(、)に示したよ
うに、3本の電子ビームのうち中央の電子ビーム通路と
なる垂直方向に長い楕円状開孔331と、両側のビーム
の周囲をほぼ半分取り囲む垂直方向に長い切り欠き状の
半楕円口332とを有し、半楕円口332の中心と楕円
状開口331の中心との間隔はS寸法に一致している。
On the opposing surfaces of G, G, and fi poles 3G and 40, the edges were bent inward at a bending height H, and three circular holes overlapped and communicated between adjacent parts. It has one triple circular aperture 311, 411. These three circular apertures 311 and 411 have exactly the same dimensions, and the distance between the centers of each circle matches the array interval S of the beam passages. Additionally, G8 and 04 cup electrodes 31.41
Inside, correction electrode plates 33 and 43 are provided by welding and assembling perpendicularly to the tube axis direction at positions spaced apart from each other by a predetermined distance d1+dl from the opposing surfaces. As shown in the same figure (, ), this correction electrode plate 33, 43 has a vertically long elliptical opening 331 that serves as the center electron beam path among the three electron beams, and a periphery of the beams on both sides. It has a semi-elliptical opening 332 in the form of a vertically long notch that surrounds approximately half of the opening, and the distance between the center of the semi-elliptic opening 332 and the center of the elliptical opening 331 matches the S dimension.

なお、4個の円形開孔333はカップ電極と補正電極板
とを溶接組立する際の組立基準となるものでろる。G、
電極側の補正電極板43もこれと全く同様の構成を有す
る。
Note that the four circular holes 333 serve as assembly standards when assembling the cup electrode and the correction electrode plate by welding. G.
The correction electrode plate 43 on the electrode side also has a completely similar configuration.

上記構成において、補正電極板33.43を互いに後退
させたことにより、主レンズ口径を拡大させて球面収差
を低減する効果を有する。すなわち、同図(b)におい
て、電極対向端面から補正電極板33.43に至る3連
円形開孔311.411を含む空間域においては、対向
電極電位が深く浸入し。
In the above configuration, the correction electrode plates 33 and 43 are moved back from each other, which has the effect of enlarging the main lens aperture and reducing spherical aberration. That is, in the same figure (b), the counter electrode potential penetrates deeply in the spatial region including the triple circular openings 311, 411 extending from the electrode opposing end face to the correction electrode plate 33, 43.

広大なレンズ空間が形成される。つまり、G、電極レン
ズ空間域312にはG4電極電位が、G、電極レンズ空
間域412にはG、電極電位が、それぞれ3連円形開孔
311.411の開孔内に連続して浸入するため。
A vast lens space is formed. In other words, the G4 electrode potential enters the G electrode lens space area 312, and the G electrode potential enters the G electrode lens space area 412 continuously into the triple circular apertures 311 and 411, respectively. For.

従来の一般電子銃の主レンズ電極が形成していた3個の
独立した円筒レンズに比べて格段に大きなレンズ口径を
得ることができる。
A much larger lens aperture can be obtained compared to the three independent cylindrical lenses formed by the main lens electrode of a conventional general electron gun.

次に、このような電子ビームが主レンズ開孔領域を通過
する際に生じる非点収差と開孔形状との関係について第
2図を用いて説明する。同図(−)は従来一般に用いら
れている3個の独立した円筒レンズを示す電極平面図で
、本開孔においてはその円筒形状ゆえに非点収差は生じ
ない。一方、同図(b)は先に公知例として示した文献
に記載された電子銃主レンズ電極の開孔形状を示す平面
図である。
Next, the relationship between the astigmatism that occurs when such an electron beam passes through the main lens aperture region and the aperture shape will be explained using FIG. 2. The figure (-) is an electrode plan view showing three independent cylindrical lenses commonly used in the past, and in this aperture, astigmatism does not occur due to its cylindrical shape. On the other hand, FIG. 6B is a plan view showing the shape of the aperture of the electron gun main lens electrode described in the document mentioned above as a known example.

