JPH05157405A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JPH05157405A
JPH05157405A JP3318751A JP31875191A JPH05157405A JP H05157405 A JPH05157405 A JP H05157405A JP 3318751 A JP3318751 A JP 3318751A JP 31875191 A JP31875191 A JP 31875191A JP H05157405 A JPH05157405 A JP H05157405A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
evaporator
temperature sensing
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3318751A
Other languages
Japanese (ja)
Inventor
Hisatoshi Hirota
久寿 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T G K KK
TGK Co Ltd
Original Assignee
T G K KK
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T G K KK, TGK Co Ltd filed Critical T G K KK
Priority to JP3318751A priority Critical patent/JPH05157405A/en
Priority to DE69217116T priority patent/DE69217116T2/en
Priority to ES92106896T priority patent/ES2100972T3/en
Priority to EP92106896A priority patent/EP0513568B1/en
Priority to US07/882,850 priority patent/US5303864A/en
Publication of JPH05157405A publication Critical patent/JPH05157405A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve the response characteristic in the action of a temperature sensing action means by providing a heat transfer delaying means which is for making longer the time required for the transmission of a change in temperature of refrigerant to a temperature sensing drive means between the flow channel of the refrigerant that is delivered to an evaporator and temperature sensing drive means. CONSTITUTION:In refrigerating cycle an expansion valve is for controlling automatically the flow rate of refrigerant that enters an evaporator. When the temperature of the refrigerant that flows in a low pressure channel 12 drops, the temperature of a diaphragm 32 falls and the saturated gas in a temperature sensing chamber 30 condenses on the inner surface of the diaphragm 32. Then, since the pressure in the temperature sensing chamber 30 falls, a rod 28 is pushed by a spring 24 and a ball valve 25 gets nearer a valve seat 23 and the area of the flow channel of the coolant is throttled. In this case an intermediate tap body 38 is placed between the low pressure channel 12 and temperature sensing chamber 30 and the time required for transmitting a temperature change of the coolant to the temperature sensing chamber 30 is prolonged. With this arrangement the diaphragm 32 and ball valve 25 act with an accurate response speed for a change in the refrigerant temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、冷凍サイクル中の蒸
発器から圧縮機に向かって送り出される冷媒の温度に応
答して、蒸発器に入る冷媒の量を自動的に制御するため
の膨張弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an expansion valve for automatically controlling the amount of refrigerant entering the evaporator in response to the temperature of the refrigerant sent from the evaporator to the compressor during the refrigeration cycle. Regarding

【0002】[0002]

【従来の技術】この種の膨張弁は、冷凍サイクルを流れ
る冷媒と同じ又はその冷媒と類似の飽和蒸気ガスを封入
した感温室を蒸発器の出口側通路に配置するとともに、
感温室の一壁面を形成するダイアフラムの変位によって
駆動される弁機構を設け、蒸発器から出た冷媒の温度変
化で感温室内の飽和蒸気ガスを熱膨張および熱収縮させ
ることによって弁機構を駆動して、蒸発器に入る冷媒の
量を自動的に制御している。
2. Description of the Related Art An expansion valve of this type has a greenhouse which is filled with a saturated vapor gas which is the same as or similar to a refrigerant flowing through a refrigeration cycle and which is disposed in an outlet passage of an evaporator.
A valve mechanism that is driven by the displacement of the diaphragm that forms one wall of the greenhouse is provided, and the valve mechanism is driven by thermally expanding and contracting the saturated vapor gas in the greenhouse by the temperature change of the refrigerant that exits the evaporator. Then, the amount of refrigerant entering the evaporator is automatically controlled.

【0003】[0003]

【発明が解決しようとする課題】しかし、蒸発器から送
り出されてくる冷媒の温度変化が感温室にあまりに速く
伝達されると、冷媒の加熱度の僅かな変化など冷媒に生
じる小さな脈動がそのまま弁機構の開閉動作に伝わって
しまい、弁動作がはなはだ不安定なものになってしまう
欠点があった。
However, if the temperature change of the refrigerant sent from the evaporator is transmitted to the temperature-sensitive chamber too quickly, the small pulsation that occurs in the refrigerant such as a slight change in the heating degree of the refrigerant will remain in the valve. There was a drawback that it was transmitted to the opening / closing operation of the mechanism and the valve operation became extremely unstable.

