JPH05156421A - Production of carburization hardened product having high fatigue strength - Google Patents

Production of carburization hardened product having high fatigue strength

Info

Publication number
JPH05156421A
JPH05156421A JP34216291A JP34216291A JPH05156421A JP H05156421 A JPH05156421 A JP H05156421A JP 34216291 A JP34216291 A JP 34216291A JP 34216291 A JP34216291 A JP 34216291A JP H05156421 A JPH05156421 A JP H05156421A
Authority
JP
Japan
Prior art keywords
steel
shot peening
fatigue strength
carburization
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34216291A
Other languages
Japanese (ja)
Inventor
Atsushi Inada
淳 稲田
Hiroshi Kakou
浩 家口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP34216291A priority Critical patent/JPH05156421A/en
Publication of JPH05156421A publication Critical patent/JPH05156421A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To produce the carburized product having the high resistance to the fatigue failure at an internal start point by subjecting a steel having a specific component compsn. to a carburization treatment, then hardening the steel to a specific structure and subjecting the steel to a shot peening treatment under specific conditions. CONSTITUTION:The steel materials which contain, by weight%, 0.1 to 0.4% C, <=0.3% Si, 0.02 to 0.08% Al and are incorporated with >=2 kinds of the elements selected from 0.3 to 3.1% Mn, 0 to 6% Ni, 0 to 1.2% Cr, 0 to 1.2% Mo so as to satisfy formula I are subjected to the carburization or carbonitriding treatment to satisfy formula II. In succession, the steel materials are hardened from an austenite single phase region, by which the steel products having 550 to 620 max. hardness HV of the hardened layer and maintaining the residual austenite area rate down to 300mum from the surface without falling down to <=20% are obtd. The steel materials are thereafter subjected to the shot peening treatment under the condition of >=0.6mmA arc height. As a result, the carburization hardened products having the excellent fatigue strength are produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、疲労強度にすぐれる浸
炭焼入品の製造法に関し、詳しくは自動車,建設機械,
各種シャフト類等に用いられる浸炭焼入品の製造に際し
て、特に内部起点の疲労破壊に対する抵抗力を高めるこ
とを可能にした浸炭焼入品の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carburized and hardened product having excellent fatigue strength, and more particularly to automobiles, construction machinery,
The present invention relates to a method for manufacturing a carburized and hardened product capable of enhancing resistance to fatigue fracture originating from an internal point in manufacturing a carburized and hardened product used for various shafts.

【0002】[0002]

【従来の技術】自動車,建設機械,各種シャフト類等の
機械部品の中で耐疲労性が特に強く要望される部品に関
しては、浸炭焼入処理に引続きショットピーニングによ
る表面硬化処理が用いられることが多い。ショットピー
ニング処理による疲労強度向上の主な機構の一つは、表
面圧縮残留応力付与の効果である。
2. Description of the Related Art Among machine parts such as automobiles, construction machines, various shafts, etc., which are particularly strongly required to have fatigue resistance, surface hardening treatment by shot peening is often used after carburizing and quenching. Many. One of the main mechanisms for improving the fatigue strength by shot peening is the effect of applying surface compressive residual stress.

【0003】しかしながら、通常の浸炭焼入鋼はそれだ
けで表面硬さがHv800 程度の高硬度となるためショット
ピーニングによる塑性変形を起因とした圧縮残留応力付
与効果は最表面近傍に限られており、材料内部を起点と
するような破壊に対しては十分な強度を示さないことが
あった。また浸炭層にある程度の残留オーステナイト相
(残留γ相)を存在させ、ショットピーニングによって
これを加工誘起変態させることにより、一層効果的な圧
縮残留応力が得られることが見いだされ、浸炭窒化処理
や浸炭時のカーボンポテンシャル上昇法が採用されてき
た。しかしながらこの方法においても、炭素や窒素はマ
トリックスを固溶硬化させる効果が大きいため、残留γ
相の存在にもかかわらず、ショットピーニング前のマト
リックス硬さがHv700 程度と高く、やはりショットピー
ニングの影響が材料内部まで十分に届かないため、表面
起点の疲労破壊に対する強度は改善されるが、内部から
の疲労破壊には十分な強度を示さないことがあった。
However, since ordinary carburized and hardened steel has a high surface hardness of about Hv800 by itself, the compressive residual stress imparting effect due to plastic deformation due to shot peening is limited to the vicinity of the outermost surface, In some cases, it did not show sufficient strength against fracture starting from inside the material. It was also found that a more effective compressive residual stress can be obtained by allowing a certain amount of residual austenite phase (residual γ phase) to exist in the carburized layer and subjecting this to work-induced transformation by shot peening. The method of increasing the carbon potential of time has been adopted. However, even in this method, since carbon and nitrogen have a large effect of solid-solution hardening the matrix, the residual γ
Despite the existence of phases, the matrix hardness before shot peening is as high as Hv 700, and the effect of shot peening still does not reach the inside of the material sufficiently, so the strength against fatigue fracture from the surface origin is improved, but the internal In some cases, it did not show sufficient strength for fatigue failure.

【0004】[0004]

【発明が解決しようとする課題】本発明はこの様な事情
に着目してなされたものであって、その目的は、ショッ
トピーニングによる表面圧縮残留応力付与の効果を材料
内部のより深くまで到達させることによって、特に材料
内部起点の疲労破壊に対して強い材料の製造方法を提供
することにある。
The present invention has been made in view of such circumstances, and its purpose is to make the effect of applying surface compressive residual stress by shot peening reach deeper inside the material. This is to provide a method of manufacturing a material that is particularly resistant to fatigue fracture originating from the inside of the material.

【0005】[0005]

【課題を解決するための手段】上記目的を達成し得た本
発明方法とは、重量%でC:0.1 〜0.4 %,Si:0.3
%以下,Al:0.02〜0.08%を夫々含有すると共に、M
n:0.3 〜3.1%,Ni:0〜6%,Cr:0〜1.2
%,Mo:0〜1.2 %よりなる群から選択される2種以
上を下記(1) 式を満足する様に含有し、残部鉄および不
可避不純物からなる鋼材に、下記(2) 式を満足する様な
浸炭または浸炭窒化処理を施し、引き続きオーステナイ
ト単相域から焼入れを行なうことによって、浸炭焼入硬
化層の最高硬さがHv:550 〜620 、且つ表面から300 μ
m 深さまでにおける残留オーステナイト面積率が20%以
下と成ることのない鋼材を得、その後アークハイト:0.
6mmA以上の条件でショットピーニング処理する点に要旨
を有するものである。 6.4 %≦2[Mn]+[Ni]+[Cr]+[Mo]≦8.2 % …(1) 但し、[ ]は鋼中に存在する各元素の重量%を示す。 0.55%≦表面炭素量(重量%)+表面窒素量(重量%)≦0.90% …(2)
The method of the present invention which has achieved the above object is that C: 0.1 to 0.4% by weight and Si: 0.3% by weight.
% Or less, Al: 0.02 to 0.08%, and M
n: 0.3 to 3.1%, Ni: 0 to 6%, Cr: 0 to 1.2
%, Mo: 0 to 1.2%, two or more kinds selected from the group consisting of so as to satisfy the following formula (1), and the balance of steel and iron inevitable impurities satisfy the following formula (2). By carburizing or carbonitriding as described above, and then quenching from the austenite single-phase region, the maximum hardness of the carburized and hardened layer is Hv: 550 to 620 and 300 μ from the surface.
A steel material with a retained austenite area ratio of 20% or less up to the depth of m is obtained, and then the arc height: 0.
The point is that shot peening is performed under the condition of 6 mmA or more. 6.4% ≦ 2 [Mn] + [Ni] + [Cr] + [Mo] ≦ 8.2% (1) where [] indicates the weight% of each element present in the steel. 0.55% ≤ surface carbon content (wt%) + surface nitrogen content (wt%) ≤ 0.90% (2)

【0006】[0006]

【作用】本発明者らは、ショットピーニング処理による
圧縮残留応力を、浸炭焼入品の内部深くまで効果的に付
与する方法について様々な角度から検討を行なった。そ
の結果、まず浸炭層の残留γ量を十分に増加させて、浸
炭層の最高硬さを低くした方が、より内部深くまで圧縮
残留応力が生じ易くなることを見出した。また残留応力
を付与しようとする全深さにおいて、ショットピーニン
グ処理前に十分量の残留γが存在していることも必要で
あることが判明した。但し、表面硬さが低過ぎれば、表
面の疲労強度が低下することが懸念される。しかしなが
らこの点については、浸炭焼入硬化層の最高硬さをHv:5
50〜620 の範囲内にしておけば、残留γの加工誘起変態
によるマルテンサイト化とも相俟って、ショットピーニ
ング処理後の硬さは通常の浸炭処理材の場合と比較して
Hv100 程度までの低下に留まり、疲労強度には殆ど影響
を及ぼさないということが、実験によって確認された。
The present inventors have studied from various angles how to effectively apply the compressive residual stress by shot peening to the deep inside of the carburized and quenched product. As a result, it was found that compressive residual stress is more likely to occur deeper inside when the amount of residual γ in the carburized layer is sufficiently increased to lower the maximum hardness of the carburized layer. It was also found that it is necessary that a sufficient amount of residual γ be present before the shot peening treatment at all depths at which residual stress is to be imparted. However, if the surface hardness is too low, the fatigue strength of the surface may decrease. However, regarding this point, the maximum hardness of the carburized and hardened layer is Hv: 5
If it is set within the range of 50 to 620, the hardness after shot peening is higher than that of ordinary carburized material in combination with martensite formation due to the work-induced transformation of residual γ.
It was confirmed by experiments that the fatigue strength was not significantly affected by the decrease to Hv100.

【0007】ところで、従来のような浸炭によるカーボ
ンポテンシャルの上昇や浸炭窒化による残留γの増加
は、比較的容易に多量の残留γを形成するが、マトリッ
クス全体の硬さ低下量が不十分となり、従って圧縮残留
応力付与効果は十分ではない。そこで本発明者らは固溶
元素と残留γとの関係を検討したところ、特にNi,M
n,CrおよびMoの含有量総量を所定範囲内となる様
にすれば、多量の残留γが得られ、また浸炭後最高値で
Hv600 前後の非常に低い硬さが得られるため、結果的に
ショットピーニング後の圧縮残留応力が比較的材料内部
深くまで与えられることが判明した。この特性により特
に材料内部の介在物等を起点とするような疲労破壊に対
する抵抗力が大きく向上するという結果が得られ、本発
明を完成した。本発明で用いる鋼材における化学成分限
定理由は下記の通りである。
By the way, the conventional increase in carbon potential due to carburization and increase in residual γ due to carbonitriding relatively easily form a large amount of residual γ, but the decrease in hardness of the entire matrix becomes insufficient, Therefore, the compressive residual stress imparting effect is not sufficient. Therefore, the present inventors have examined the relationship between the solid solution element and the residual γ, and found that Ni, M
If the total content of n, Cr and Mo is kept within a predetermined range, a large amount of residual γ can be obtained, and the maximum value after carburization is obtained.
It was found that a very low hardness around Hv600 is obtained, and as a result, the compressive residual stress after shot peening is given relatively deep inside the material. This characteristic has resulted in a great improvement in the resistance to fatigue fracture, particularly from the inclusions inside the material as the starting point, thus completing the present invention. The reasons for limiting the chemical composition in the steel material used in the present invention are as follows.

【0008】C:0.1 〜0.4 % Cは浸炭処理した部品に所定の芯部硬さを付与するのに
必須の元素である。このためには0.1 %以上添加する必
要があるが、多過ぎると靭性や被削性が低下するので0.
4 %以下にする必要がある。 Si:0.3 %以下 Siは溶製時に脱酸の目的で添加されるが、過剰に添加
すると粒界酸化層が深くなり、表面強度を低下させるの
で、0.3 %以下とすべきである。
C: 0.1-0.4% C is an essential element for imparting a predetermined core hardness to the carburized parts. For this purpose, it is necessary to add 0.1% or more, but if too much is added, the toughness and machinability will decrease, so it is not possible to add.
Must be 4% or less. Si: 0.3% or less Si is added for the purpose of deoxidizing during melting, but if added excessively, the grain boundary oxide layer becomes deep and the surface strength is lowered, so it should be 0.3% or less.

【0009】Al:0.02〜0.08% Alは溶製時の脱酸を促進し、浸炭加熱時のオーステナ
イト結晶粒の成長を抑制する元素であり、0.02%未満で
はこの様な効果は得られない。しかしながら過剰に添加
すると、被削性や靭性の低下を招くので、0.08%以下と
すべきである。次にMn,Ni,CrおよびMo等の元
素は、上述の如く少量で多量の残留γを得るのに有効で
あり、さらに残留γの存在によるマトリックス硬さの低
下効果がきわめて大きいので本発明の目的を達成するの
に有効な元素である。発明者らは種々検討することによ
り、これらの元素の量について下記(1) 式の様な関係が
満たされることが本発明の目的達成にあたって必要であ
ることを見いだした。またこれらの元素は材料の焼入性
の向上にも深く関わっており、(1) 式を満たす範囲では
十分な焼入性が確保されている。 6.4 %≦2[Mn]+[Ni]+[Cr]+[Mo]≦8.2 %…(1) 但し、[ ]は鋼中に存在する各元素の重量%を示す。
尚各々の元素の限定範囲については下記の通りである。
Al: 0.02 to 0.08% Al is an element that promotes deoxidation during melting and suppresses the growth of austenite crystal grains during carburizing and heating. If it is less than 0.02%, such an effect cannot be obtained. However, if added excessively, the machinability and toughness will be deteriorated, so the content should be 0.08% or less. Next, elements such as Mn, Ni, Cr, and Mo are effective for obtaining a large amount of residual γ as described above, and further, the effect of decreasing the matrix hardness due to the presence of residual γ is extremely large. It is an effective element for achieving the purpose. The inventors have conducted various studies and found that it is necessary for the amounts of these elements to satisfy the relationship represented by the following formula (1) in order to achieve the object of the present invention. Further, these elements are deeply involved in improving the hardenability of the material, and sufficient hardenability is secured within the range that satisfies the formula (1). 6.4% ≦ 2 [Mn] + [Ni] + [Cr] + [Mo] ≦ 8.2% (1) where [] indicates the weight% of each element present in the steel.
The limited range of each element is as follows.

【0010】Mn:0.3 〜3% Mnは溶製時の脱酸の為に0.3 %は必要であるが、多過
ぎると浸炭時の粒界酸化層を助長するので3%以下とす
べきである。 Ni:6%以下 Niに関しては経済性の問題から6%を上限とした。 Cr:1.2 %以下 Crは浸炭異常層の助長、粒界炭化物の形成を促進する
ことから、1.2 %以下に制限する必要がある。
Mn: 0.3 to 3% Mn is required to be 0.3% for deoxidation during melting, but if it is too much, it promotes the grain boundary oxide layer during carburization, so should be 3% or less. .. Ni: 6% or less With respect to Ni, the upper limit is 6% due to economical problems. Cr: 1.2% or less Cr promotes the abnormal carburization layer and promotes the formation of grain boundary carbides, so it is necessary to limit it to 1.2% or less.

【0011】Mo:1.2 %以下 Moは多過ぎると炭化物を形成するので、1.2 %以下に
制限すべきである。本発明で対象とする鋼材は、以上の
元素を基本成分とし、残部鉄および不可避不純物からな
るものであるが、必要によりNbやV等を含有してもよ
い。これらの元素を添加するときの含有量は下記の通り
である。 Nb:0.005 〜0.2 %,V:0.03〜0.8 % NbおよびVはともに炭窒化物を形成して浸炭加熱時の
オーステナイト結晶粒を微細化する元素である。このよ
うな効果を得るには、Nbは0.005 %以上、Vは0.03%
以上添加する必要がある。しかしながらNbについては
0.2 %を超えて添加しても上記効果が飽和し、Vについ
ては0.8%を超えて添加すると炭窒化物の過剰による靭
性低下や疲労強度低下を招く。
Mo: 1.2% or less Since Mo forms carbide when too much, it should be limited to 1.2% or less. The steel material targeted by the present invention has the above elements as basic components and the balance iron and unavoidable impurities, but may contain Nb, V and the like if necessary. The contents when these elements are added are as follows. Nb: 0.005 to 0.2%, V: 0.03 to 0.8% Nb and V are both elements that form carbonitrides and refine the austenite crystal grains during carburizing and heating. To obtain this effect, Nb is 0.005% or more and V is 0.03%.
It is necessary to add more than this. However, for Nb
Even if it is added in an amount of more than 0.2%, the above effect is saturated, and if V is added in an amount of more than 0.8%, toughness and fatigue strength are lowered due to excess carbonitride.

【0012】また本発明で対象とする鋼材には、PやS
等が不可避的に含まれるが、これらの元素の含有量は下
記の様に制限すべきである。 P:0.03%以下 Pは粒界強度を低下させるので、0.03%以下に抑えなけ
ればならない。 S:0.03%以下 Sは切削性を向上させる元素であるが、その含有量が0.
03%を超えると疲労強度および靭性が低下するため、0.
03%を上限とした。
Further, the steel materials to which the present invention is applied include P and S.
Etc. are inevitably contained, but the contents of these elements should be limited as follows. P: 0.03% or less P reduces the grain boundary strength, so it must be suppressed to 0.03% or less. S: 0.03% or less S is an element that improves machinability, but its content is 0.
If it exceeds 03%, the fatigue strength and toughness will decrease, so 0.
The upper limit was 03%.

【0013】本発明の目的は、ショットピーニングによ
って特に材料内部(約200 〜400 μm )での残留応力を
改善し、その深さからの疲労破壊に対する抵抗力を増す
ことである。従って本発明においては、浸炭焼入硬化
層の最大硬さがHv550 〜620であること、表面より300
μm 以内の深さ範囲内では何処も残留γが20.0%以下
となることがない、という2つの要件を満足することが
極めて必要である。このうちの要件の定量的意味は、
で規定する最高硬さを有する浸炭鋼に0.6mmA以上の条
件でショットピーニングを施した場合、効果的に残留応
力が付与される限界深さが材料の大きさに関わらず300
μm 前後であり、この深さにおいて残留γが20%程度以
上存在する場合にのみ、ショットピーニングによる圧縮
残留応力が効果的に得られるという実験事実に基づいて
いる。これら2つの要件を満足させるためには次の条件
が必要であり、以下更に詳細に説明する。
It is an object of the present invention to improve residual stresses by shot peening, especially inside the material (about 200-400 μm), and increase resistance to fatigue fracture from that depth. Therefore, in the present invention, the maximum hardness of the carburized quench hardening layer is Hv550 ~ 620, 300 from the surface
It is extremely necessary to satisfy the two requirements that the residual γ does not become 20.0% or less anywhere within the depth range of μm. The quantitative meaning of these requirements is
When carburized steel with the maximum hardness specified in 1 above is shot peened under 0.6 mmA or more, the critical depth at which residual stress is effectively applied is 300 regardless of the size of the material.
This is based on the experimental fact that the compressive residual stress due to shot peening can be effectively obtained only when the residual γ is about 20% or more at this depth. The following conditions are necessary to satisfy these two requirements, which will be described in more detail below.

【0014】本発明においては、下記(2) 式を満足する
必要がある。 0.55%≦表面炭素量(重量%)+表面窒素量(重量%)≦0.90% …(2) 表面炭素量(以下C.P.と略称する)および表面窒素量
(以下N.P.と略称する)は、低いほど最高硬さは低くな
るので、最高硬さに関する要件を満足し易くなる。しか
しながら(C.P.+N.P.)をあまり低くし過ぎると、残留
γ面積率が低くなり過ぎて圧縮残留応力の付与効果が得
られにくくなるうえに、ショットピーニングによる硬さ
の上昇量も低下し、結果的に疲労強度の向上が図れなく
なる。こうした観点から本発明において、C.P.+N.P.の
下限を0.55%とした。
In the present invention, it is necessary to satisfy the following expression (2). 0.55% ≤ surface carbon amount (wt%) + surface nitrogen amount (wt%) ≤ 0.90% (2) The lower the surface carbon amount (hereinafter abbreviated as CP) and the surface nitrogen amount (hereinafter abbreviated as NP), Since the maximum hardness is low, it is easy to satisfy the requirements regarding the maximum hardness. However, if (CP + N.P.) is set too low, the residual γ area ratio will be too low, and it will be difficult to obtain the effect of compressive residual stress, and the increase in hardness due to shot peening will also decrease. Fatigue strength cannot be improved. From this point of view, in the present invention, the lower limit of CP + N.P. Is set to 0.55%.

【0015】一方残留γを多くするという観点から(C.
P.+N.P.)を過剰に高くした場合は、たとえ残留γが大
量に得られたとしても、炭素や窒素によるマトリックス
の固溶強化により希望する硬さを得ることが困難となる
(後記実施例参照)上、浸炭処理中に粒界炭(窒)化物
が浸炭層に析出して疲労強度を低下させる可能性がある
ので(C.P.+N.P.)は0.9%以下に抑える必要がある。
On the other hand, from the viewpoint of increasing the residual γ (C.
When P. + N.P.) Is excessively high, it becomes difficult to obtain a desired hardness due to solid solution strengthening of the matrix with carbon or nitrogen even if a large amount of residual γ is obtained (see below). In addition, (C + N.P.) Must be suppressed to 0.9% or less because there is a possibility that grain boundary carbon (nitride) precipitates in the carburized layer during the carburizing process to reduce the fatigue strength.

【0016】本発明を実施するに当たり、材料内部300
μm 深さまでの範囲における残留γ量を20%超に保つた
めに、浸炭時間を適切に調整する必要がある。浸炭時間
が短かすぎる場合は、炭素原子の侵入深さが浅くなるの
で、最表面では希望する性質が得られていても、300 μ
m 深さあたりの内部では残留γが不足し、その部分への
残留応力付与が不十分となる可能性がある。従ってこの
ことを考慮しながら、試料の化学組成や浸炭温度等との
かね合いで適当な時間を設定すればよい。
In practicing the present invention, the material interior 300
The carburizing time needs to be adjusted appropriately in order to maintain the residual γ amount in the range up to the μm depth of more than 20%. If the carburizing time is too short, the penetration depth of carbon atoms will be shallow, so even if the desired properties are obtained on the outermost surface, 300 μm
There is a possibility that residual γ will be insufficient inside the m depth and that residual stress will be insufficiently applied to that portion. Therefore, considering this, an appropriate time may be set in consideration of the chemical composition of the sample, the carburizing temperature, and the like.

【0017】尚本発明におけるショットピーニング処理
に関しては、アークハイト0.6mmA未満のショットピーニ
ング処理では必要な残留応力を300 μm 深さあたりまで
付与するには不足するので、0.6mmA以上の条件で行うこ
とが必要である。
Regarding the shot peening treatment in the present invention, the shot peening treatment with an arc height of less than 0.6 mmA is insufficient to provide the required residual stress up to a depth of 300 μm, so the shot peening treatment should be performed under a condition of 0.6 mmA or more. is necessary.

【0018】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any change in the design of the present invention can be made without departing from the spirit of the preceding and following paragraphs. It is included in the technical scope.

【0019】[0019]

【実施例】供試材の化学成分を表1に示す。これら供試
材を鍛造した後、焼きならし処理し、試験片に加工し
た。
[Examples] Table 1 shows the chemical composition of the test materials. After these test materials were forged, they were normalized and processed into test pieces.

【0020】[0020]

【表1】 [Table 1]

【0021】次に、図1および表2に示す各A〜Eの条
件にて、浸炭処理を、または図2の条件(Fの条件)に
て浸炭窒化処理を行なった。続いて表3に示すa〜cの
3つの条件のアークハイトによってショットピーニング
処理を行なった。尚表2に示したC,Dの条件による浸
炭処理、および図2に示したFの条件による浸炭窒化処
理並びに表3に示したcの条件は、本発明で限定する範
囲外のものである。
Next, the carburizing treatment was performed under the conditions A to E shown in FIG. 1 and Table 2, or the carbonitriding treatment was performed under the condition shown in FIG. 2 (condition F). Then, shot peening processing was performed by the arc height of three conditions of ac shown in Table 3. The carburizing treatment under the conditions of C and D shown in Table 2, the carbonitriding treatment under the condition of F shown in FIG. 2 and the condition of c shown in Table 3 are outside the range limited by the present invention. ..

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】表1に示した各供試鋼を用い、浸炭条件お
よびピーニング条件を変えて処理した後、疲労試験を行
なった。
Each of the test steels shown in Table 1 was treated under different carburizing conditions and peening conditions, and then fatigue tests were conducted.

【0025】表4に各試料のビッカース硬さの最高値、
最表面より30μm 深さ位置での残留γ量、最表面より30
0 μm 深さ位置での残留γ量(以上ショットピーニング
前の値)、最表面より30μm 深さ位置での圧縮残留応力
値、最表面より300 μm 深さ位置での圧縮残留応力値、
疲労限値(以上ショットピーニング後の値)をそれぞれ
示した。尚疲労試験は小野式回転曲げ疲労試験機によっ
た。特に亀裂が内部より発生する場合の疲労強度を調査
するため、応力集中係数1.10の緩やかなノッチを持つ回
転曲げ疲労試験片を作成した。また残留応力値および残
留γ量の測定は、化学研磨法により必要量の表層を除去
した後、微小部X線回折装置を用いて行った。
Table 4 shows the maximum Vickers hardness of each sample,
Residual γ amount at 30 μm depth from the outermost surface, 30 from the outermost surface
Residual γ amount at 0 μm depth (above values before shot peening), compressive residual stress value at 30 μm depth from the outermost surface, compressive residual stress value at 300 μm depth from the outermost surface,
The fatigue limit values (above values after shot peening) are shown. The fatigue test was carried out by an Ono-type rotary bending fatigue tester. In particular, in order to investigate the fatigue strength when cracks are generated from the inside, a rotating bending fatigue test piece with a gentle notch with a stress concentration factor of 1.10. Further, the residual stress value and the residual γ amount were measured by using a minute portion X-ray diffractometer after removing a necessary amount of the surface layer by a chemical polishing method.

【0026】[0026]

【表4】 [Table 4]

【0027】表4の上段は本発明で規定する要件を全て
満足する実施例であり、全ての試料において表面および
300 μm 内部ともに比較的大きな圧縮残留応力値が得ら
れており、疲労限は良好な値を示している。これに対
し、下段はすべて何らかの請求範囲外条件をもつ比較例
である。これらの結果から、次の様に考察できる。
The upper row of Table 4 is an example satisfying all the requirements specified in the present invention.
Relatively large compressive residual stress values were obtained inside the 300 μm region, indicating a good fatigue limit. On the other hand, all the lower rows are comparative examples having some out-of-claim conditions. From these results, it can be considered as follows.

【0028】(1) 適当な浸炭およびショットピーニング
条件を選定すれば良好な疲労強度の得られた No.1であ
っても、C処理(C.P.=0.45 %)またはE処理(短時間
浸炭)を施した場合は、表4に示されるように最高硬さ
は本発明で規定する範囲内であるが、300 μm 内部での
残留γ量が本発明範囲を大きく下回り、その結果内部に
おいて十分な圧縮残留応力が得られず、疲労強度も比較
的低くなっている。 (2) No.1鋼に条件Aの浸炭処理を施した場合でも、シ
ョットピーニング強度の低いC処理であった場合には、
残留応力付与効果が内部まで達せず、低疲労強度となっ
ている。 (3) No.8は汎用の浸炭用鋼であり、 No.9は No.8に
残留γ増加のためMoを添加した改良鋼であるが、2
[Mn]+[Ni]+[Cr]+[Mo]の値は3.40と
本発明範囲よりもずっと小さい。No.8と No.9をA浸
炭処理で比較すると No.9の方が残留応力も疲労強度も
優れているが、本発明の処理材に比べると大きく劣る。
No.9鋼にD処理(炭素ポテンシャル増加)またはF処
理(浸炭浸窒)を施すと、残留γは本発明鋼なみに増加
するにもかかわらず、最高硬さは本発明で規定する範囲
よりもずっと高いため、300 μm 深さ位置での圧縮残留
応力がA処理よりは増加するものの不十分であり、疲労
限も大きくは向上しない。
(1) C treatment (CP = 0.45%) or E treatment (short-time carburization) was performed even for No. 1 which had good fatigue strength if proper carburizing and shot peening conditions were selected. When applied, the maximum hardness is within the range specified in the present invention as shown in Table 4, but the amount of residual γ within 300 μm is much lower than the range of the present invention, and as a result, sufficient compression is achieved inside. Residual stress is not obtained and fatigue strength is relatively low. (2) Even if the No. 1 steel is carburized under condition A, if it is C treated with low shot peening strength,
The residual stress imparting effect does not reach the inside, resulting in low fatigue strength. (3) No. 8 is a general-purpose carburizing steel, and No. 9 is an improved steel in which Mo is added to No. 8 to increase residual γ.
The value of [Mn] + [Ni] + [Cr] + [Mo] is 3.40, which is much smaller than the range of the present invention. Comparing No. 8 and No. 9 with the A carburizing treatment, No. 9 is superior in residual stress and fatigue strength, but is significantly inferior to the treated material of the present invention.
When the No. 9 steel is subjected to D treatment (increasing carbon potential) or F treatment (carburizing and nitrifying), the maximum hardness is higher than the range specified by the present invention, although the residual γ increases as much as the steel of the present invention. Since it is much higher, the compressive residual stress at the depth of 300 μm increases more than that of the A treatment, but is insufficient, and the fatigue limit does not improve significantly.

【0029】(4) No. 10は No.9にくらべれば多量の残
留γ安定化元素を含んでいるが、2[Mn]+[Ni]
+[Cr]+[Mo]の値はなお6.4 %に満たず、残留
γ量がまだ不十分なため、最高硬さも本発明で規定する
範囲よりも高くなっており、その結果内部残留応力が低
くなり疲労限が低い値を示している。 (5) No.11 は逆に2[Mn]+[Ni]+[Cr]+
[Mo]の値が本発明範囲を大きく上回っており、多量
の残留γにより最高硬さが著しく低下しているため、残
留応力値は高い値を示すにも関わらず疲労強度は大きく
低下している。 (6)No.12〜14はいずれも化学組成のうち1種が本発明で
規定する範囲外となっているもので、これらはいずれも
最高硬さはHv550 〜620 の範囲に入っており、残留応力
も良好な値が得られているが、残留応力以外の要因によ
る疲労強度の劣化が生じ、低疲労強度を示している。
(4) No. 10 contains a larger amount of residual γ-stabilizing element than No. 9, but 2 [Mn] + [Ni]
Since the value of + [Cr] + [Mo] is still less than 6.4% and the residual γ amount is still insufficient, the maximum hardness is also higher than the range specified in the present invention, and as a result, the internal residual stress is increased. It becomes low and the fatigue limit is low. (5) No. 11 is 2 [Mn] + [Ni] + [Cr] +
The value of [Mo] greatly exceeds the range of the present invention, and the maximum hardness is remarkably reduced due to a large amount of residual γ. Therefore, although the residual stress value is high, the fatigue strength is greatly reduced. There is. (6) In No. 12 to 14, one of the chemical compositions is out of the range specified in the present invention, and the maximum hardness of all of them is within the range of Hv550 to 620. Although the residual stress has a good value, the fatigue strength is deteriorated due to factors other than the residual stress, and the fatigue strength is low.

【0030】[0030]

【発明の効果】本発明は以上の様に構成されており、特
に内部起点の疲労破壊に対する抵抗力の強い浸炭品の製
造が可能となった。
EFFECTS OF THE INVENTION The present invention is configured as described above, and in particular, it has become possible to manufacture a carburized product having a strong resistance to fatigue fracture originating from the inside.

【図面の簡単な説明】[Brief description of drawings]

【図1】浸炭処理パターン例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of a carburizing process pattern.

【図2】浸炭窒化処理パターン例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of a carbonitriding treatment pattern.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // C22C 38/00 301 A 7217−4K 38/06 38/58 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // C22C 38/00 301 A 7217-4K 38/06 38/58

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC:0.1 〜0.4 %,Si:0.3
%以下,Al:0.02〜0.08%を夫々含有すると共に、M
n:0.3 〜3.1 %,Ni:0〜6%,Cr:0〜1.2
%,Mo:0〜1.2 %よりなる群から選択される2種以
上の元素を下記(1) 式を満足する様に含有し、残部鉄お
よび不可避不純物からなる鋼材に、下記(2) 式を満足す
る様な浸炭または浸炭窒化処理を施し、引き続きオース
テナイト単相域から焼入れを行なうことによって、浸炭
焼入硬化層の最高硬さがHv:550〜620 、且つ表面から3
00 μm 深さまでにおける残留オーステナイト面積率が2
0%以下となることのない鋼材を得、その後アークハイ
ト:0.6mmA以上の条件でショットピーニング処理するこ
とを特徴とする高疲労強度浸炭焼入品の製造方法。 6.4 %≦2[Mn]+[Ni]+[Cr]+[Mo]≦8.2 % …(1) 但し、[ ]は鋼中に存在する各元素の重量%を示す。 0.55%≦表面炭素量(重量%)+表面窒素量(重量%)≦0.90% …(2)
1. C: 0.1-0.4% by weight%, Si: 0.3
% Or less, Al: 0.02 to 0.08%, and M
n: 0.3 to 3.1%, Ni: 0 to 6%, Cr: 0 to 1.2
%, Mo: 0 to 1.2%, containing two or more elements selected from the group consisting of the following formula (1) and the balance iron and unavoidable impurities. By subjecting to a satisfactory carburizing or carbonitriding treatment and then quenching from the austenite single-phase region, the maximum hardness of the carburized and hardened layer is Hv: 550 to 620, and 3 from the surface.
The area ratio of retained austenite up to the depth of 00 μm is 2
A method for producing a high fatigue strength carburized and quenched product, characterized by obtaining a steel material which does not fall below 0%, and then subjecting it to shot peening under the conditions of arc height: 0.6 mmA or more. 6.4% ≦ 2 [Mn] + [Ni] + [Cr] + [Mo] ≦ 8.2% (1) where [] indicates the weight% of each element present in the steel. 0.55% ≤ surface carbon content (wt%) + surface nitrogen content (wt%) ≤ 0.90% (2)
【請求項2】 請求項1に記載の方法において、更にN
b:0.005 〜0.2 %およびV:0.03〜0.8 %よりなる群
から選択される1種または2種を含有する鋼材を用いる
高疲労強度浸炭焼入品の製造方法。
2. The method according to claim 1, further comprising N
b: 0.005 to 0.2% and V: 0.03 to 0.8%. A method for producing a high fatigue strength carburized and quenched product using a steel material containing one or two selected from the group consisting of 0.03 to 0.8%.
JP34216291A 1991-11-29 1991-11-29 Production of carburization hardened product having high fatigue strength Withdrawn JPH05156421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34216291A JPH05156421A (en) 1991-11-29 1991-11-29 Production of carburization hardened product having high fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34216291A JPH05156421A (en) 1991-11-29 1991-11-29 Production of carburization hardened product having high fatigue strength

Publications (1)

Publication Number Publication Date
JPH05156421A true JPH05156421A (en) 1993-06-22

Family

ID=18351601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34216291A Withdrawn JPH05156421A (en) 1991-11-29 1991-11-29 Production of carburization hardened product having high fatigue strength

Country Status (1)

Country Link
JP (1) JPH05156421A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011109475A1 (en) * 2011-08-04 2013-02-07 Daimler Ag Producing component e.g. friction ring of brake disc for motor vehicle, comprises partially providing a surface of a component body with a coating by a thermal coating process, and plastically deforming the coating by a machining process
US8961710B2 (en) 2009-05-27 2015-02-24 Nippon Steel & Sumitomo Metal Corporation Carburized component and manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8961710B2 (en) 2009-05-27 2015-02-24 Nippon Steel & Sumitomo Metal Corporation Carburized component and manufacturing method
DE102011109475A1 (en) * 2011-08-04 2013-02-07 Daimler Ag Producing component e.g. friction ring of brake disc for motor vehicle, comprises partially providing a surface of a component body with a coating by a thermal coating process, and plastically deforming the coating by a machining process

Similar Documents

Publication Publication Date Title
JP3562192B2 (en) Component for induction hardening and method of manufacturing the same
JP2579640B2 (en) Manufacturing method of high fatigue strength case hardened product
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP2945714B2 (en) High surface pressure gear
JP3381738B2 (en) Manufacturing method of mechanical structural parts with excellent mechanical strength
JP4737601B2 (en) High temperature nitriding steel
JP3405468B2 (en) Manufacturing method of mechanical structural parts
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
JP6225965B2 (en) Soft nitriding steel and parts, and methods for producing them
JP2000129347A (en) Production of high strength parts
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP2991064B2 (en) Non-tempered nitrided forged steel and non-tempered nitrided forged products
JP3551573B2 (en) Steel for carburized gear with excellent gear cutting
JP2005325398A (en) High-strength gear and manufacturing method therefor
JP2002121645A (en) Steel for gear having excellent dedendum bending fatigue characteristic and facial pressure fatigue characteristic and gear
JP3458604B2 (en) Manufacturing method of induction hardened parts
JPH07238343A (en) Free cutting carburizing steel and heat treatment therefor before machining
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
JPH05156421A (en) Production of carburization hardened product having high fatigue strength
JP2819416B2 (en) Manufacturing method for high fatigue strength case-hardened products
JP3432944B2 (en) Steel material for induction hardened shaft parts with excellent torsional fatigue strength
JP5131770B2 (en) Non-tempered steel for soft nitriding
EP3252182B1 (en) Case hardening steel
JPH06346142A (en) Production of machine structural parts excellent in bearing fatigue strength

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204