この場合、集束電界が長円状の凹所の開孔領域に連続、
して浸入して1つの大口径レンズを形成しているが、こ
の領域を通過する電子ビームには、開孔が円形のように
電子ビームの通過する中心から外形線までの距離が各方
向についてすべて等しい、すなわち各方向の軸について
対称な形状ではないために、水平・垂直および斜め方向
での非点収差が生ずる。例えば、この開孔形状では水平
方向の寸法りに対して垂直方向の寸法Vが小さいため、
主電子レンズのレンズ強度は水平方向に対して垂直方向
が強くなるスロット効果を生ずる。これについては、別
途水平方向のスロット状開孔を設け、そこでの発散レン
ズ作用を水平方向に対して垂直方向が強くなるようにす
ることで修正を図っていることは先に述べた通りである
が、いずれにしても、斜め方向の非点収差は残される。
In this case, the focused electric field is continuous in the aperture region of the oblong recess,
The electron beam passing through this area has a circular aperture, and the distance from the center of the electron beam to the outer line is different in each direction. Since the shapes are not all equal, that is, symmetrical about the axes in each direction, astigmatism occurs in the horizontal, vertical, and oblique directions. For example, in this hole shape, the vertical dimension V is smaller than the horizontal dimension, so
The lens strength of the main electron lens produces a slot effect that is stronger in the vertical direction than in the horizontal direction. As mentioned earlier, we attempted to correct this by creating a separate horizontal slot-shaped opening and making the diverging lens effect there stronger in the vertical direction than in the horizontal direction. However, in any case, astigmatism in the oblique direction remains.

これに対し、同図(、)は本発明の実施例における主レ
ンズ電極の開孔形状を示す平面図であり、大口径レンズ
形成域を3連円形状としている。このため、3個の円形
孔が相互に重合し九連通部分を除いて、斜め方向につい
ては外形上の各点が電子ビームの通過する中心から等距
離TKあるため、非点収差は生じない。換言すれば、斜
め方向については、非点収差補正用の手段を何ら必要と
しない。
On the other hand, the same figure (,) is a plan view showing the aperture shape of the main lens electrode in the embodiment of the present invention, in which the large-diameter lens forming area is shaped like a triple circle. Therefore, in the oblique direction, each point on the outer shape is at the same distance TK from the center through which the electron beam passes, and no astigmatism occurs, except for the nine continuous portions where the three circular holes overlap each other. In other words, no means for astigmatism correction is required in the oblique direction.

そしてこれらの領域から外れる範囲、すなわち水平・垂
直方向間における同図(b)の場合と同様な非点収差を
補正するために、本実施例では第1図に示したように補
正電極板33.43において中央の電子ビーム通過口は
垂直方向に長い楕円状開孔331.431とし、両側ビ
ーム通過口は内側のほぼ半分を垂直方向に長い切り欠き
状の半楕円口332゜432で形成する。これにより、
補正電極板におけるレンズ強度は垂直方向に比較して水
平方向で強くなり、楕円寸法の長径、短径の比を適当に
設定することで、前述した広大なレンズ空間域とのバラ
ンスがとれ、非点収差が取り除かれる。なお、G3.G
4カップ電極31.41がそれぞれ有する3連円形開孔
311.411の孔縁部に設けた内方への縁曲げは、電
子銃電極の高圧特性を高める配慮から設けるもので、カ
ップ電極31.41の部品強度を高める面でも有効であ
る。
In order to correct astigmatism in a range outside these areas, that is, in the horizontal and vertical directions, similar to the case shown in FIG. In .43, the central electron beam passage aperture is a vertically long elliptical opening 331,431, and the inner half of each side beam passage aperture is formed by a vertically long notch-shaped semi-elliptical aperture 332.432. . This results in
The lens strength in the correction electrode plate is stronger in the horizontal direction than in the vertical direction, and by appropriately setting the ratio of the major axis and minor axis of the ellipse dimension, it is possible to balance the aforementioned vast lens space area and make it possible to Point aberrations are removed. In addition, G3. G
The inward bending of the edges of the triple circular apertures 311.411 that each of the four cup electrodes 31.41 has is intended to enhance the high voltage characteristics of the electron gun electrode. It is also effective in increasing the strength of the 41 parts.

ここで、本実施例における外側の2本のビームを中心の
ビームに静的に集中させる靜コンバーゼンスの方式につ
いて、従来例と比較しながら説明する。
Here, the silent convergence method of statically converging the two outer beams onto the center beam in this embodiment will be explained while comparing it with a conventional example.