【0004】そこでこの発明は、蒸発器から送り出され
てくる冷媒に細かい温度変化があっても、安定した動作
によって蒸発器に送り込まれる冷媒の量を制御すること
ができる膨張弁を提供することを目的とする。
Therefore, the present invention provides an expansion valve capable of controlling the amount of the refrigerant sent to the evaporator by a stable operation even if the refrigerant sent from the evaporator has a minute temperature change. To aim.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の膨張弁は、蒸発器に送り込まれる冷媒の流
量を変化させるための弁機構と、上記蒸発器から送り出
されてくる冷媒の温度を感知するように配置されて内部
に封入された飽和蒸気ガスを熱膨張または熱収縮させる
ことによって上記弁機構を駆動する感温駆動手段とを設
けた膨張弁において、上記蒸発器から送り出されてくる
冷媒の流路と上記感温駆動手段との間に、上記蒸発器か
ら送り出されてくる冷媒の温度変化が上記感温駆動手段
に伝達されるのに要する時間を長くするための熱伝達遅
延手段を設けたことを特徴とする。
In order to achieve the above object, the expansion valve of the present invention has a valve mechanism for changing the flow rate of the refrigerant sent to the evaporator and the refrigerant sent from the evaporator. In the expansion valve provided with temperature-sensitive drive means for driving the valve mechanism by thermally expanding or thermally contracting the saturated vapor gas which is arranged so as to sense the temperature of the Between the flow path of the coming refrigerant and the temperature sensitive driving means, heat for increasing the time required for the temperature change of the refrigerant sent from the evaporator to be transmitted to the temperature sensitive driving means. It is characterized in that a transmission delay means is provided.

【0006】なお上記熱伝達遅延手段が、上記蒸発器か
ら送り出された後上記感温駆動手段に接触する冷媒の量
を規制する熱伝導率の低い部材であってもよい。
The heat transfer delay means may be a member having a low heat conductivity which regulates the amount of the refrigerant which is sent from the evaporator and comes into contact with the temperature sensitive drive means.

【0007】[0007]

【作用】蒸発器に送り込まれる冷媒の流量を変化させる
ための弁機構は、蒸発器から送り出されてくる冷媒の温
度を感知するように配置された感温駆動手段によって駆
動される。
The valve mechanism for changing the flow rate of the refrigerant sent to the evaporator is driven by the temperature sensitive driving means arranged so as to detect the temperature of the refrigerant sent from the evaporator.

【0008】そして、蒸発器から送り出されてくる冷媒
の温度変化が感温駆動手段に伝達されるのに要する時間
が、熱伝達遅延手段によって長くなるようにされている
ので、蒸発器から送り出されてくる冷媒の温度変化に対
する感熱動作手段の動作の応答性が低く、したがって弁
機構は、蒸発器から送り出されてくる冷媒の細かい温度
変化などに対しては反応しない。
The time required for the temperature change of the refrigerant sent from the evaporator to be transmitted to the temperature-sensitive drive means is lengthened by the heat transfer delay means, so that the refrigerant is sent out from the evaporator. The responsiveness of the operation of the heat-sensitive operation means to the temperature change of the refrigerant coming in is low, and therefore the valve mechanism does not react to the minute temperature change of the refrigerant sent out from the evaporator.

【0009】[0009]

【実施例】図面を参照して実施例を説明する。Embodiments will be described with reference to the drawings.

【0010】図1は本発明の第1の実施例を示してい
る。図中、1は蒸発器、2は圧縮機、3は凝縮器、4
は、凝縮器3の出口側に接続されて高圧の液体冷媒を収
容する受液器、10は膨張弁であり、これらによって冷
凍サイクルが形成されている。
FIG. 1 shows a first embodiment of the present invention. In the figure, 1 is an evaporator, 2 is a compressor, 3 is a condenser, and 4
Is a receiver connected to the outlet side of the condenser 3 and containing a high-pressure liquid refrigerant, and 10 is an expansion valve, which form a refrigeration cycle.

