JPH05155897A - Production of n-benzyloxycarbonyl-alpha-l-aspartyl-l-phenylalanine methyl ester - Google Patents

Production of n-benzyloxycarbonyl-alpha-l-aspartyl-l-phenylalanine methyl ester

Info

Publication number
JPH05155897A
JPH05155897A JP32417691A JP32417691A JPH05155897A JP H05155897 A JPH05155897 A JP H05155897A JP 32417691 A JP32417691 A JP 32417691A JP 32417691 A JP32417691 A JP 32417691A JP H05155897 A JPH05155897 A JP H05155897A
Authority
JP
Japan
Prior art keywords
apm
methyl ester
phenylalanine methyl
benzyloxycarbonyl
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32417691A
Other languages
Japanese (ja)
Other versions
JP3238175B2 (en
Inventor
Chojiro Higuchi
長二郎 樋口
Ikuyoshi Kitada
幾美 北田
Masanobu Ajioka
正伸 味岡
Teruhiro Yamaguchi
彰宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP32417691A priority Critical patent/JP3238175B2/en
Publication of JPH05155897A publication Critical patent/JPH05155897A/en
Application granted granted Critical
Publication of JP3238175B2 publication Critical patent/JP3238175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To provide a method for producing aspartame which is industrially and extremely advantageous in that Z-alpha-APM can be produced in high alpha-selectivity and high volume efficiency and great improvement in yield in the subsequent step for isolating alpha-APM can be made. CONSTITUTION:In a method for producing Z-alpha-APM (N-benzyloxycarbonyl-alpha-L- aspartyl-L-phenylalanine methyl ester) by reacting L-PM (L-phenylalanine methyl ester) with Z-Asp anhydride (N-benzyloxycarbonyl-L-aspartic acid anhydride) to provide the Z-alpha-APM, the Z-Asp anhydride is added in small portions while controlling the rate of addition so that the Z-Asp anhydride in the reactional system may be excess of the L-PM under conditions so as to provide <=1% concentration of the L-PM in the reactional solution. Thereby, reaction is carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、L−フェニルアラニン
メチルエステルとN−ベンジルオキシカルボニル−L−
アスパラギン酸無水物から高選択率でN−ベンジルオキ
シカルボニル−α−Lアスパルチル−L−フェニルアラ
ニンメチルエステルの製造法に関する。
The present invention relates to L-phenylalanine methyl ester and N-benzyloxycarbonyl-L-
The present invention relates to a method for producing N-benzyloxycarbonyl-α-L aspartyl-L-phenylalanine methyl ester with high selectivity from aspartic anhydride.

【0002】α−L−アスパルチル−L−フェニルアラ
ニンメチルエステル(以下、α−APMと略記する。)
は、ジペプチド系甘味料として広く知られ良質な甘味特
性ならびに蔗糖の200倍近い高甘味度を有し、ダイエ
ット甘味剤としてその需要が大きく伸長しているもので
ある。
Α-L-Aspartyl-L-phenylalanine methyl ester (hereinafter abbreviated as α-APM)
Is widely known as a dipeptide-based sweetener and has high-quality sweetness characteristics and a high sweetness degree nearly 200 times that of sucrose, and its demand as a diet sweetener is greatly expanding.

【0003】[0003]

【従来の技術】α−APMは、N−保護−L−アスパギ
ン酸無水物とL−フェニルアラニンメチルエステル(以
下、L−PMと略記する。)とを有機溶媒中で縮合反応
させ、N−保護−α−L−アスパルチル−L−フェニル
アラニンメチルエステル(以下、N−保護−α−APM
と略記する。)とし、ついで、この反応生成物からN−
保護基を脱離して目的のα−APMを得る方法が最も一
般的である(USP 3.786.039)。
2. Description of the Related Art α-APM is N-protected by condensation reaction of N-protected-L-aspartic anhydride and L-phenylalanine methyl ester (hereinafter abbreviated as L-PM) in an organic solvent. -Α-L-aspartyl-L-phenylalanine methyl ester (hereinafter N-protected-α-APM
Is abbreviated. ), And then N-
The most general method is to remove the protecting group to obtain the desired α-APM (USP 3.786.039).