まず第3図は、従来公知の電子銃における靜コンバーゼ
ンス方式を説明するものでろるが、従来例では同図に示
したようにG4 を極110の凹部111の幅AはG3
電極120の凹部121の幅Bよりもわずかに犬である
。このように04電極の凹部の幅を03電極の凹部の幅
よりも大きく変位させると、両電極の対向端面間では傾
斜静電レンズ作用により両側のビームが内側へ屈曲し、
周知の靜コンバーゼンスが行なわれる。このとき、屈曲
量はA、!:Hの比で定tシ、一般にはG3電極120
の凹部121の幅Bを一定とし、カラー受像管の画面サ
イズに応じて適合したG4電極11Gの凹部111の幅
Aを使い分けている。このため、変位量ごと、換言すれ
ば画面サイズごとに異なったG4電極部品を必要とする
ことになり、電極部品製造コストが増大する問題を生じ
ていた。なお従来例ではG3 、 G4電極とも2寸法
で示す凹所の深さは一致している。
First of all, FIG. 3 is intended to explain the silent convergence method in a conventionally known electron gun.
It is slightly wider than the width B of the recess 121 of the electrode 120. When the width of the concave portion of the 04 electrode is displaced to be larger than the width of the concave portion of the 03 electrode in this way, the beams on both sides are bent inward due to the tilted electrostatic lens action between the opposing end surfaces of both electrodes.
The well-known silent convergence takes place. At this time, the amount of bending is A,! :H ratio is constant, generally G3 electrode 120
The width B of the recess 121 of the G4 electrode 11G is kept constant, and the width A of the recess 111 of the G4 electrode 11G is used depending on the screen size of the color picture tube. Therefore, a different G4 electrode component is required for each displacement amount, in other words, for each screen size, resulting in the problem of increased electrode component manufacturing cost. Note that in the conventional example, the depths of the recesses indicated by the two dimensions are the same for both the G3 and G4 electrodes.

これに対し、第4図は本実施例の電子銃における靜コン
バーゼンス方式を説明するためのもので、第1図のG3
 、 G4電極の対向部分を拡大したものに相当する断
面図でろるが、同図において、G3電極側の補正電極板
33の後退量d工=3鴎に対し、G4電極側の補正電極
板43の後退量をd s −2繻とじている。この場合
、前述した通りそれぞれの3連円形開孔部とそれに続く
空間域には対向電極電位が深く浸入し広大なレンズ空間
を形成しているが、この際、両側電子ビームの通過口近
辺では、3連円形開孔縁部の壁の影響で、対向電位の浸
入は中央ビーム通過口近辺に比較して浅くなる。この結
果1両側の電子ビームはG3電極の広大なレンズ空間域
で傾斜した等電位線60に遭遇するため、ここでの傾斜
静電レンズ作用による集中作用を受け、外側の電子ビー
ム8.10は内側へ屈曲する。しかし、この際従来例の
ように04電極側の後退量d、がdoと一致(d、−d
1=F)していると、G3電極で内側への屈曲を受けて
も電子ビーム8,10はG4電極の広大なレンズ空間で
同様に傾斜した等電位線70に遭遇するため、G4電極
での発散レンズ作用で上述した内側への集中作用が相殺
されることになる。そのため、本実施例ではd、をdl
に対して1Ial+浅く設定し、G4電極側空間域での
等電位線70を、G3側等電位線60に比較してその傾
斜を緩やかなものとじている。この結果、G3電極側で
のビーム集中作用はG4電極側でのビーム発散作用に対
して優勢なものとなり、靜コンバーゼンスが行なわれる
。受儂管の画面サイズが変った場合も、後退量dl +
Gを適当に選択することで対応できる。
On the other hand, FIG. 4 is for explaining the silent convergence method in the electron gun of this embodiment, and shows G3 in FIG.
, This is a sectional view corresponding to an enlarged view of the facing part of the G4 electrode, but in the same figure, the amount of retraction d of the correction electrode plate 33 on the G3 electrode side is 3, while the correction electrode plate 43 on the G4 electrode side The amount of retreat is d s -2. In this case, as mentioned above, the counter electrode potential penetrates deeply into each of the three circular apertures and the space area following it, forming a vast lens space. , due to the influence of the walls of the edges of the triple circular apertures, the penetration of the counter potential becomes shallower than in the vicinity of the central beam passage opening. As a result, since the electron beams on both sides of 1 encounter the inclined equipotential lines 60 in the vast lens space of the G3 electrode, they are concentrated by the inclined electrostatic lens action here, and the outer electron beams 8.10 bend inward. However, in this case, as in the conventional example, the retraction amount d on the 04 electrode side matches do (d, -d
1=F), even if the electron beams 8 and 10 are bent inward at the G3 electrode, they encounter similarly inclined equipotential lines 70 in the vast lens space of the G4 electrode. The above-mentioned inward concentration effect is offset by the diverging lens effect. Therefore, in this embodiment, d is changed to dl
1Ial+ shallower than that of the G4 electrode, and the slope of the equipotential line 70 in the G4 electrode side spatial region is made gentler than that of the G3 side equipotential line 60. As a result, the beam concentrating effect on the G3 electrode side becomes dominant over the beam diverging effect on the G4 electrode side, resulting in quiet convergence. Even if the screen size of the receiver tube changes, the retraction amount dl +
This can be handled by selecting G appropriately.