【0011】膨張弁10のブロック11には、蒸発器1
から圧縮機2へ送り出される低温低圧の冷媒を通すため
の低圧通路12と、蒸発器1に送り込まれる高温高圧の
冷媒を断熱膨張させるための通路13とが形成されてい
る。
The block 11 of the expansion valve 10 includes an evaporator 1
A low-pressure passage 12 for passing a low-temperature low-pressure refrigerant sent from the compressor 2 to the compressor 2 and a passage 13 for adiabatically expanding the high-temperature high-pressure refrigerant sent to the evaporator 1 are formed.

【0012】低圧通路12は、一端(入口側)12aが
蒸発器1の出口に接続され、他端(出口側)12bが圧
縮機2の入口に接続されている。高圧側の冷媒を断熱膨
張させるための通路13は、一端(入口側)13aが受
液器4の出口に接続され、他端(出口側)13bが蒸発
器1の入口に接続されている。
The low-pressure passage 12 has one end (inlet side) 12a connected to the outlet of the evaporator 1 and the other end (outlet side) 12b connected to the inlet of the compressor 2. The passage 13 for adiabatically expanding the high-pressure side refrigerant has one end (inlet side) 13 a connected to the outlet of the liquid receiver 4 and the other end (outlet side) 13 b connected to the inlet of the evaporator 1.

【0013】低圧通路12と断熱膨張させるための通路
13とは互いに平行に形成されており、これに垂直な貫
通孔14が2つの通路12,13の間を貫通している。
また、低圧通路12から外方に抜けるように形成された
開口部には、感温室30が取り付けられている。
The low pressure passage 12 and the passage 13 for adiabatic expansion are formed in parallel with each other, and a through hole 14 perpendicular to the passage is formed between the two passages 12, 13.
Further, a greenhouse 30 is attached to the opening formed so as to pass outward from the low pressure passage 12.

【0014】貫通孔14から断熱膨張させるための通路
13にかけて、その内部に弁機構20が設けられてい
る。一方、断熱膨張させるための通路13の中央部には
弁座23が形成されており、コイルスプリング24によ
り下方から弁座23に向けて付勢されたボール弁25が
弁座23を塞ぐと、断熱膨張させるための通路13が閉
じる。
A valve mechanism 20 is provided inside the passage 13 for adiabatic expansion from the through hole 14. On the other hand, a valve seat 23 is formed at the center of the passage 13 for adiabatic expansion, and when the ball valve 25 biased from below by the coil spring 24 toward the valve seat 23 closes the valve seat 23, The passage 13 for adiabatic expansion closes.

【0015】26は、ボール弁25を支えるボール弁受
け。27は、ブロック11と螺合してコイルスプリング
24の付勢力を調整する調整ナット。21はシール用の
Oリングである。
A ball valve support 26 supports the ball valve 25. Reference numeral 27 is an adjusting nut screwed with the block 11 to adjust the biasing force of the coil spring 24. Reference numeral 21 is an O-ring for sealing.

【0016】貫通孔14内に挿通されたロッド28は軸
方向に摺動自在に設けられていて、その上端は感温室3
0に達し、下端はボール弁25の上端に当接している。
したがって、コイルスプリング24の付勢力に逆らって
ロッド28でボール弁25を押して下方に移動させれ
ば、断熱膨張させるための通路13が開き、ロッド28
の移動量に対応してその通路13の通路面積が変化し
て、蒸発器1に供給される冷媒の量が変化する。
The rod 28 inserted into the through hole 14 is provided so as to be slidable in the axial direction, and the upper end thereof is at the greenhouse 3
It reaches 0, and the lower end is in contact with the upper end of the ball valve 25.
Therefore, if the rod 28 pushes the ball valve 25 to move it downwards against the biasing force of the coil spring 24, the passage 13 for adiabatic expansion is opened, and the rod 28 is opened.
The passage area of the passage 13 changes in accordance with the moving amount of, and the amount of the refrigerant supplied to the evaporator 1 changes.