【0004】[0004]

【発明が解決しようとする課題】従来知られている製造
例においては、目的とするN−保護−α−APM以外
に、その異性体であるN−保護−β−L−アスパルチル
−L−フェニルアラニンメチルエステル(以下、N−保
護−β−APMと略記する。)の副生は避けられない。
In the conventionally known production examples, in addition to the desired N-protected-α-APM, its isomer, N-protected-β-L-aspartyl-L-phenylalanine. A by-product of methyl ester (hereinafter abbreviated as N-protected-β-APM) is unavoidable.

【0005】N−保護−β−APMから得られるβ−L
−アスパルチル−L−フェニルアラニンメチルエステル
(以下、β−APMと略記する。)は甘味を持たないた
めにZ−β−APMの副生は、最終目的物であるα−A
PMの収率を低下させる。
Β-L obtained from N-protected-β-APM
Since aspartyl-L-phenylalanine methyl ester (hereinafter abbreviated as β-APM) has no sweetness, the by-product of Z-β-APM is α-A which is the final target product.
Decrease PM yield.

【0006】さらに、目的のα−APMと副生したβ−
APMの混合物からα−APMを分離する方法として
は、α−APMとβ−APMを水性媒体中、β−レゾル
シル酸と接触させ、α−APMを難溶性の付加物とし
て、不純物のβ−APMと分離する方法が知られている
(特開昭49−6305)。
Further, the desired α-APM and β-produced as a by-product.
As a method for separating α-APM from a mixture of APM, α-APM and β-APM are contacted with β-resorcylic acid in an aqueous medium, and α-APM is used as a sparingly soluble adduct, and β-APM as an impurity. There is known a method of separating from (JP-A-49-6305).

【0007】また、α−APMを水性媒体中でハロゲン
化水素酸と接触させることによって、難溶性のα−AP
Mのハロゲン化水素酸塩を生成させ、不純物として共存
するβ−APMを分離する方法も知られている(特開昭
49−41425)。
Further, by contacting α-APM with hydrohalic acid in an aqueous medium, a poorly soluble α-AP can be obtained.
There is also known a method in which a hydrohalide of M is produced and β-APM coexisting as an impurity is separated (JP-A-49-41425).

【0008】このように酸の付加物として一担単離した
α−APMの塩からα−APMを得るために中和工程が
必要である。通常、中和操作はα−APMの塩を水に溶
解して、これに塩基を加えて中和することにより、結晶
として生成したα−APMを分離する方法がとられる。
As described above, a neutralization step is required to obtain α-APM from the salt of α-APM isolated as an acid adduct. Usually, the neutralization operation is carried out by dissolving α-APM salt in water and adding a base to the solution to neutralize the α-APM to separate the α-APM produced as crystals.

【0009】しかし、これらの方法では、水溶液中にか
なりの量のα−APMを失うために、収率が低くなる。
また、この方法で単離したα−APMは、塩類を多く含
んでおり、最終製品にするために、再結晶や脱塩等の操
作が必要であり、さらに収率が低下する。
However, in these methods, the yield is low because a considerable amount of α-APM is lost in the aqueous solution.
Further, the α-APM isolated by this method contains a large amount of salts, and operations such as recrystallization and desalting are required to obtain the final product, which further lowers the yield.