このように本実施例においては補正電極板の後退量を変
更することで画面サイズごとに適合した静コンバーゼン
スが行なわれることから、カップ電極が有する3連円形
開孔寸法は画面サイズに無関係に・一様な電極部品で対
応することができるが。
In this way, in this embodiment, static convergence suitable for each screen size is performed by changing the amount of retraction of the correction electrode plate, so the dimensions of the triple circular openings of the cup electrode are independent of the screen size. However, it is possible to use uniform electrode parts.

このことは電極部品の製造コストを低減する上できわめ
て大きい効果をもたらす。
This has a very large effect in reducing the manufacturing cost of electrode parts.

すなわち、カップ電極のような容器状部品は。In other words, container-shaped parts such as cup electrodes.

一般にプレス絞シ加工で製作されるものでめるが、この
種の絞り加工部品を製作するだめのプレス金型は補正電
極板のような単なる1枚の平板を打抜いた打抜き部品の
場合に比べて多大な加工工程を必要とするところから数
倍の金型製作費を必要とする。したがって1本実施例で
は補正電極板そのものの製造コストは加算されるが、そ
の補正電極板もカップ電極と同様画面サイズに無関係に
一様な部品で対応できることから、従来例に比べて製造
コストを約50%低減することができた。
It is generally produced by press drawing processing, but the press mold used to produce this type of drawn parts is used for punching parts made by punching out a simple flat plate, such as a correction electrode plate. Since it requires a large number of processing steps, the mold production cost is several times higher. Therefore, in this embodiment, the manufacturing cost of the correction electrode plate itself is added, but since the correction electrode plate can be made of uniform parts regardless of the screen size like the cup electrode, the manufacturing cost can be reduced compared to the conventional example. We were able to reduce this by approximately 50%.

なお、補助電極板33は、必ずしもはじめから第1図に
示したような形状に一体成形しなければならないもので
はなく、例えば第5図に示す33AのようにAもしくは
Bまたはその他の部分で2分割または3分割し九ような
部品を組立てて構成してもよいことは言うまでもない。
Note that the auxiliary electrode plate 33 does not necessarily have to be integrally molded from the beginning into the shape shown in FIG. It goes without saying that the structure may be constructed by dividing or dividing into three parts and assembling such parts.