【0017】このロッド28は、ステンレス鋼などのよ
うにアルミニウム等に比べて熱伝導率が大幅に低い材料
で形成されており、その直径は、強度上必要最小限にお
さえられて、断面積ができるだけ小さくなるように形成
されている。したがって、低圧通路12を流れる冷媒の
温度は、ロッド28を介して僅かしか感温室30に伝わ
らない。なお、ロッド28を中空を有する断面形状に形
成してその断面積を小さくしてもよい。
The rod 28 is made of a material such as stainless steel whose thermal conductivity is much lower than that of aluminum or the like. The diameter of the rod 28 is kept to the minimum necessary in terms of strength and its cross-sectional area is small. It is formed to be as small as possible. Therefore, the temperature of the refrigerant flowing through the low-pressure passage 12 is transmitted to the greenhouse 30 only slightly via the rod 28. The rod 28 may be formed in a hollow cross-sectional shape to reduce the cross-sectional area.

【0018】16は、ロッド28の周囲を通じて低圧通
路12と断熱膨張をさせるための通路13とが連通して
しまわないようにシールをするためのOリングであり、
押さえ板17を介して小さなコイルスプリング18によ
って押圧固定されている。19は、そのコイルスプリン
グ18の端部を受けるためにブロック11に固着された
板ばね材からなるリングである。
Reference numeral 16 is an O-ring for sealing so that the low pressure passage 12 and the passage 13 for adiabatic expansion do not communicate with each other through the periphery of the rod 28,
It is pressed and fixed by a small coil spring 18 via a pressing plate 17. Reference numeral 19 is a ring made of a leaf spring material fixed to the block 11 to receive the end of the coil spring 18.

【0019】感温室30は、厚い金属板製のハウジング
31と可撓性のある金属製薄板(例えば厚さ0.1mmの
ステンレス鋼板)からなるダイアフラム32によって気
密に囲まれている。そして、ダイアフラム32の下面中
央部には、大きな皿状に形成されたロッド28の頂部2
8aが当接している。
The greenhouse 30 is airtightly surrounded by a housing 32 made of a thick metal plate and a diaphragm 32 made of a flexible metal thin plate (for example, a stainless steel plate having a thickness of 0.1 mm). Then, in the central portion of the lower surface of the diaphragm 32, the top portion 2 of the rod 28 formed in a large dish shape is formed.
8a is in contact.

【0020】また、感温室30内には、通路12,13
内に流されている冷媒と同じか又は性質の似ている飽和
蒸気状態のガスが封入されていて、ガス封入用の注入孔
は、めくら栓34によって閉塞されている。
In the greenhouse 30, passages 12, 13 are provided.
A saturated vapor state gas having the same or similar properties as the refrigerant flowing therein is filled, and the gas filling injection hole is closed by a blind plug 34.

【0021】33は、感温室30をブロック11に取り
付けるための感温室取り付け座であり、その外周部分は
ハンジング31及びダイアフラム32と全周にわたって
気密に溶接され、内方の筒状部分に形成されたねじ部3
3aがブロック11に螺合している。36はシール用の
Oリングである。
Reference numeral 33 denotes a greenhouse-mounting seat for mounting the greenhouse 30 on the block 11, the outer peripheral portion of which is hermetically welded to the housing 31 and the diaphragm 32 over the entire periphery to form an inner cylindrical portion. Screw part 3
3a is screwed onto the block 11. 36 is an O-ring for sealing.

【0022】低圧通路12と感温室30との間には、熱
伝導率の低いゴム材またはプラスチック材などからなる
中間栓体38(熱伝達遅延手段)が、ブロック11に固
着されている。したがって、低圧通路12を流れる冷媒
は、もしこの中間栓体38が無ければ感温室30側に大
量に回り込んで感温室30に直接接触するが、中間栓体
38によってそのような感温室30側への回り込みが規
制されている。
An intermediate plug 38 (heat transfer delay means) made of a rubber material or a plastic material having a low heat conductivity is fixed to the block 11 between the low-pressure passage 12 and the greenhouse 30. Therefore, if the intermediate plug 38 does not exist, a large amount of the refrigerant flowing through the low-pressure passage 12 goes around to the greenhouse 30 side and comes into direct contact with the greenhouse 30. It is regulated to go around.

【0023】ただし、ロッド28を通すために中間栓体
38に穿設された孔39とロッド28との間には隙間が
あり、また中間栓体38には低圧通路12と感温室30
側とを連通させる複数の通気孔40が貫通して穿設され
ているので、そのような孔39の隙間および通気孔40
を通って、低圧通路12を流れる冷媒が感温室30側へ
少量だけ回り込む。
However, there is a gap between the rod 39 and the hole 39 formed in the intermediate plug body 38 for allowing the rod 28 to pass therethrough, and the intermediate plug body 38 also has a low pressure passage 12 and a greenhouse 30.
Since a plurality of vent holes 40 that communicate with the side are formed by penetrating therethrough, such gaps between the holes 39 and the vent holes 40 are provided.
A small amount of the refrigerant flowing through the low-pressure passage 12 goes around to the greenhouse 30 side.

【0024】したがって、低圧通路12内を流れる冷媒
の温度は、孔39の隙間および通気孔40を通って感温
室30側に回り込みながら流れる少量の冷媒によって感
温室30に伝達される。しかし、そのようにして熱伝達
に供される冷媒の量は僅かなので、低圧通路12内を流
れる冷媒の温度変化が感温室30に伝達されるのには時
間を要する。
Therefore, the temperature of the refrigerant flowing through the low-pressure passage 12 is transmitted to the greenhouse 30 by a small amount of the refrigerant flowing around the greenhouse 39 side through the gap between the holes 39 and the ventilation holes 40. However, since the amount of the refrigerant used for heat transfer is small in this way, it takes time for the temperature change of the refrigerant flowing in the low-pressure passage 12 to be transferred to the greenhouse 30.

【0025】このように、中間栓体38が無ければ低圧
通路12内を流れる冷媒の温度変化が1ないし2秒程度
で感温室30に伝達されるのが、中間栓体38を設けた
ことにより数十秒に遅延される。なお。通気孔40は、
状況に応じて増やしたり無くしたりしてもよい。また、
中間栓体38を通気性のある断熱材等によって形成して
もよい。
As described above, without the intermediate plug 38, the temperature change of the refrigerant flowing in the low-pressure passage 12 is transmitted to the greenhouse 30 in about 1 to 2 seconds. Delayed to tens of seconds. Incidentally. The vent 40 is
You may increase or decrease depending on the situation. Also,
The intermediate plug 38 may be formed of a breathable heat insulating material or the like.

【0026】このように構成された膨張弁においては、
低圧通路12内を流れる冷媒の温度が下がると、ダイア
フラム32の温度が下がって、感温室30内の飽和蒸気
ガスがダイアフラム32の内表面で凝結する。すると、
感温室30内の圧力が下がるので、ロッド28がコイル
スプリング24に押されて移動し、その結果ボール弁2
5が弁座23に接近して冷媒の流路面積が減るので、蒸
発器1に流れ込む冷媒の流量が減る。
In the expansion valve constructed as described above,
When the temperature of the refrigerant flowing in the low-pressure passage 12 decreases, the temperature of the diaphragm 32 also decreases, and the saturated vapor gas in the greenhouse 30 condenses on the inner surface of the diaphragm 32. Then,
Since the pressure inside the temperature-sensing greenhouse 30 decreases, the rod 28 is pushed by the coil spring 24 and moves, and as a result, the ball valve 2
Since 5 approaches the valve seat 23 and the flow passage area of the refrigerant decreases, the flow rate of the refrigerant flowing into the evaporator 1 decreases.

【0027】低圧通路12内を流れる冷媒の温度が上が
ると、上記と逆の動作によってボール弁25が弁座23
から離れて冷媒の流路面積が増え、蒸発器1に流れ込む
冷媒の流量が増える。
When the temperature of the refrigerant flowing in the low pressure passage 12 rises, the ball valve 25 is moved to the valve seat 23 by the operation reverse to the above.
The area of the flow path of the refrigerant increases away from, and the flow rate of the refrigerant flowing into the evaporator 1 increases.

【0028】しかし、低圧通路12内を流れる冷媒の温
度変化が感温室30に伝達されるのには時間を要するの
で、ダイアフラム32とそれに追随して動作するロッド
28及びボール弁25は、低圧通路12内を流れる冷媒
の温度変化に対して非常にゆっくりとした応答速度で動
作し、冷媒の細かな温度変化などに対しては反応しな
い。
However, since it takes time for the temperature change of the refrigerant flowing in the low pressure passage 12 to be transmitted to the temperature-sensitive chamber 30, the diaphragm 32 and the rod 28 and the ball valve 25 which operate following it are provided in the low pressure passage. It operates at a very slow response speed to the temperature change of the refrigerant flowing inside 12, and does not react to the minute temperature change of the refrigerant.

【0029】図2は、本発明の第2の実施例を示してお
り、中間栓体38に代えて、皿状に形成されたロッド2
8の頂部28aの裏面に、低圧通路12内を流れる冷媒
が感温室30側に回り込むための僅かな隙間だけを周囲
に残すように、厚みのある断熱材48を固着したもので
ある。このように構成しても、上述の第1の実施例と同
様の効果が得られる。
FIG. 2 shows a second embodiment of the present invention, in which the intermediate plug 38 is replaced by a rod 2 formed in a dish shape.
A thick heat insulating material 48 is fixed to the back surface of the top portion 28a of No. 8 so that only a small gap for the refrigerant flowing in the low-pressure passage 12 to go around to the greenhouse 30 side is left around. Even with this configuration, the same effect as that of the above-described first embodiment can be obtained.

【0030】[0030]

【発明の効果】本発明の膨張弁によれば、蒸発器から送
り出されてくる冷媒の温度変化に対する感温駆動手段の
動作の応答性が低いので、弁機構は、蒸発器から送り出
されてくる冷媒の細かい温度変化などに対しては反応せ
ず、非常に安定した動作によって蒸発器に送り込まれる
冷媒の量を制御することができる優れた効果を有する。
According to the expansion valve of the present invention, the responsiveness of the operation of the temperature-sensitive drive means to the temperature change of the refrigerant sent from the evaporator is low, so that the valve mechanism is sent from the evaporator. It has an excellent effect that it does not react to a minute temperature change of the refrigerant and can control the amount of the refrigerant sent to the evaporator by a very stable operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例の膨張弁の断面図である。FIG. 1 is a sectional view of an expansion valve according to a first embodiment.

【図2】第2の実施例の膨張弁の部分断面図である。FIG. 2 is a partial sectional view of an expansion valve according to a second embodiment.

【符号の説明】[Explanation of symbols]

1 蒸発器 25 ボール弁 28 ロッド 30 感熱室 32 ダイアフラム 38 中間栓体 1 Evaporator 25 Ball Valve 28 Rod 30 Heat Sensitive Chamber 32 Diaphragm 38 Intermediate Plug

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】蒸発器に送り込まれる冷媒の流量を変化さ
せるための弁機構と、上記蒸発器から送り出されてくる
冷媒の温度を感知するように配置されて内部に封入され
た飽和蒸気ガスを熱膨張または熱収縮させることによっ
て上記弁機構を駆動する感温駆動手段とを設けた膨張弁
において、 上記蒸発器から送り出されてくる冷媒の流路と上記感温
駆動手段との間に、上記蒸発器から送り出されてくる冷
媒の温度変化が上記感温駆動手段に伝達されるのに要す
る時間を長くするための熱伝達遅延手段を設けたことを
特徴とする膨張弁。
1. A valve mechanism for changing the flow rate of the refrigerant sent to the evaporator, and a saturated vapor gas which is arranged so as to detect the temperature of the refrigerant sent from the evaporator and which is enclosed inside. In an expansion valve provided with temperature-sensitive drive means for driving the valve mechanism by thermal expansion or thermal contraction, between the flow path of the refrigerant sent from the evaporator and the temperature-sensitive drive means, An expansion valve provided with heat transfer delay means for increasing the time required for the temperature change of the refrigerant sent from the evaporator to be transferred to the temperature sensitive drive means.
【請求項2】上記熱伝達遅延手段が、上記蒸発器から送
り出された後上記感温駆動手段に接触する冷媒の量を規
制する熱伝導率の低い部材である請求項1記載の膨張
弁。
2. The expansion valve according to claim 1, wherein the heat transfer delay means is a member having a low thermal conductivity which regulates the amount of the refrigerant which is sent from the evaporator and comes into contact with the temperature sensitive driving means.
JP3318751A 1991-05-14 1991-12-03 Expansion valve Pending JPH05157405A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3318751A JPH05157405A (en) 1991-12-03 1991-12-03 Expansion valve
DE69217116T DE69217116T2 (en) 1991-05-14 1992-04-22 Expansion valve
ES92106896T ES2100972T3 (en) 1991-05-14 1992-04-22 EXPANSION VALVE.
EP92106896A EP0513568B1 (en) 1991-05-14 1992-04-22 Expansion valve
US07/882,850 US5303864A (en) 1991-05-14 1992-05-14 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3318751A JPH05157405A (en) 1991-12-03 1991-12-03 Expansion valve

Publications (1)

Publication Number Publication Date
JPH05157405A true JPH05157405A (en) 1993-06-22

Family

ID=18102532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3318751A Pending JPH05157405A (en) 1991-05-14 1991-12-03 Expansion valve

Country Status (1)

Country Link
JP (1) JPH05157405A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253199A (en) * 1997-03-11 1998-09-25 Fuji Koki Corp Thermal expansion valve
KR100776049B1 (en) * 2000-08-10 2007-11-16 가부시기가이샤 후지고오키 Thermostatic expansion valve
US7373788B2 (en) * 2004-05-17 2008-05-20 Fujikoki Corporation Expansion valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253199A (en) * 1997-03-11 1998-09-25 Fuji Koki Corp Thermal expansion valve
KR100776049B1 (en) * 2000-08-10 2007-11-16 가부시기가이샤 후지고오키 Thermostatic expansion valve
US7373788B2 (en) * 2004-05-17 2008-05-20 Fujikoki Corporation Expansion valve

Similar Documents

Publication Publication Date Title
JPH08145505A (en) Expansion valve
JPH0571860B2 (en)
JPS581314B2 (en) Refrigerator valve equipment
US6324857B1 (en) Laboratory thermostat
KR19980024054A (en) Expansion valve
JP2000320706A (en) Thermal expansion valve
JP2002054860A (en) Thermostatic expansion valve
US5941086A (en) Expansion valve unit
JPH05157405A (en) Expansion valve
JP3507616B2 (en) Expansion valve
JP2000310461A (en) Thermostatic refrigerant expansion valve
JP3418238B2 (en) Expansion valve
JP2941506B2 (en) Expansion valve
JP3481036B2 (en) Expansion valve
JP3046668B2 (en) Expansion valve
JPS5810623B2 (en) Expansion valve using shape memory alloy
JP2000055512A (en) Controlled degree of supercooling expansion valve
JPH09159324A (en) Expansion valve
JP3476619B2 (en) Expansion valve
JP2001116402A (en) Expansion valve for refrigerating device
JPH081421Y2 (en) Expansion valve
JP3213440B2 (en) Expansion valve
JP2586427B2 (en) Expansion valve for refrigeration cycle
JPH11223426A (en) Expansion valve for automotive air conditioner
JP2738082B2 (en) Refrigeration expansion valve