【0010】我々は、先に、30重量%以下のベンジル
オキシカルボニル−β−L−アスパルチル−L−フェニ
ルアラニンメチルエステルを含むベンジルオキシカルボ
ニル−α−L−アスパルチル−L−フェニルアラニンメ
チルエステルの水懸濁液を白金族触媒の存在下水素で還
元した後、生成したα−L−アスパルチル−L−フェニ
ルアラニンメチルエステルを完全に溶解する温度で触媒
を分離し、その瀘洗液をβ−L−アスパルチル−L−フ
ェニルアラニンメチルエステルが析出しない温度まで冷
却し、析出したα−L−アスパルチル−L−フェニルア
ラニンメチルエステルを分離して、続いて水溶媒で再結
晶精製を行うとともに、この再結晶瀘洗液を上記懸濁液
に循環使用するα−L−アスパルチル−L−フェニルア
ラニンメチルエステルの製造方法を見出し出願した。
We have previously found that an aqueous suspension of benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester containing up to 30% by weight of benzyloxycarbonyl-β-L-aspartyl-L-phenylalanine methyl ester. After the solution was reduced with hydrogen in the presence of a platinum group catalyst, the catalyst was separated at a temperature at which the produced α-L-aspartyl-L-phenylalanine methyl ester was completely dissolved, and the washing solution was washed with β-L-aspartyl- The mixture was cooled to a temperature at which L-phenylalanine methyl ester did not precipitate, and the precipitated α-L-aspartyl-L-phenylalanine methyl ester was separated, followed by recrystallization purification with an aqueous solvent, and this recrystallization washing solution. Α-L-Aspartyl-L-phenylalanine methyl ester recycled in the suspension Filed found a manufacturing method.

【0011】しかしこの方法においても、水からα−A
PMを分離する工程でβ−APMと同量のα−APMを
ロスする欠点が有り、縮合工程におけるβ体の生成を減
らすことは、α体の生成率の増加に加えて、精製ロスの
低下をもたらすため二重の効果が期待できる。
However, even in this method, α-A is removed from water.
There is a drawback that the same amount of α-APM as β-APM is lost in the step of separating PM, and reducing the production of β-form in the condensation step increases the production rate of α-form and also reduces purification loss. Therefore, a double effect can be expected.

【0012】[0012]

【課題を解決するための手段】本発明者らは、かかる欠
点を克服すべく鋭意検討した結果、驚くべきことに、有
機カルボン酸溶媒中で、L−PMとN−ベンジルオキシ
カルボニル−L−アスパラギン酸無水物(以下、Z−A
sp無水物と略記する。)とを反応させN−ベンジルオ
キシカルボニル−α−Lアスパルチル−L−フェニルア
ラニンメチルエステル(以下、Z−α−APM略記す
る。)を製造する方法において、反応液中のL−PM濃
度が1%以下になるような条件下で反応させ、系内のZ
−Asp無水物がL−PMに対して過剰になるように添
加速度をコントロールしながら少量ずつ添加し、反応さ
せることにより、目的とするα選択率が飛躍的に向上す
ることを見出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies made by the present inventors to overcome such drawbacks, surprisingly, in an organic carboxylic acid solvent, L-PM and N-benzyloxycarbonyl-L- Aspartic anhydride (hereinafter, ZA
Abbreviated as sp anhydride. ) With N-benzyloxycarbonyl-α-L aspartyl-L-phenylalanine methyl ester (hereinafter abbreviated as Z-α-APM), the concentration of L-PM in the reaction solution is 1%. The reaction is performed under the following conditions, and Z in the system is
It was found that the desired α-selectivity can be dramatically improved by adding the reaction mixture little by little while controlling the addition rate so that the amount of -Asp anhydride is excessive with respect to L-PM, and causing the reaction. Has been completed.

【0013】本発明の方法において溶媒として用いられ
る有機カルボン酸は、Z−ZSP,Z−Asp無水物、
L−PMなどの原料及び反応生成物であるZ−α−AP
M、Z−β−APMにたいする溶解力が高く、高濃度で
反応を行うことができ、反応液の攪拌、移液等の操作性
に優れ、工業的に好ましいものである。有機カルボン酸
としては、ギ酸、酢酸、プロピオン酸等が代表的なもの
であり、特に酢酸が好ましい。
The organic carboxylic acid used as a solvent in the method of the present invention is Z-ZSP, Z-Asp anhydride,
Z-α-AP which is a raw material such as L-PM and a reaction product
It has a high dissolving power for M and Z-β-APM, can carry out the reaction at a high concentration, and has excellent operability such as stirring and liquid transfer of the reaction solution, which is industrially preferable. Typical organic carboxylic acids are formic acid, acetic acid, propionic acid and the like, and acetic acid is particularly preferable.