また、水平・垂直方向間における非点収差を別の方法、
例えば前述したスロット状開口を設けることにより解消
するものとすれば、第6図に示す33Bのように円形の
電子ビーム通過用開孔331Bを備えたものを用いても
よい。補助′成極板43についても全く同様である。
In addition, there is another method for astigmatism between the horizontal and vertical directions.
For example, if the above-mentioned slot-shaped opening is provided to solve the problem, a circular electron beam passage opening 331B such as 33B shown in FIG. 6 may be used. The same applies to the auxiliary polarization plate 43.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、補正電極板を後
退させることで主レンズ電極のレンズ口径の拡大から解
像度の改良がはかれ、また大口径レンズ形成開孔部形状
を3連円形とすることで斜め方向の非点収差を補正する
ことができ、例えば補正電極板の開孔を垂直方向に長い
楕円状とすることでさらに水平・垂直方向間の非点収差
を補正すれば全方向について歪みのないスポットを得る
ことができる。また、その場合すべての非点補正が主レ
ンズ電極内で行なわれ、別途補正部品を必要としないた
め、電子銃組立面でも従来のような繁雑さがなくなる。
As explained above, according to the present invention, by retracting the correction electrode plate, resolution is improved by enlarging the lens aperture of the main lens electrode, and the shape of the large-diameter lens forming aperture is made into a triple circular shape. By doing so, it is possible to correct astigmatism in the oblique direction. For example, by making the aperture of the correction electrode plate elliptical with a long vertical direction, astigmatism between the horizontal and vertical directions can be further corrected. It is possible to obtain a spot without distortion. Further, in this case, all astigmatism correction is performed within the main lens electrode, and no separate correction parts are required, so that the electron gun assembly is not as complicated as in the past.

さらに対向する筒状電極は3連円形開孔部を含め相互に
全く同一寸法でよく。
Further, the opposing cylindrical electrodes may have exactly the same dimensions including the triple circular apertures.

また画面サイズにもかかわらず一定でよいため、製造コ
ストを低減することができる。
In addition, since it may be constant regardless of the screen size, manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、) 、 (b)は本発明の一実施例を示す主
レンズ′送極の断面図、同図(、)は要部正面図、同図
(d)は断面図、同図(、)は一部破断斜視図、112
図は主レンズ形成部の開孔形状による作用の違いを説明
するための図、第3図および第4図は靜コンバーゼンス
を説明するための図、第5図および第6図は補正電極板
の他の構成例を示す正面図でめる。 31.41・・・・カップ電極(筒状電極)。 33 、33A 、 33B 、 43・・・・補正電
極板、311 、411・・・・3連円形開孔、312
 、412・・・・レンズ空間域、331 、431 
・・・・楕円状開孔、332 、432・・・・半楕円
口(切り欠き部)。 第1図 (Q)(C) ■ 第2図 (Q) (b)            (c)第3図 第4図 第5図        第6図
Figures 1 (,) and (b) are cross-sectional views of the main lens' polarization showing an embodiment of the present invention, Figures (,) are front views of main parts, and Figures (d) are cross-sectional views. (,) is a partially cutaway perspective view, 112
The figure is a diagram to explain the difference in the effect depending on the aperture shape of the main lens forming part, Figures 3 and 4 are diagrams to explain silent convergence, and Figures 5 and 6 are diagrams of the correction electrode plate. A front view showing another configuration example. 31.41...Cup electrode (cylindrical electrode). 33, 33A, 33B, 43... Correction electrode plate, 311, 411... Triple circular opening, 312
, 412...lens space area, 331, 431
...Oval opening, 332, 432...Semi-elliptical opening (notch). Figure 1 (Q) (C) ■ Figure 2 (Q) (b) (c) Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、3本の電子ビームを一列に放射する電子ビーム源と
、この電子ビーム源からの電子ビームをけい光面上に集
束するための主電子レンズ部とを備えたカラー受像管に
おいて、主電子レンズ部は、管軸方向に一定の間隔をお
いて対向して配置された2個の筒状電極を有し、この両
筒状電極は、それぞれその対向面側に縁部が内側に曲げ
込まれかつ3個の円形孔が隣接端部で重合した単一の3
連円形開孔を備えるとともに、この開孔に続く筒状電極
内部の空間に上記曲げ込み部先端から離しかつ管軸方向
に垂直に上記3連円形開孔部とともに電子ビームの通過
口を構成する補助電極板を配置したことを特徴とするカ
ラー受像管用電子銃。 2、1対の対向筒状電極が有する3連円形開孔を同一寸
法としたことを特徴とする特許請求の範囲第1項記載の
カラー受像管用電子銃。 3、補助電極板は、3本の電子ビームのうち中央の電子
ビームの通路となる電子ビームの配列方向と垂直方向に
長径を有する楕円状開孔と、両側の電子ビームのほぼ半
周を取り囲む上記垂直方向に長径を有する半楕円状の切
り欠き部とを備え、上記切り欠き部と筒状電極の3連円
形開孔部の両端部とで両側の電子ビーム通路を形成した
ことを特徴とする特許請求の範囲第1項記載のカラー受
像管用電子銃。
[Claims] A collar comprising an electron beam source that emits one or three electron beams in a line, and a main electron lens unit that focuses the electron beam from the electron beam source onto a phosphorescent surface. In the picture tube, the main electron lens section has two cylindrical electrodes that are arranged facing each other at a constant interval in the tube axis direction, and each of these cylindrical electrodes has an edge on the opposing surface side. A single 3-hole structure with the sections bent inward and three circular holes overlapping at adjacent ends.
A series of circular apertures are provided, and a space inside the cylindrical electrode following the apertures is spaced apart from the tip of the bent portion and perpendicular to the tube axis direction, and together with the three series of circular apertures constitutes an electron beam passage opening. An electron gun for color picture tubes characterized by having an auxiliary electrode plate arranged therein. 2. The electron gun for a color picture tube according to claim 1, wherein the triple circular apertures of the pair of opposed cylindrical electrodes have the same size. 3. The auxiliary electrode plate has an elliptical aperture having a long diameter in a direction perpendicular to the arrangement direction of the electron beams, which serves as a path for the central electron beam among the three electron beams, and the above-mentioned aperture that surrounds approximately half the circumference of the electron beams on both sides. It is characterized by comprising a semi-elliptical notch having a long axis in the vertical direction, and electron beam paths on both sides are formed by the notch and both ends of the triple circular opening of the cylindrical electrode. An electron gun for a color picture tube according to claim 1.
JP25180884A 1984-11-30 1984-11-30 Electron gun for color picture tube Pending JPS61131342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25180884A JPS61131342A (en) 1984-11-30 1984-11-30 Electron gun for color picture tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25180884A JPS61131342A (en) 1984-11-30 1984-11-30 Electron gun for color picture tube

