JPH05156606A - Suspension bridge type pipeline bridge - Google Patents

Suspension bridge type pipeline bridge

Info

Publication number
JPH05156606A
JPH05156606A JP32616491A JP32616491A JPH05156606A JP H05156606 A JPH05156606 A JP H05156606A JP 32616491 A JP32616491 A JP 32616491A JP 32616491 A JP32616491 A JP 32616491A JP H05156606 A JPH05156606 A JP H05156606A
Authority
JP
Japan
Prior art keywords
pipeline
pipe
main
bridge
suspension bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32616491A
Other languages
Japanese (ja)
Inventor
Seizo Nakamura
聖三 中村
Toshihiro Furuta
俊宏 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32616491A priority Critical patent/JPH05156606A/en
Publication of JPH05156606A publication Critical patent/JPH05156606A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a pipeline bridge which is excellent in wind-proof stability without using a supplementary rigidity stringer by setting up a handrail passage way at a preset height above a suspension bridge fluid transporting pipe, a column at a preset size thereunder or the handrail passageway at a preset position on the face side of the pipe. CONSTITUTION:A handrail passageway 3 is set up on the upper face of a fluid transporting pipe 1 for water, gas, etc., supported by a cable extended over between main towers, so that the setup height (h) of a passageway plate 32 may be 5% or less of the diameter. D of the pipe 1. Columns 4, 4-8% of the pipe indiameter, are set up in parallel to the pipe 1. under the pipe 1. Otherwise, the handrail passageway 3 is set up where it is 4% or less of the diameter. D of the pipe above a position equal to the lower face of the pipe on both sides of the pipe 1. In this way, a pipeline bridge can be easily obtained which is excellent in wind-proof stability and lighter without using a supplementary rigidity stringer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水道、ガス、石油等の
流体物輸送用管路における吊り橋型管路橋に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a suspension bridge type pipeline bridge in pipelines for transporting fluids such as water, gas and oil.

【0002】[0002]

【従来の技術】従来の吊り橋型管路橋は、両岸に立設し
た主塔に主ケーブルを掛け渡し、主ケーブルの両端を主
塔のさらに外側の基礎地盤中にアンカー等により固定
し、主ケーブルから吊り下げたハンガーロープによって
トラス構造等の補剛桁を支持し、これを連結してなる公
知の吊り橋において、補剛桁上に管路を敷設することに
よって構成されるのが通常であるが、本出願人はさき
に、補剛桁を省略し、主ケーブルならびに耐風ケーブル
によって直接管路を支持する新規な構成の吊り橋型管路
橋を開発し、特開平3-63306 号公報によって公開されて
いる。すなわち、図12に示したように、橋台11上の主塔
12間に輸送用管路1を架設して構成される吊り橋型管路
橋10において、主塔12間に主ケーブル14を張渡すととも
に、橋台11間もしくは主塔12基部間等に耐風ケーブル15
を張渡すことにより、主ケーブル14と耐風ケーブル15と
が管路まわりにて該管路1に沿う如くに延設され、該管
路1が、主ハンガーロープ16を介して上記主ケーブル14
に懸架されることを特徴とする吊り橋型管路橋である。
2. Description of the Related Art In a conventional suspension bridge type pipeline bridge, a main cable is laid over a main tower standing on both banks, and both ends of the main cable are fixed to the foundation ground further outside the main tower by anchors or the like. In a publicly known suspension bridge in which a stiffener girder such as a truss structure is supported by a hanger rope suspended from a cable and is connected to the stiffener girder, a pipe is usually laid on the stiffener girder. However, the applicant of the present invention has previously developed a suspension bridge type pipeline bridge having a novel structure in which the stiffening girder is omitted and the pipeline is directly supported by the main cable and the wind resistant cable, and is disclosed in Japanese Patent Laid-Open No. 3-63306. ing. That is, as shown in FIG. 12, the main tower on the abutment 11
In a suspension bridge type pipeline bridge 10 constructed by constructing a pipeline 1 for transportation between 12 main cables 14, a main cable 14 is stretched between the main towers 12 and wind resistant cables 15 are provided between abutments 11 or between the bases of the main towers 12.
The main cable 14 and the wind resistant cable 15 are extended around the pipeline so as to extend along the pipeline 1, and the pipeline 1 is passed through the main hanger rope 16 to extend the main cable 14
It is a suspension bridge type pipeline bridge characterized by being suspended in.

【0003】[0003]

【発明が解決しようとする課題】ところで、この新規な
構成の吊り橋型管路橋は、補剛桁が省略されたことによ
り重量が軽くなり、投影面積も減少したため、風による
抵抗は少ないが、剛性も小であることから、歩廊等の付
帯物を管路に取り付けた場合、その位置によっては耐風
安定性が低下してしまうなどの問題を生じることがあっ
た。本発明は、このような問題を生じない歩廊の設置方
法を提供することを目的とする。
By the way, the suspension bridge type conduit bridge of this new structure has a reduced weight due to the omission of the stiffening girder, and the projected area is reduced. Therefore, when an accessory such as a corridor is attached to the pipeline, there is a problem that wind stability may be reduced depending on the position. It is an object of the present invention to provide a method of installing a corridor that does not cause such a problem.

【0004】[0004]

【課題を解決するための手段】本発明は、橋台上の主塔
間に輸送用管路を架設して構成される吊り橋型管路橋で
あって、主塔間に主ケーブルを張渡すとともに、橋台間
もしくは主塔基部間等に耐風ケーブルを張渡すことによ
り、主ケーブルと耐風ケーブルとが管路まわりにて該管
路に沿う如くに延設され、該管路が、主ハンガーロープ
を介して上記主ケーブルに懸架されるとともに、耐風ハ
ンガーロープを介して上記耐風ケーブルに懸架されてな
る吊り橋型管路橋において、管路を構成する管体真上部
に該管体に接近させて歩廊を設置し、管体下部には該管
体と平行に複数本の円柱体を取り付けたこと、あるい
は、管路を構成する管体の両脇に該管体の下面にほぼ等
しい高さに歩廊を設置したことを特徴とする。
The present invention is a suspension bridge type pipeline bridge constructed by constructing a pipeline for transportation between main towers on an abutment, and a main cable is stretched between the main towers. By stretching a wind resistant cable between abutments or between main tower bases, the main cable and the wind resistant cable are extended along the pipeline around the pipeline, and the pipeline passes through the main hanger rope. In the suspension bridge type pipeline bridge, which is suspended from the main cable and suspended from the wind resistant cable via a wind resistant hanger rope, a corridor is installed just above the pipe body forming the pipeline and close to the pipe body. However, a plurality of cylinders are attached to the lower part of the tubular body in parallel with the tubular body, or a corridor is installed on both sides of the tubular body forming the pipeline at a height substantially equal to the lower surface of the tubular body It is characterized by having done.

【0005】[0005]

【作 用】本発明によれば、渦励振等の発生の少ない位
置を選んで歩廊を管体に直接取り付けているので、補剛
桁を持たない簡素な構造でありながら耐風安定性にすぐ
れた吊り橋型管路橋が実現できる。
[Operation] According to the present invention, since the corridor is directly attached to the pipe body by selecting a position where vortex excitation is less likely to occur, the structure is simple without stiffening girders, but excellent in wind resistance stability. A suspension bridge type pipeline bridge can be realized.

【0006】[0006]

【実施例】【Example】

実施例1 管路橋においては、管路の保守・点検等の目的のため管
路に沿って歩廊を設ける必要があり、通常の吊り橋型管
路橋では補剛桁上に歩廊が設置できるが、本発明の管路
橋においては補剛桁がなく管体を直接ハンガーロープで
吊っているため、管体そのものに歩廊を取り付けなけれ
ばならない。その設置位置としては管体の真上、両脇の
いずれかが考えられるが、本発明の第1の実施例は管体
の真上に歩廊を設置したケースで、図1はその斜視図で
ある。1は管体、2は手すり、3は歩廊で、歩廊3はさ
らに山形鋼等の歩廊取り付け用鋼材31ならびにエキスパ
ンドメタル等の歩み板32より構成される。4の円柱体に
ついては後に説明する。
Example 1 In a pipeline bridge, it is necessary to provide a walkway along the pipeline for the purpose of maintenance and inspection of the pipeline, and in a normal suspension bridge type pipeline bridge, the walkway can be installed on a stiffening girder. In the pipeline bridge of the invention, since there is no stiffening girder and the pipe body is directly hung by the hanger rope, a corridor must be attached to the pipe body itself. The installation position may be right above the pipe body or on both sides, but the first embodiment of the present invention is a case where the walkway is installed directly above the pipe body, and FIG. 1 is a perspective view thereof. is there. Reference numeral 1 is a tubular body, 2 is a handrail, 3 is a walkway, and the walkway 3 is further composed of a walkway mounting steel material 31 such as chevron steel and a walk board 32 such as expanded metal. The cylindrical body of No. 4 will be described later.

【0007】まず、図2の断面図に示すように、管体1
の上面に手すり2と歩廊3のみを取り付けた試験体につ
いて、管体1の直径(厳密には外径)をD、歩廊3の設
置高さを管体1の上面からhとし、歩廊の高さすなわち
h/Dを種々に変化させて風洞試験を行った結果を図3
に示す。渦励振域での無次元倍応答振幅2A/Dの最小値
はh=0のときで0.45程度である。歩廊のない、単なる
円柱の渦励振域での最大振幅は0.9 程度であることから
見ると、歩廊の取り付け高さhが小さいほど、わずかで
はあるが歩廊による制振効果が表れていることがわか
る。しかしこの程度では実際の風作用下において渦励振
の発生は免れない。そこで、層流の剥離点で流れを乱す
ことを目的として管体表面近くに、管体と平行して細い
円柱体4を取り付けてその効果を観察した。図4に示す
ように、歩廊3の設置高さは一定(h= 0.2D )とし
て、(a)円柱体を管の上方に2本取り付けたU型、
(b)円柱体を管の下方に2本取り付けたL型、(c)
円柱体を管の上方と下方にそれぞれ2本ずつ取り付けた
W型の3とおりについて、円柱体の径dも変化させて風
洞試験を行った結果を表1に示す。なお、図5は、円柱
体の取り付け位置ならびに管体との距離について、風洞
試験により得られた最適値の一例である。
First, as shown in the sectional view of FIG.
As for the test body in which only the handrail 2 and the corridor 3 are attached to the upper surface of the, That is, FIG. 3 shows the results of wind tunnel tests with various changes in h / D.
Shown in. The minimum value of the dimensionless multiple response amplitude 2A / D in the vortex excitation region is about 0.45 when h = 0. The maximum amplitude in a vortex-excited region of a simple cylinder without a corridor is about 0.9, which indicates that the smaller the mounting height h of the corridor, the smaller the damping effect of the corridor. .. However, at this level, vortex excitation is unavoidable under actual wind action. Therefore, for the purpose of disturbing the flow at the separation point of the laminar flow, a thin cylindrical body 4 was attached near the surface of the tubular body in parallel with the tubular body, and the effect was observed. As shown in FIG. 4, the installation height of the corridor 3 is constant (h = 0.2D), and (a) a U-shape in which two cylinders are attached above the pipe,
(B) L-shape in which two cylinders are attached below the pipe, (c)
Table 1 shows the results of a wind tunnel test performed on three W-shaped cylinders each having two cylinders attached above and below the tube, while changing the diameter d of the cylinders. Note that FIG. 5 shows an example of optimum values obtained by a wind tunnel test for the mounting position of the cylindrical body and the distance from the pipe body.

【0008】[0008]

【表1】 [Table 1]

【0009】表1からわかるとおり、U型、L型、W型
のいずれも、円柱体4の径d=0.06Dの場合が最も成績
が良く、U型はさほどではないが、L型とW型は円柱体
を取り付けないものと比較して約半分程度の振幅となっ
た。このことから、円柱体は下方のものが有効であり、
上下に設置しても下方のみの場合とほとんど相違がみら
れないので、経済的見地を加味すればL型が最も効果的
である。円柱体の径は管体の径の6%前後、4%超え8
%未満がよい。
As can be seen from Table 1, the U-type, L-type, and W-type all have the best results when the diameter d of the cylindrical body 4 is 0.06D. U-type is not so much, but L-type and W-type. The mold has about half the amplitude of the one without the cylinder. From this, the lower cylinder is effective,
Even if installed up and down, there is almost no difference from the case where it is installed only underneath, so the L type is the most effective from an economic point of view. The diameter of the cylinder is around 6% of the diameter of the tube and exceeds 4% 8
Less than% is good.

【0010】図6は、円柱体4の径d=0.06DのL型に
ついて、無次元化した換算風速Vrと応答振幅2A/Dの
測定結果を示すグラフである。このケースについて、歩
廊の設置高さを変化させて風洞試験を行った結果を図7
に示す。この図からわかるように、h/Dの値が0.05以
下であれば応答振幅はほとんどゼロに近く、良好な成績
であった。
FIG. 6 is a graph showing the measurement results of the dimensionless reduced wind velocity Vr and the response amplitude 2A / D for the L-shaped cylinder 4 having a diameter d = 0.06D. Fig. 7 shows the results of wind tunnel tests conducted in this case by changing the installation height of the corridor.
Shown in. As can be seen from this figure, when the value of h / D was 0.05 or less, the response amplitude was close to zero and the result was good.

【0011】なお、以上説明した円柱体4としては、所
定寸法の鋼管等を使用してもよいことはいうまでもない
が、図12に示したように、本発明の吊り橋型管路橋10に
おいては耐風ハンガーロープ17を連結する吊り環20を使
用しており、この吊り環を連結して管路と平行に張られ
たケーブルが存在するので、このケーブルの径と位置を
制振条件に適合させて設置することにより、本実施例で
説明した効果を発揮させることができる。
It is needless to say that a steel pipe or the like having a predetermined size may be used as the columnar body 4 described above, but in the suspension bridge type pipeline bridge 10 of the present invention, as shown in FIG. Uses a suspension ring 20 that connects the wind-resistant hanger rope 17, and there is a cable that is stretched in parallel with the pipeline by connecting this suspension ring, so adjust the diameter and position of this cable to the damping conditions. The effect described in the present embodiment can be exerted by installing them.

【0012】実施例2 第2の実施例は管体の両脇に歩廊を設置したもので、図
8は斜視図、図9は断面図である。1は管体、2は手す
り、3は歩廊、5は帯材、6は横桁である。歩廊3はさ
らに山形鋼等の歩廊取り付け用鋼材31ならびにエキスパ
ンドメタル等の歩み板32より構成される。
Embodiment 2 In the second embodiment, walkways are installed on both sides of a tubular body. FIG. 8 is a perspective view and FIG. 9 is a sectional view. 1 is a tubular body, 2 is a handrail, 3 is a walkway, 5 is a strip, and 6 is a cross beam. The corridor 3 is further composed of a corridor mounting steel material 31 such as angle steel and a walk board 32 such as expanded metal.

【0013】図9に示したように、管体の直径をDと
し、歩廊の設置高さを管体の下面から上方へhとし、歩
廊の高さすなわちh/Dを変化させて風洞試験を行った
結果を図10に示す。渦励振域での無次元倍応答振幅2A/
Dの最小値はこの場合もh=0のときで、その値はおよ
そ0.12であり、好ましいhの値としては高々0.04以下
で、この範囲においては歩廊を管体の真上に設置したさ
きの実施例1と比較すると制振効果は大きい。後述の理
由により、hのマイナス側は好ましくない。
As shown in FIG. 9, the diameter of the tubular body is D, the installation height of the corridor is h from the lower surface of the tubular body to h, and the height of the corridor, that is, h / D is changed to conduct a wind tunnel test. The results obtained are shown in FIG. Dimensionless double response amplitude 2A /
Also in this case, the minimum value of D is h = 0, which is about 0.12, and the preferable value of h is 0.04 or less at most. In this range, the corridor is installed right above the pipe body. Compared with the first embodiment, the damping effect is large. For the reasons described below, the negative side of h is not preferable.

【0014】図11はh=0における換算風速Vr と応答
振幅2A/Dの測定結果を示すグラフで、Vr =6.0 付近
で小さな渦励振の発生が見られるほかは全く安定してい
る。なお、図示は省略するが、h=−0.2D とした場合
では大振幅の渦励振が発生したばかりか、換算風速Vr
= 12 付近からギャロッピング (鉛直方向の自励振動)
が発生するなど、歩廊の高さによって応答特性に極端な
変化が起こり得ることもわかった。
FIG. 11 is a graph showing the measurement results of the converted wind speed Vr and the response amplitude 2A / D at h = 0, which is quite stable except that a small vortex excitation occurs near Vr = 6.0. Although not shown in the figure, when h = -0.2D, not only the large-amplitude vortex excitation occurred but also the converted wind speed Vr
= Galloping from around 12 (self-excited vibration in the vertical direction)
It was also found that the response characteristics could change drastically depending on the height of the corridor, such as the occurrence of a.

【0015】[0015]

【発明の効果】本発明によれば、補剛桁を持たない管路
橋であっても、歩廊の取り付け位置を適正に選定するこ
とにより耐風安定性を向上させることができるから、鋼
材重量が少なくかつ架設工事の容易な補剛桁を持たない
経済的な管路橋の信頼性が高まるという効果がある。
According to the present invention, the wind resistance stability can be improved by properly selecting the installation position of the corridor even in the case of the pipeline bridge without the stiffening girder, so that the weight of the steel material is reduced. In addition, there is an effect that the reliability of an economical pipeline bridge that does not have a stiffening girder that facilitates erection work is enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の斜視図である。FIG. 1 is a perspective view of a first embodiment of the present invention.

【図2】本発明の第1の実施例の断面図である。FIG. 2 is a sectional view of the first embodiment of the present invention.

【図3】本発明の第1の実施例の歩廊取り付け高さを変
化させた風洞試験結果を示すグラフである。
FIG. 3 is a graph showing the results of a wind tunnel test in which the corridor mounting height of the first embodiment of the present invention is changed.

【図4】本発明の第1の実施例において円柱体を設置し
た断面図である。
FIG. 4 is a cross-sectional view in which a cylindrical body is installed in the first embodiment of the present invention.

【図5】本発明の第1の実施例において円柱体の最適設
置位置を示す断面図である。
FIG. 5 is a cross-sectional view showing an optimum installation position of a cylindrical body in the first embodiment of the present invention.

【図6】本発明の第1の実施例のうちL型について風速
を変化させた風洞試験結果を示すグラフである。
FIG. 6 is a graph showing the results of a wind tunnel test in which the wind speed was changed for the L type in the first embodiment of the present invention.

【図7】本発明の第1の実施例のうちL型について歩廊
取り付け高さを変化させた風洞試験結果を示すグラフで
ある。
FIG. 7 is a graph showing the results of a wind tunnel test in which the corridor mounting height was changed for the L type in the first example of the present invention.

【図8】本発明の第2の実施例の斜視図である。FIG. 8 is a perspective view of a second embodiment of the present invention.

【図9】本発明の第2の実施例の断面図である。FIG. 9 is a sectional view of a second embodiment of the present invention.

【図10】本発明の第2の実施例の歩廊取り付け高さを変
化させた風洞試験結果を示すグラフである。
FIG. 10 is a graph showing the results of a wind tunnel test in which the corridor mounting height of the second embodiment of the present invention is changed.

【図11】本発明の第2の実施例について風速を変化させ
た風洞試験結果を示すグラフである。
FIG. 11 is a graph showing the results of a wind tunnel test in which the wind speed was changed for the second example of the present invention.

【図12】本発明にかかわる公知の補剛桁を持たない吊り
橋型管路橋の斜視図である。
FIG. 12 is a perspective view of a suspension bridge type pipeline bridge without a known stiffening girder according to the present invention.

【符号の説明】[Explanation of symbols]

1 管体 2 手すり 3 歩廊 4 円柱体 5 帯材 6 横桁 1 Tubular body 2 Handrail 3 Walkway 4 Cylindrical body 5 Band material 6 Cross girder

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 橋台上の主塔間に輸送用管路を架設して
構成される吊り橋型管路橋であって、主塔間に主ケーブ
ルを張渡すとともに、橋台間もしくは主塔基部間等に耐
風ケーブルを張渡すことにより、主ケーブルと耐風ケー
ブルとが管路まわりにて該管路に沿う如くに延設され、
該管路が、主ハンガーロープを介して上記主ケーブルに
懸架されるとともに、耐風ハンガーロープを介して上記
耐風ケーブルに懸架されてなる吊り橋型管路橋におい
て、管路を構成する管体真上部に該管体に接近させて歩
廊を設置し、管体下部には該管体と平行に複数本の円柱
体を取り付けたことを特徴とする吊り橋型管路橋。
1. A suspension bridge type pipeline bridge constructed by constructing a pipeline for transportation between main towers on an abutment, in which a main cable is stretched between the main towers and between abutments or between main tower bases, etc. By straddling the wind resistant cable to, the main cable and the wind resistant cable are extended around the pipeline along the pipeline,
In a suspension bridge type pipeline bridge in which the pipeline is suspended on the main cable via a main hanger rope and is suspended on the wind resistant cable via a wind resistant hanger rope, directly above the pipe body forming the pipeline. A suspension bridge type pipeline bridge characterized in that a walkway is installed close to the pipe body, and a plurality of columnar bodies are attached to the lower part of the pipe body in parallel with the pipe body.
【請求項2】 歩廊の設置高さが、管体上面から管体直
径の5%以下である請求項1記載の吊り橋型管路橋。
2. The suspension bridge type pipeline bridge according to claim 1, wherein the installation height of the walkway is 5% or less of the diameter of the tubular body from the upper surface of the tubular body.
【請求項3】 円柱体の直径が管体直径の4%超え8%
未満である請求項1記載の吊り橋型管路橋。
3. The diameter of the cylindrical body exceeds 4% of the diameter of the tubular body and 8%
The suspension bridge type pipeline bridge according to claim 1, which is less than.
【請求項4】 橋台上の主塔間に輸送用管路を架設して
構成される吊り橋型管路橋であって、主塔間に主ケーブ
ルを張渡すとともに、橋台間もしくは主塔基部間等に耐
風ケーブルを張渡すことにより、主ケーブルと耐風ケー
ブルとが管路まわりにて該管路に沿う如くに延設され、
該管路が、主ハンガーロープを介して上記主ケーブルに
懸架されるとともに、耐風ハンガーロープを介して上記
耐風ケーブルに懸架されてなる吊り橋型管路橋におい
て、管路を構成する管体の両脇に該管体の下面にほぼ等
しい高さに歩廊を設置したことを特徴とする吊り橋型管
路橋。
4. A suspension bridge type pipeline bridge constructed by laying a pipeline for transportation between main towers on an abutment, wherein a main cable is stretched between the main towers and between abutments or between main tower bases, etc. By straddling the wind resistant cable to, the main cable and the wind resistant cable are extended around the pipeline along the pipeline,
In the suspension bridge type pipeline bridge in which the pipeline is suspended on the main cable via a main hanger rope and is suspended on the wind resistant cable via a wind resistant hanger rope, both sides of the pipe body forming the pipeline A suspension bridge type pipeline bridge characterized in that a walkway is installed on the lower surface of the pipe body at substantially the same height.
【請求項5】 歩廊の設置高さが、管体下面に等しい
か、管体下面上方に管体直径の4%以下である請求項4
記載の吊り橋型管路橋。
5. The installation height of the corridor is equal to the lower surface of the tubular body or 4% or less of the diameter of the tubular body above the lower surface of the tubular body.
Suspension bridge type pipeline bridge described.
JP32616491A 1991-12-10 1991-12-10 Suspension bridge type pipeline bridge Pending JPH05156606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32616491A JPH05156606A (en) 1991-12-10 1991-12-10 Suspension bridge type pipeline bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32616491A JPH05156606A (en) 1991-12-10 1991-12-10 Suspension bridge type pipeline bridge

Publications (1)

Publication Number Publication Date
JPH05156606A true JPH05156606A (en) 1993-06-22

Family

ID=18184770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32616491A Pending JPH05156606A (en) 1991-12-10 1991-12-10 Suspension bridge type pipeline bridge

Country Status (1)

Country Link
JP (1) JPH05156606A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309119B1 (en) * 2013-03-25 2013-09-17 주식회사 에이치에스피 Pipe install device for bridges and it's pipe construction methods
CN104404862A (en) * 2014-11-28 2015-03-11 林同棪国际工程咨询(中国)有限公司 Steel pipe net frame pedestrian pipeline bridge
KR101580118B1 (en) * 2015-06-12 2015-12-29 (주)에이치엔피테크 Aqueduct and installation methods thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309119B1 (en) * 2013-03-25 2013-09-17 주식회사 에이치에스피 Pipe install device for bridges and it's pipe construction methods
CN104404862A (en) * 2014-11-28 2015-03-11 林同棪国际工程咨询(中国)有限公司 Steel pipe net frame pedestrian pipeline bridge
CN104404862B (en) * 2014-11-28 2017-04-05 林同棪国际工程咨询(中国)有限公司 Steel pipe rack people's row Pipeline Bridge
KR101580118B1 (en) * 2015-06-12 2015-12-29 (주)에이치엔피테크 Aqueduct and installation methods thereof

Similar Documents

Publication Publication Date Title
JP4252982B2 (en) Bridge and bridge construction method
US3248886A (en) Anti-flutter device for riser pipe
JPH05156606A (en) Suspension bridge type pipeline bridge
JP5075392B2 (en) Rope type repair scaffold
KR102232982B1 (en) Suspension pedestrian bridge using segment girder with truss structure
US510064A (en) Bridge
CN209010984U (en) A kind of Bridge Erector hoisting system and Bridge Erector suitable for low headroom condition
KR102221511B1 (en) A segment bridge of towerless pedestrian suspension bridge
JPH0363306A (en) Suspension bridge-type pipeline bridge
JPS59327Y2 (en) Suspended scaffolding for bridge piers
KR101858534B1 (en) Arch bridge comprised of iron strip girder
Kamei et al. Konohana Bridge, Japan
JPH04140363A (en) Assembly of suspended scaffolding
JPS6015766Y2 (en) Wind-resistant cable-stayed pipe bridge
Sarkar et al. Model tests to study rain/wind-induced vibration of stay cables
CN209523125U (en) Hoist cable scaffold support construction and system
SU1761656A1 (en) Undercrane h-beam
JPH08261405A (en) Structure and method for lifting top large beam of boiler
SU590396A1 (en) Suspension pipe bridge
SU1015069A1 (en) Apparatus for reinforcing rafter trusses
JPH0586607A (en) Endless cable type suspension bridge
Janata et al. The cable‐stayed footbridge in Prague‐Radotín
SU983170A1 (en) Pipeline overpass
JPH0726755U (en) Support structure for detectors in running water
JPH0776806A (en) Balustrade structure of suspension bridge