【0014】本発明の方法において用いられるL−PM
はL−フェニルアラニンを酸触媒の存在下にメチルエス
テル化することにより得られるので、通常、酸との付加
塩の形で得られ、酸を中和した後、有機溶媒で抽出、濃
縮後に酢酸溶媒に置換すればよい。L−PMの濃度とし
ては特に制限はない。
L-PM used in the method of the present invention
Is obtained by methyl-esterifying L-phenylalanine in the presence of an acid catalyst, and thus is usually obtained in the form of an addition salt with an acid. After neutralizing the acid, extraction with an organic solvent and concentration followed by acetic acid solvent Should be replaced with There is no particular limitation on the concentration of L-PM.

【0015】本発明の方法において用いられるZ−As
p無水物は、例えば、N−ベンジルオキシカボニル−L
−アスパラギン酸を、有機溶媒に溶解、もしくは懸濁
し、脱水剤を作用せしめることにより得られることは公
知である。
Z-As used in the method of the present invention
The p anhydride is, for example, N-benzyloxycarbonyl-L.
It is known that it can be obtained by dissolving or suspending aspartic acid in an organic solvent and allowing a dehydrating agent to act.

【0016】反応形式は、バッチ法でも良いし、連続法
でもかまわない。バッチ法の場合、Z−Asp無水物を
含んだ溶液にL−PMを滴下しても良いし、両者を同時
に滴下する方法でも良いが、後の方法が好ましい。
The reaction system may be a batch method or a continuous method. In the case of the batch method, L-PM may be added dropwise to the solution containing the anhydrous Z-Asp or both methods may be added simultaneously, but the latter method is preferred.

【0017】L−PMの添加速度は、縮合反応の速度を
考慮してコントロールする必要があり、系内のL−PM
濃度が1%以下となるような速度にしなければならな
い。溶液中のL−PM濃度は、反応液をHLC等の分析
装置で分析しても良い。また、市販のガラス複合電極を
備えたpHメーターにより、その指示値を指標として、
添加速度をコントロールすることもできる。pHメータ
の指示値が、2.0以下であるようにL−PM溶液を添
加することが好ましい。
It is necessary to control the addition rate of L-PM in consideration of the rate of condensation reaction.
The speed must be such that the concentration is 1% or less. For the L-PM concentration in the solution, the reaction solution may be analyzed by an analyzer such as HLC. Also, with a pH meter equipped with a commercially available glass composite electrode, using the indicated value as an index,
The addition rate can also be controlled. It is preferable to add the L-PM solution so that the indicated value of the pH meter is 2.0 or less.

【0018】添加時間は、系内のL−PM消費速度に合
わせて調整するが、通常、1〜3時間で行う。30分以
下で添加を行うと反応液中の未反応L−PMが増加し、
α選択率の低下きたし好ましくない。
The addition time is adjusted according to the L-PM consumption rate in the system, but is usually 1 to 3 hours. If the addition is performed for 30 minutes or less, unreacted L-PM in the reaction solution increases,
This is not preferable because the α selectivity is lowered.

【0019】添加温度および反応温度は、生成物のラセ
ミ化を極力抑制する観点より100℃以下、好ましくは
80℃以下であり、温度は低いほどα選択率が高くな
る。
The addition temperature and reaction temperature are 100 ° C. or lower, preferably 80 ° C. or lower, from the viewpoint of suppressing racemization of the product as much as possible, and the lower the temperature, the higher the α selectivity.

【0020】Z−Asp無水物とL−PMの添加が終了
した後の反応時間には特に制限はないが、反応を完結さ
せるために、数時間保持するのが普通である。反応温度
にもよるが通常は6時間以内で充分である。
The reaction time after the addition of the Z-Asp anhydride and L-PM is not particularly limited, but it is usually held for several hours in order to complete the reaction. Depending on the reaction temperature, usually 6 hours or less is sufficient.

【0021】Z−Asp無水物とL−PMのモル比は、
0.8〜1.2の範囲が好ましい。反応は、ほぼ定量的
に進行し、一方を過剰に用いた場合は、その分が無駄に
なり経済的ではない。
The molar ratio of Z-Asp anhydride to L-PM is
The range of 0.8 to 1.2 is preferable. The reaction proceeds almost quantitatively, and if one is used in excess, the amount is wasted and it is not economical.