Publications (1)

Publication Number Publication Date
JPS61131342A true JPS61131342A (en) 1986-06-19

Family

ID=17228229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25180884A Pending JPS61131342A (en) 1984-11-30 1984-11-30 Electron gun for color picture tube

Country Status (1)

Country Link
JP (1) JPS61131342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231846A (en) * 1987-03-07 1988-09-27 サムスン、エレクトロン、ディバイス、カンパニ−、リミテッド Condensing electrode of electron gun for color television
EP0798759A2 (en) * 1996-03-26 1997-10-01 Sony Corporation Colour cathode-ray tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231846A (en) * 1987-03-07 1988-09-27 サムスン、エレクトロン、ディバイス、カンパニ−、リミテッド Condensing electrode of electron gun for color television
EP0798759A2 (en) * 1996-03-26 1997-10-01 Sony Corporation Colour cathode-ray tube
EP0798759A3 (en) * 1996-03-26 1999-06-16 Sony Corporation Colour cathode-ray tube
US6016030A (en) * 1996-03-26 2000-01-18 Sony Corporation Color cathode-ray tube with intermediate electrode
US6100630A (en) * 1996-03-26 2000-08-08 Sony Corporation Color cathode-ray tube

Similar Documents

Publication Publication Date Title
JPH021352B2 (en)
JP2539598B2 (en) Color video tube
JPH0121584B2 (en)
US4614894A (en) Electron gun for color picture tube
JPH046254B2 (en)
JPS61131342A (en) Electron gun for color picture tube
KR920001832B1 (en) In-line electron gun assembly
JPH0129299B2 (en)
US5506468A (en) Electron gun for color cathode-ray tube
JPH0341936B2 (en)
US4672261A (en) Electron gun for color picture tube
JPH05251014A (en) Electron gun for color picture tube
JPH051575B2 (en)
JPS6019103B2 (en) In-line electron gun for color picture tube
JPH044686B2 (en)
JPS6332838A (en) Electron-gun electrode
JPS6369128A (en) Electron gun electrode structure
JPH0472345B2 (en)
JPH0782815B2 (en) Electron gun for color picture tube
JPS62274533A (en) Electron gun electrode structure
JPS6331891B2 (en)
JPH0744015B2 (en) Inline electron gun
JPS58216342A (en) Electron gun for color picture tube
JP2542581B2 (en) Electron gun electrode assembly
JPS5840755A (en) Electron gun for color picture tube