【0022】[0022]

【実施例】以下、実施例により本発明の方法を詳しく説
明する。
EXAMPLES The method of the present invention will be described in detail below with reference to examples.

【0023】実施例1 1000mlの攪拌装置付の反応容器にN−ベンジルカ
ルボキシ−L−アスパラギン酸133.61g(0.5
0モル),無水酢酸56.15g(0.55モル)及び
トルエン400gを混合し、攪拌下に55℃で3時間反
応させた。得られた反応液を30℃まで冷却した後、濾
過し、トルエン洗浄後、乾燥し、Z−Asp無水物の結
晶109.7g(0.44モル)を得た。300mlの
攪拌装置付の反応容器に酢酸38.3gを入れ15℃に
冷却した後に、Z−Asp無水物の結晶12.84g
(0.0515モル)を64gの酢酸に加えて溶解させ
た溶液の滴下を先行させながら、並行してL−フェニル
アラニンメチルエステル8.96g(0.05モル)含
む酢酸30.0gとを同時に滴下し、経時的にサンプリ
ングしてL−PMの濃度が1%以下であることを確認
し、さらに、池田製作所製のガラス電極pHメ−タ(型
式PT−3S)の指示値を1.0以下にコントロールし
ながら2時間で滴下し、終了後、同温度にて2時間反応
させた。この反応液中のZ−α−APMとZ−β−AP
Mを定量し、Z−α−APMの収率を求めたところ、8
5.0%であった。さらに、この縮合液の酢酸を減圧下
に留去し、水310gを加えて懸濁状態とし60℃に加
温後、5%パラジウム−炭素0.5gを加えて、常圧で
3時間接触還元を行った後、同温度で触媒を濾別し、ト
ルエン層を分液して水層を冷却して5℃で1時間攪拌
後、同温度にて析出している結晶を濾過して5℃の冷水
30mlで洗浄後、乾燥してα−APM10.0g
(0.034モル)得られた(収率68.0%)。
Example 1 133.61 g (0.5%) of N-benzylcarboxy-L-aspartic acid was placed in a 1000 ml reaction vessel equipped with a stirrer.
0 mol), 56.15 g (0.55 mol) of acetic anhydride and 400 g of toluene were mixed and reacted at 55 ° C. for 3 hours with stirring. The obtained reaction liquid was cooled to 30 ° C., filtered, washed with toluene, and dried to obtain 109.7 g (0.44 mol) of Z-Asp anhydrous crystals. After adding 38.3 g of acetic acid to a 300 ml reaction vessel equipped with a stirrer and cooling to 15 ° C., 12.84 g of Z-Asp anhydrous crystals.
(0.0515 mol) was added to 64 g of acetic acid to dissolve the solution, and 30.0 g of acetic acid containing 8.96 g (0.05 mol) of L-phenylalanine methyl ester was simultaneously added in parallel. Then, it was confirmed by sampling over time that the concentration of L-PM was 1% or less, and further, the indicated value of the glass electrode pH meter (model PT-3S) manufactured by Ikeda Seisakusho was 1.0 or less. It was added dropwise over 2 hours while controlling the temperature to 0. After completion of the reaction, the reaction was carried out at the same temperature for 2 hours. Z-α-APM and Z-β-AP in this reaction solution
When M was quantified and the yield of Z-α-APM was determined, it was 8
It was 5.0%. Further, acetic acid in this condensate was distilled off under reduced pressure, 310 g of water was added to make the suspension state, the mixture was heated to 60 ° C., 0.5 g of 5% palladium-carbon was added, and catalytic reduction was carried out under normal pressure for 3 hours. After that, the catalyst was filtered off at the same temperature, the toluene layer was separated, the aqueous layer was cooled, and the mixture was stirred at 5 ° C for 1 hour. Then, the crystals precipitated at the same temperature were filtered and cooled to 5 ° C. After washing with 30 ml of cold water, dried and α-APM 10.0 g
(0.034 mol) was obtained (yield 68.0%).

【0024】比較例1 300mlの攪拌装置付の反応容器にL−フェニルアラ
ニンメチルエステル8.96g(0.05モル)含む酢
酸30.0gを入れ15℃に冷却した後に、実施例1で
得られたZ−Asp無水物の結晶12.84g(0.0
515モル)を102.3gの酢酸に加えて溶解させた
溶液を滴下を2時間で行い同温度にて2時間反応させ
た。その時のpHメーターの指示値は2.5以上であ
り、経時的にサンプリングしてL−PMの濃度を分析し
た結果1%以上であった。この反応液中のZ−α−AP
MとZ−β−APMを定量し、そのZ−α−APMの収
率を求めたところ、79.5%であった。
Comparative Example 1 30.0 g of acetic acid containing 8.96 g (0.05 mol) of L-phenylalanine methyl ester was placed in a 300 ml reaction vessel equipped with a stirrer, cooled to 15 ° C., and then obtained in Example 1. 12.84 g (0.0
(515 mol) was added to 102.3 g of acetic acid and dissolved, and the solution was added dropwise over 2 hours and reacted at the same temperature for 2 hours. At that time, the indicated value of the pH meter was 2.5 or more, and the result of sampling with time and analyzing the concentration of L-PM was 1% or more. Z-α-AP in this reaction solution
When M and Z-β-APM were quantified and the yield of Z-α-APM was calculated, it was 79.5%.

【0025】比較例2 滴下および反応温度が40℃であること以外は比較例1
の方法に従って反応を行った。この反応液中のZ−α−
APMとZ−β−APMを定量し、そのZ−α−APM
の収率を求めたところ、77.3%であった。
Comparative Example 2 Comparative Example 1 except that the dropping and reaction temperatures were 40 ° C.
The reaction was performed according to the method of. Z-α- in this reaction solution
APM and Z-β-APM were quantified, and their Z-α-APM
The yield of was calculated to be 77.3%.

【0026】実施例2 滴下時のpHが1.8であること以外は実施例1の方法
に従って反応を行った。この反応液中のZ−α−APM
とZ−β−APMを定量し、そのZ−α−APMの収率
を求めたところ、83.8%であった。
Example 2 The reaction was carried out according to the method of Example 1 except that the pH at the time of dropping was 1.8. Z-α-APM in this reaction solution
And Z-β-APM were quantified, and the yield of Z-α-APM was calculated to be 83.8%.

【0027】[0027]

【発明の効果】通常の一括挿入法に比べ、高いα選択率
で、且つ、コンパクトにZ−α−APMを製造すること
ができ、以後のα−APM単離工程の大きな収率改善が
できる点で、工業的にきわめて有利なものである。
The Z-α-APM can be produced compactly with a high α-selectivity and a large yield improvement in the subsequent α-APM isolation step can be achieved as compared with the usual batch insertion method. In this respect, it is extremely advantageous industrially.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 彰宏 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Akihiro Yamaguchi 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chemical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機カルボン酸溶媒中で、L−フェニル
アラニンメチルエステルとN−ベンジルオキシカルボニ
ル−L−アスパラギン酸無水物とを反応させN−ベンジ
ルオキシカルボニル−α−L−アスパルチル−L−フェ
ニルアラニンメチルエステルを製造する方法において、
反応液中のL−フェニルアラニンメチルエステルの濃度
が1%以下になるような条件下で反応させることを特徴
とするN−ベンジルオキシカルボニル−α−L−アスパ
ルチル−L−フェニルアラニンメチルエステルの製造
法。
1. An N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl compound obtained by reacting L-phenylalanine methyl ester with N-benzyloxycarbonyl-L-aspartic acid anhydride in an organic carboxylic acid solvent. In the method for producing an ester,
A method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester, characterized in that the reaction is carried out under conditions such that the concentration of L-phenylalanine methyl ester in the reaction solution is 1% or less.
【請求項2】 N−ベンジルオキシカルボニル−L−ア
スパラギン酸無水物を先行させながら、L−フェニルア
ラニンメチルエステルと並行して同時に添加する特許請
求の範囲第1項記載の方法。
2. A process according to claim 1, wherein N-benzyloxycarbonyl-L-aspartic anhydride is added simultaneously with the L-phenylalanine methyl ester in parallel.
【請求項3】 有機カルボン酸が酢酸である特許請求の
範囲第1項記載の方法。
3. The method according to claim 1, wherein the organic carboxylic acid is acetic acid.
【請求項4】 N−ベンジルオキシカルボニル−L−ア
スパラギン酸無水物を先行させながら、pHメーターの
指示値が2.0以下であるようにL−フェニルアラニン
メチルエステル溶液を並行して同時に添加する特許請求
の範囲第1項記載の方法。
4. A patent in which L-phenylalanine methyl ester solution is simultaneously added in parallel while N-benzyloxycarbonyl-L-aspartic anhydride is preceded so that the pH meter reading is 2.0 or less. The method according to claim 1.
JP32417691A 1991-12-09 1991-12-09 Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester Expired - Fee Related JP3238175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32417691A JP3238175B2 (en) 1991-12-09 1991-12-09 Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32417691A JP3238175B2 (en) 1991-12-09 1991-12-09 Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester

Publications (2)

Publication Number Publication Date
JPH05155897A true JPH05155897A (en) 1993-06-22
JP3238175B2 JP3238175B2 (en) 2001-12-10

Family

ID=18162940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32417691A Expired - Fee Related JP3238175B2 (en) 1991-12-09 1991-12-09 Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester

Country Status (1)

Country Link
JP (1) JP3238175B2 (en)

Also Published As

Publication number Publication date
JP3238175B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
EP0127411B1 (en) Method of preparing alpha-l-aspartyl-l-phenylalanine methyl ester and its hydrochloride
US4745210A (en) Preparation process of N-formyl-α-aspartyl phenylalanine
JPS6050200B2 (en) Improved production method of α-L-aspartyl-L-phenylalanine methyl ester
US4760164A (en) Process for producing α-L-aspartyl-L-phenylalanine methyl ester
US4345091A (en) Method of producing N-benzyloxycarbonyl-L-aspartic acid
JP3238175B2 (en) Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester
CA2066464C (en) Preparation process of .alpha.-aspartyl-l-phenylalanine methyl ester
JP3220484B2 (en) Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester
JP2662287B2 (en) Method for separating α-L-aspartyl-L-phenylalanine methyl ester
US6245934B1 (en) Method for preparing salts of aspartame from N-protected aspartame
EP0297560B1 (en) Imides; a process for their production and a process for the production of dipeptides using them
JP2598470B2 (en) Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester
US4918216A (en) Preparation process of α-l-aspartyl-l-phenyl-alanine methyl ester or hydrohalide thereof
JP2508803B2 (en) Process for producing α-L-aspartyl-L-phenylalanine derivative
JP4085199B2 (en) Method for producing O, O-dimethyl-O- (p-cyanophenyl) phosphorothioate
US5283357A (en) Separation method of α-l-aspartyl-l-phenylalanine methyl ester
JPH07116225B2 (en) Process for producing hydrohalide salt of α-L-aspartyl-L-phenylalanine methyl ester
JP3178092B2 (en) Method for producing α-L-aspartyl-L-phenylalanine methyl ester hydrochloride
JPS63159355A (en) Recovery of l-phenylalanine and l-aspartic acid
JP2605127B2 (en) Process for producing α-L-aspartyl-L-phenylalanine methyl ester having improved solubility
JPS61218597A (en) Production of alpha-l-aspartyl-l-phenylalanine methyl ester or its hydrochloride
JPS61268699A (en) Production of alpha-l-aspartyl-l-phenylalanine methyl ester
JPS61227593A (en) Preparation of alpha-l-aspartyl-l-phenylalanine methyl ester or its hydrochloride
JPH07116228B2 (en) Process for producing α-L-aspartyl-L-phenylalanine methyl ester
JPH04334397A (en) Production of alpha-l-aspartyl-l-phenylalanine methyl ester

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees