JP3220484B2 - Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester - Google Patents

Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester

Info

Publication number
JP3220484B2
JP3220484B2 JP23587391A JP23587391A JP3220484B2 JP 3220484 B2 JP3220484 B2 JP 3220484B2 JP 23587391 A JP23587391 A JP 23587391A JP 23587391 A JP23587391 A JP 23587391A JP 3220484 B2 JP3220484 B2 JP 3220484B2
Authority
JP
Japan
Prior art keywords
apm
methyl ester
phenylalanine methyl
aspartyl
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23587391A
Other languages
Japanese (ja)
Other versions
JPH0570479A (en
Inventor
長二郎 樋口
幾美 北田
昭憲 長友
正伸 味岡
彰宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP23587391A priority Critical patent/JP3220484B2/en
Publication of JPH0570479A publication Critical patent/JPH0570479A/en
Application granted granted Critical
Publication of JP3220484B2 publication Critical patent/JP3220484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、L−フェニルアラニン
メチルエステルとN−ベンジルオキシカルボニル−L−
アスパラギン酸無水物から高選択率でN−ベンジルオキ
シカルボニル−α−Lアスパルチル−L−フェニルアラ
ニンメチルエステルの製造法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing L-phenylalanine methyl ester and N-benzyloxycarbonyl-L-
The present invention relates to a method for producing N-benzyloxycarbonyl-α-L aspartyl-L-phenylalanine methyl ester with high selectivity from aspartic anhydride.

【0002】α−L−アスパルチル−L−フェニルアラ
ニンメチルエステル(以下、α−APMと略記する。)
は、ジペプチド系甘味料として広く知られ良質な甘味特
性ならびに蔗糖の200倍近い高甘味度を有し、ダイエ
ット甘味剤としてその需要が大きく伸長しているもので
ある。
[0002] α-L-aspartyl-L-phenylalanine methyl ester (hereinafter abbreviated as α-APM)
Is widely known as a dipeptide-based sweetener, has good sweetness characteristics and a high sweetness nearly 200 times that of sucrose, and its demand as a diet sweetener is greatly growing.

【0003】[0003]

【従来の技術】α−APMは、N−保護−L−アスパギ
ン酸無水物とL−フェニルアラニンメチルエステル(以
下、L−PMと略記する。)とを有機溶媒中で縮合反応
させ、N−保護−α−L−アスパルチル−L−フェニル
アラニンメチルエステル(以下、N−保護−α−APM
と略記する。)とし、ついで、この反応生成物からN−
保護基を脱離して目的のα−APMを得る方法が最も一
般的である(USP−3,786,039)。
2. Description of the Related Art α-APM is obtained by a condensation reaction between N-protected L-aspargic anhydride and L-phenylalanine methyl ester (hereinafter abbreviated as L-PM) in an organic solvent. -Α-L-aspartyl-L-phenylalanine methyl ester (hereinafter referred to as N-protected-α-APM
Abbreviated. ), And N-
The most common method is to remove the protecting group to obtain the desired α-APM (USP-3,786,039).

【0004】[0004]

【発明が解決しようとする課題】従来知られている製造
例においては、目的とするN−保護−α−APM以外
に、その異性体であるN−保護−β−L−アスパルチル
−L−フェニルアラニンメチルエステル(以下、N−保
護−β−APMと略記する。)の副生は避けられない。
In the known production examples, in addition to the desired N-protected-α-APM, its isomer, N-protected-β-L-aspartyl-L-phenylalanine, is used. Methyl ester (hereinafter abbreviated as N-protected-β-APM) is inevitable.

【0005】N−保護−β−APMから得られるβ−A
PMは甘味を持たないためにZ−β−APMの副生は、
最終目的物であるα−APMの収率を低下させる。
[0005] β-A obtained from N-protected-β-APM
Since PM has no sweetness, the by-product of Z-β-APM is
The yield of α-APM, which is the final target, is reduced.

【0006】さらに、目的のα−APMと副生したβ−
L−アスパルチル−L−フェニルアラニンメチルエステ
ル(以下、β−APMと略記する。)の混合物からα−
APMを分離する方法としては、α−APMとβ−AP
Mを水性媒体中、β−レゾルシル酸と接触させ、α−A
PMを難溶性の付加物として、不純物のβ−APMと分
離する方法が知られている(特開昭49−6305)。
Further, β- by-produced with the desired α-APM
From a mixture of L-aspartyl-L-phenylalanine methyl ester (hereinafter abbreviated as β-APM), α-
As a method for separating APM, α-APM and β-AP
M in aqueous medium with β-resorcylic acid, α-A
A method is known in which PM is separated as a sparingly soluble adduct from β-APM as an impurity (JP-A-49-6305).

【0007】また、α−APMを水性媒体中でハロゲン
化水素酸と接触させることによって、難溶性のα−AP
Mのハロゲン化水素酸塩を生成させ、不純物として共存
するβ−APMを分離する方法も知られている(特開昭
49−41425)。
[0007] Further, by contacting α-APM with hydrohalic acid in an aqueous medium, the hardly soluble α-AP
There is also known a method of generating a hydrohalide of M and separating β-APM coexisting as an impurity (JP-A-49-41425).

【0008】このように酸の付加物として一旦単離した
α−APMの塩からα−APMを得るために中和工程が
必要である。通常、中和操作はα−APMの塩を水に溶
解して、これに塩基を加えて中和することにより、結晶
として生成したα−APMを分離する方法がとられる。
In order to obtain α-APM from the α-APM salt once isolated as an acid adduct, a neutralization step is required. Usually, in the neutralization operation, a method is used in which a salt of α-APM is dissolved in water, and a base is added thereto for neutralization to separate α-APM formed as crystals.

【0009】しかし、これらの方法では、水溶液中にか
なりの量のα−APMを失うために、収率が低くなる。
また、この方法で単離したα−APMは、塩類を多く含
んでおり、最終製品にするために、再結晶や脱塩等の操
作が必要であり、さらに収率が低下する。
[0009] However, in these methods, the yield is low because a considerable amount of α-APM is lost in the aqueous solution.
Further, α-APM isolated by this method contains a large amount of salts, and requires operations such as recrystallization and desalting in order to obtain a final product, which further lowers the yield.

【0010】我々は、先に、30重量%以下のベンジル
オキシカルボニル−β−L−アスパルチル−L−フェニ
ルアラニンメチルエステルを含むベンジルオキシカルボ
ニル−β−L−アスパルチル−L−フェニルアラニンメ
チルエステルの水懸濁液を白金族触媒の存在下水素でか
んげんした後、生成したα−L−アスパルチル−L−フ
ェニルアラニンメチルエステルを完全に溶解する温度で
触媒を分離し、その瀘洗液をβ−L−アスパルチル−L
−フェニルアラニンメチルエステルが析出しない温度ま
で冷却し、析出したα−L−アスパルチル−L−フェニ
ルアラニンメチルエステルを分離して、続いて水溶媒で
再結晶精製を行うとともに、この再結晶瀘洗液を上記懸
濁液に循環使用するα−L−アスパルチル−L−フェニ
ルアラニンメチルエステルの製造方法を見出し出願し
た。
We have previously described a water suspension of benzyloxycarbonyl-β-L-aspartyl-L-phenylalanine methyl ester containing up to 30% by weight of benzyloxycarbonyl-β-L-aspartyl-L-phenylalanine methyl ester. After the solution was hydrogenated in the presence of a platinum group catalyst, the catalyst was separated at a temperature at which the formed α-L-aspartyl-L-phenylalanine methyl ester was completely dissolved, and the filtrate was β-L-aspartyl- L
-Phenylalanine methyl ester was cooled to a temperature at which it did not precipitate, and the precipitated α-L-aspartyl-L-phenylalanine methyl ester was separated. A method for producing α-L-aspartyl-L-phenylalanine methyl ester to be circulated and used for suspension was found and filed.

【0011】しかしこの方法においても、水からα−A
PMを分離する工程でβ−APMと同量のα−APMを
ロスする欠点が有り、縮合工程におけるβ体の生成を減
らすことは、α体の生成率の増加に加えて、精製ロスの
低下をもたらすため二重の効果が期待できる。
However, even in this method, α-A
There is a disadvantage in that the same amount of α-APM as β-APM is lost in the process of separating PM. Reducing the formation of β-forms in the condensation step reduces the purification loss in addition to increasing the α-formation rate. To achieve a double effect.

【0012】[0012]

【課題を解決するための手段】本発明者らは、かかる欠
点を克服すべく鋭意検討した結果、驚くべきことに、有
機溶媒中で、L−PMとN−ベンジルオキシカルボニル
−L−アスパラギン酸無水物(以下、Z−Asp無水物
と略記する。)とを反応させN−ベンジルオキシカルボ
ニル−α−Lアスパルチル−L−フェニルアラニンメチ
ルエステル(以下、Z−α−APM略記する。)を製造
する方法において、反応液中のL−PM濃度が1%以下
になるような条件下で反応させ、系内のZ−Asp無水
物がL−PMに対して過剰になるように添加速度をコン
トロールしながら少量ずつ添加し、反応させることによ
り、目的とするα選択率が飛躍的に向上することを見出
し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies to overcome the above-mentioned drawbacks, and as a result, surprisingly, L-PM and N-benzyloxycarbonyl-L-aspartate in an organic solvent have been surprisingly obtained. An anhydride (hereinafter abbreviated as Z-Asp anhydride) is reacted to produce N-benzyloxycarbonyl-α-L aspartyl-L-phenylalanine methyl ester (hereinafter abbreviated as Z-α-APM). In the method, the reaction is performed under conditions such that the L-PM concentration in the reaction solution is 1% or less, and the addition rate is controlled so that the Z-Asp anhydride in the system becomes excessive with respect to L-PM. It was found that the desired α selectivity was drastically improved by adding a small amount at a time and reacting, thereby completing the present invention.

【0013】本発明の方法において用いられるL−PM
はL−フェニルアラニンを酸触媒の存在下にメチルエス
テル化することにより得られるので、通常、酸との付加
塩の形で得られ、酸を中和した後、下記有機溶媒で抽出
すれば、それを直接反応に供することができる。L−P
Mの濃度としては特に制限はない。
L-PM used in the method of the present invention
Can be obtained by subjecting L-phenylalanine to methyl esterification in the presence of an acid catalyst, and is usually obtained in the form of an addition salt with an acid. Can be directly subjected to the reaction. LP
There is no particular limitation on the concentration of M.

【0014】本発明の方法において用いられるZ−As
p無水物は、例えば、N−ベンジルオキシカボニル−L
−アスパラギン酸を、有機溶媒に溶解、もしくは懸濁
し、脱水剤を作用せしめることにより得られることは公
知である。
Z-As used in the method of the present invention
The p-anhydride is, for example, N-benzyloxycabonyl-L
It is known that aspartic acid can be obtained by dissolving or suspending it in an organic solvent and allowing it to react with a dehydrating agent.

【0015】本発明の方法において用いられる反応溶媒
としては、反応物及び生成物に特に活性なものでなけれ
ば、いかなる溶媒も用いることができる。ベンゼン・ト
ルエン・キシレン等の芳香族炭化水素類,ジクロルメタ
ン・1.2−ジクロルエタンクロロホルム・四塩化炭素
等の塩素化炭化水素類,テトラヒドロフラン・ジオキサ
ン等のエーテル類,アセトニトリル・プロピオニトリル
等のニトリル類,酢酸エチル・酢酸n−ブチル・プロピ
オン酸メチル等のエステル類,アセトン・メチルエチル
ケトン等のケトン類などが代表的なものであり、これら
のうちの任意の2種類以上からなる混合溶媒を使用する
こともできる。特にトルエン等の芳香族炭化水素類,酢
酸nブチル等のエステル類が好ましい。また、溶媒は、
Z−APMを含んでいても良い。
As the reaction solvent used in the method of the present invention, any solvent can be used as long as it is not particularly active in reactants and products. Aromatic hydrocarbons such as benzene, toluene and xylene, chlorinated hydrocarbons such as dichloromethane, 1.2-dichloroethane chloroform and carbon tetrachloride, ethers such as tetrahydrofuran and dioxane, and acetonitrile and propionitrile Typical examples thereof include nitriles, esters such as ethyl acetate / n-butyl acetate / methyl propionate, and ketones such as acetone / methyl ethyl ketone, and a mixed solvent of any two or more of these is used. You can also. Particularly, aromatic hydrocarbons such as toluene and esters such as n-butyl acetate are preferred. Also, the solvent is
Z-APM may be included.

【0016】反応形式は、バッチ法でも良いし、連続法
でもかまわない。バッチ法の場合、Z−Asp無水物を
含んだ溶液にL−PMを滴下しても良いし、両者を同時
に滴下する方法でも良いが、後の方法が好ましい。L−
PMの添加速度は、縮合反応の速度を考慮してコントロ
ールする必要があり、系内のL−PM濃度が1%以下と
なるような速度にしなければならない。溶液中のL−P
M濃度は、反応液をHLC等の分析装置で分析しても良
い。また、市販のガラス複合電極を備えたpHメーター
により、その指示値を指標として、添加速度をコントロ
ールすることもできる。pHメーターの指示値が3.0
以下であるようにL−PM溶液を添加することが好まし
い。
The reaction method may be a batch method or a continuous method. In the case of the batch method, L-PM may be added dropwise to the solution containing Z-Asp anhydride, or both may be added simultaneously, but the latter method is preferred. L-
It is necessary to control the rate of addition of PM in consideration of the rate of the condensation reaction, and the rate must be such that the L-PM concentration in the system becomes 1% or less. LP in solution
The M concentration may be obtained by analyzing the reaction solution with an analyzer such as HLC. The addition rate can also be controlled by a pH meter equipped with a commercially available glass composite electrode, using the indicated value as an index. pH meter reading is 3.0
It is preferred to add the L-PM solution as follows.

【0017】添加時間は、系内のL−PM消費速度に合
わせて調整するが、通常、1〜3時間で行う。30分以
下で添加を行うと反応液中の未反応L−PMが増加し、
α選択率の低下きたし好ましくない。
The addition time is adjusted in accordance with the L-PM consumption rate in the system, but is usually 1 to 3 hours. When the addition is performed for 30 minutes or less, unreacted L-PM in the reaction solution increases,
The α selectivity is lowered, which is not preferable.

【0018】添加温度および反応温度は、生成物のラセ
ミ化を極力抑制する観点より100℃以下、好ましくは
80℃以下であり、温度は低いほどα選択率が高くな
る。
The addition temperature and the reaction temperature are 100 ° C. or lower, preferably 80 ° C. or lower, from the viewpoint of minimizing racemization of the product. The lower the temperature, the higher the α selectivity.

【0019】Z−Asp無水物とL−PMの添加が終了
した後の反応時間には特に制限はないが、反応を完結さ
せるために、数時間保持するのが普通である。反応温度
にもよるが通常は6時間以内で充分である。
The reaction time after completion of the addition of the Z-Asp anhydride and L-PM is not particularly limited, but is generally maintained for several hours in order to complete the reaction. Although it depends on the reaction temperature, usually within 6 hours is sufficient.

【0020】Z−Asp無水物とL−PMのモル比は、
0.8〜1.2の範囲が好ましい。反応は、ほぼ定量的
に進行し、一方を過剰に用いた場合は、その分が無駄に
なり経済的ではない。
The molar ratio of Z-Asp anhydride to L-PM is:
The range of 0.8 to 1.2 is preferred. The reaction proceeds almost quantitatively, and when one of them is used in excess, that amount is wasted and is not economical.

【0021】[0021]

【実施例】以下、実施例により本発明の方法を詳しく説
明する。
EXAMPLES The method of the present invention will be described below in detail with reference to examples.

【0022】実施例1 1000mlの攪拌装置付の反応容器にN−ベンジルカ
ルボキシ−L−アスパラギン酸133.61g(0.5
0モル),無水酢酸56.15g(0.55モル)及び
トルエン400gを混合し、攪拌下に55℃で3時間反
応させた。得られた反応液を30℃まで冷却した後、濾
過し、トルエン洗浄後、乾燥し、Z−Asp無水物の結
晶109.7g(0.44モル)を得た。
Example 1 133.61 g (0.5%) of N-benzylcarboxy-L-aspartic acid was placed in a 1000 ml reaction vessel equipped with a stirrer.
0 mol), 56.15 g (0.55 mol) of acetic anhydride and 400 g of toluene were mixed and reacted at 55 ° C. for 3 hours with stirring. The obtained reaction solution was cooled to 30 ° C., filtered, washed with toluene, and dried to obtain 109.7 g (0.44 mol) of anhydrous Z-Asp crystals.

【0023】300mlの攪拌装置付の反応容器に酢酸
n−ブチル38.3gを入れ3℃に冷却した後に、Z−
Asp無水物の結晶12.84g(0.0515モル)
を65gの酢酸n−ブチルに加えて溶解させた溶液の滴
下を先行させながら、並行してL−フェニルアラニンメ
チルエステル8.96g(0.05モル)含む酢酸n−
ブチル66.0gとを同時に滴下し、経時的にサンプリ
ングしてL−PMの濃度が1%以下であることを確認
し、さらに、池田製作所製のガラス電極pHメ−タ(型
式PT−3S)の指示値を3.0以下にコントロールし
ながら2時間で滴下を終了後、同温度にて2時間反応さ
せた。この反応液中のZ−α−APMとZ−β−APM
を定量し、Z−α−APMの収率を求めたところ、8
8.0%であった。
38.3 g of n-butyl acetate was placed in a 300 ml reaction vessel equipped with a stirrer, cooled to 3 ° C.
12.84 g (0.0515 mol) of Asp anhydride crystals
Was added to 65 g of n-butyl acetate and dissolved in parallel with 8.96 g (0.05 mol) of L-phenylalanine methyl ester.
66.0 g of butyl was simultaneously dropped and sampled over time to confirm that the concentration of L-PM was 1% or less. Further, a glass electrode pH meter manufactured by Ikeda Seisakusho (model PT-3S) After the dropwise addition was completed in 2 hours while controlling the indicated value of 3.0 or less, the mixture was reacted at the same temperature for 2 hours. Z-α-APM and Z-β-APM in the reaction solution
Was determined and the yield of Z-α-APM was determined.
8.0%.

【0024】さらに、この縮合液の酢酸n−ブチルを減
圧下に留去し、水310gを加えて懸濁状態とし60℃
に加温後、5%パラジウム−炭素0.5gを加えて、常
圧で3時間接触還元を行った後、同温度で触媒を濾別
し、トルエン層を分液して水層を冷却して5℃で1時間
攪拌後、同温度にて析出している結晶を濾過して5℃の
冷水30mlで洗浄後、乾燥してα−APM10.36
g(0.0352モル)得られた。(収率70.4%)
Further, n-butyl acetate of the condensed liquid was distilled off under reduced pressure, and 310 g of water was added to obtain a suspended state.
After heating, 0.5% of 5% palladium-carbon was added, and catalytic reduction was performed at normal pressure for 3 hours. Then, the catalyst was separated by filtration at the same temperature, the toluene layer was separated, and the aqueous layer was cooled. After stirring at 5 ° C. for 1 hour, the precipitated crystals were filtered at the same temperature, washed with 30 ml of 5 ° C. cold water, dried and α-APM 10.36
g (0.0352 mol) were obtained. (70.4% yield)

【0025】比較例1 300mlの攪拌装置付の反応容器にL−フェニルアラ
ニンメチルエステル8.96g(0.05モル)含む酢
酸n−ブチル104.3gを入れ3℃に冷却した後に、
実施例1で得られたZ−Asp無水物の結晶12.84
g(0.0515モル)を65gの酢酸n−ブチルに加
えて溶解させた溶液を滴下を2時間で行い同温度にて2
時間反応させた。その時のpHメーターの指示値は5.
0以上であり、経時的にサンプリングしてL−PMの濃
度を分析した結果1%以上であった。この反応液中のZ
−α−APMとZ−β−APMを定量し、そのZ−α−
APMの収率を求めたところ、75.5%であった。
Comparative Example 1 104.3 g of n-butyl acetate containing 8.96 g (0.05 mol) of L-phenylalanine methyl ester was placed in a 300 ml reaction vessel equipped with a stirrer, and cooled to 3 ° C.
Crystals of Z-Asp anhydride obtained in Example 1 12.84
g (0.0515 mol) was added to and dissolved in 65 g of n-butyl acetate.
Allowed to react for hours. At that time, the reading of the pH meter was 5.
As a result of sampling over time and analyzing the concentration of L-PM, it was 1% or more. Z in this reaction solution
-Α-APM and Z-β-APM were quantified, and the Z-α-
When the yield of APM was determined, it was 75.5%.

【0026】実施例2 滴下および反応温度が40℃であること以外は実施例1
の方法に従って反応を行った。この反応液中のZ−α−
APMとZ−β−APMを定量し、そのZ−α−APM
の収率を求めたところ、80.8%であった。
Example 2 Example 1 except that the dropping and reaction temperature was 40 ° C.
The reaction was carried out according to the method described above. Z-α- in this reaction solution
APM and Z-β-APM were quantified, and the Z-α-APM
Was 80.8%.

【0027】実施例3 滴下および反応温度が−20℃であること以外は実施例
1の方法に従って反応を行った。この反応液中のZ−α
−APMとZ−β−APMを定量し、そのZ−α−AP
Mの収率を求めたところ、87.0%であった。
Example 3 The reaction was carried out in the same manner as in Example 1 except that the dropping temperature and the reaction temperature were -20 ° C. Z-α in this reaction solution
-APM and Z-β-APM were quantified and their Z-α-AP
The yield of M was 87.0%.

【0028】実施例4 300mlの攪拌装置付の反応容器に1.4−ジオキサ
ン38.3gを入れ3℃に冷却した後に、実施例1で得
られたZ−Asp無水物の結晶12.84g(0.05
15モル)を65gの1.4−ジオキサンに加えて溶解
させた溶液の滴下を先行させながら、L−フェニルアラ
ニンメチルエステル8.96g(0.05モル)含む
1.4−ジオキサン66.0gとを同時に滴下し、経時
的にサンプリングしてL−PMの濃度が1%以下である
ことを確認し、さらに、pHメ−タ−の指示値を3.0
以下にコントロールしながら2時間で滴下を終了後、同
温度にて2時間反応させた。この反応液中のZ−α−A
PMとZ−β−APMを定量し、Z−α−APMの収率
を求めたところ、84.0%であった。
Example 4 38.3 g of 1.4-dioxane was placed in a 300 ml reactor equipped with a stirrer, cooled to 3 ° C., and then 12.84 g of the anhydrous Z-Asp crystal obtained in Example 1 ( 0.05
15 mol) was added to 65 g of 1.4-dioxane and, while preceding the dropwise addition of a solution, 66.0 g of 1.4-dioxane containing 8.96 g (0.05 mol) of L-phenylalanine methyl ester was added. At the same time, the mixture was dropped and sampled over time to confirm that the concentration of L-PM was 1% or less, and the pH meter indicated a value of 3.0.
After the dropping was completed in 2 hours while controlling as follows, the reaction was carried out at the same temperature for 2 hours. Z-α-A in this reaction solution
When PM and Z-β-APM were quantified and the yield of Z-α-APM was determined, it was 84.0%.

【0029】実施例5〜9 実施例1において溶媒の種類をかえて行った結果を表−
1に示す。溶媒の種類をかえたこと以外は実施例1の方
法に従って反応を行った。 実施例10 1000mlの攪拌装置付の反応容器に実施例1で得ら
れたZ−Asp無水物の結晶12.84g(0.051
5モル)に300gのトルエンに加え懸濁させた溶液を
3℃まで冷却した後に、フェニルアラニンメチルエステ
ル8.96g(0.05モル)含むトルエン溶液90.
0gを2時間で滴下を行いpHメーターの指示値を3.
0以下にコントロールし、同温度にて2時間反応させ
た。この反応液中のZ−α−APMとZ−β−APMを
定量し、そのZ−α−APMの収率を求めたところ、8
6.5%であった。
Examples 5 to 9 The results obtained in Example 1 by changing the kind of the solvent are shown in the following Table.
It is shown in FIG. The reaction was carried out according to the method of Example 1 except that the type of the solvent was changed. Example 10 12.84 g (0.051) of the anhydrous Z-Asp crystal obtained in Example 1 was placed in a 1000 ml reaction vessel equipped with a stirrer.
5 mol) in 300 g of toluene and cooled to 3 ° C., and then a toluene solution containing 8.96 g (0.05 mol) of phenylalanine methyl ester 90.
0 g was dropped in 2 hours, and the pH meter indicated a value of 3.
The reaction was controlled at 0 or less and reacted at the same temperature for 2 hours. Z-α-APM and Z-β-APM in this reaction solution were quantified, and the yield of Z-α-APM was determined.
6.5%.

【0030】[0030]

【発明の効果】通常の一括挿入法に比べ、特にエステル
系溶媒において、これまで知られている報告に記載され
た値のいずれより高いα選択率で、Z−α−APMを製
造することができ、以後のα−APM単離工程の大きな
収率改善ができる点で、工業的にきわめて有利なもので
ある。
According to the present invention, it is possible to produce Z-α-APM with a higher α selectivity than any of the values described in the reports known so far, particularly in an ester solvent, as compared with the ordinary batch insertion method. This is industrially extremely advantageous in that the yield can be greatly improved in the subsequent α-APM isolation step.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 彰宏 神奈川県横浜市栄区笠間町1190番地 三 井東圧化学株式会社内 審査官 本間 夏子 (58)調査した分野(Int.Cl.7,DB名) C07K 5/075 C07K 1/06 BIOSIS(DIALOG) WPI(DIALOG)──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Akihiro Yamaguchi 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Examiner, Mitsui Toatsu Chemicals, Inc. Natsuko Honma (58) Field surveyed (Int.Cl. 7 , DB name) C07K 5/075 C07K 1/06 BIOSIS (DIALOG) WPI (DIALOG)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機溶媒中で、L−フェニルアラニンメ
チルエステルとN−ベンジルオキシカルボニル−L−ア
スパラギン酸無水物とを反応させN−ベンジルオキシカ
ルボニル−α−L−アスパルチル−L−フェニルアラニ
ンメチルエステルを製造する方法において、反応液中の
L−フェニルアラニンメチルエステルの濃度が1%以
下、かつ反応液のpH=3.0以下になるような条件下
で反応させることを特徴とするN−ベンジルオキシカル
ボニル−α−L−アスパルチル−L−フェニルアラニン
メチルエステルの製造法。
In an organic solvent, L-phenylalanine methyl ester is reacted with N-benzyloxycarbonyl-L-aspartic anhydride to form N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester. N-benzyloxycarbonyl, characterized in that the reaction is carried out under conditions such that the concentration of L-phenylalanine methyl ester in the reaction solution is 1% or less and the pH of the reaction solution is 3.0 or less. A method for producing α-L-aspartyl-L-phenylalanine methyl ester.
【請求項2】 N−ベンジルオキシカルボニル−L−ア
スパラギン酸無水物を先行させながら、L−フェニルア
ラニンメチルエステルと並行して同時に添加する請求項
1記載の方法。
2. The process according to claim 1, wherein the N-benzyloxycarbonyl-L-aspartic anhydride is added simultaneously, in parallel with the L-phenylalanine methyl ester.
JP23587391A 1991-09-17 1991-09-17 Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester Expired - Fee Related JP3220484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23587391A JP3220484B2 (en) 1991-09-17 1991-09-17 Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23587391A JP3220484B2 (en) 1991-09-17 1991-09-17 Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester

Publications (2)

Publication Number Publication Date
JPH0570479A JPH0570479A (en) 1993-03-23
JP3220484B2 true JP3220484B2 (en) 2001-10-22

Family

ID=16992513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23587391A Expired - Fee Related JP3220484B2 (en) 1991-09-17 1991-09-17 Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester

Country Status (1)

Country Link
JP (1) JP3220484B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200494387Y1 (en) * 2019-06-18 2021-10-01 신 차오 Multifunctional breathable storage cabinet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200494387Y1 (en) * 2019-06-18 2021-10-01 신 차오 Multifunctional breathable storage cabinet

Also Published As

Publication number Publication date
JPH0570479A (en) 1993-03-23

Similar Documents

Publication Publication Date Title
EP0127411B1 (en) Method of preparing alpha-l-aspartyl-l-phenylalanine methyl ester and its hydrochloride
SE440506B (en) PROCEDURE FOR PREPARING ALFA-L-ASPARTYL-L-PHENYLALANINE METHYL ESTER
JP3220484B2 (en) Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester
US4760164A (en) Process for producing α-L-aspartyl-L-phenylalanine methyl ester
SU1556542A3 (en) Method of producing methyl ester of alpha-l-aspartyl-l-phenylalanine or its hydrochloride
JPH0259159B2 (en)
JP3238175B2 (en) Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester
EP0510552B2 (en) Preparation process of alpha-aspartyl-L-phenylalanine methyl ester
HU191146B (en) New process for preparing aspertame
JP2662287B2 (en) Method for separating α-L-aspartyl-L-phenylalanine methyl ester
JP2951785B2 (en) Crystallization method of L-phenylalanine
EP0300450B1 (en) Method for producing alpha-L-aspartyl-L-phenylalanine methyl ester hydrochloride
EP0270345B1 (en) Preparation of alpha-l-aspartyl-l-phenyl-alanine methyl ester or hydrohalide thereof
EP0581032B1 (en) Method for production of alpha-L-aspartyl-L-phenylalanine methyl ester hydrochloride
JPH07116225B2 (en) Process for producing hydrohalide salt of α-L-aspartyl-L-phenylalanine methyl ester
US5283357A (en) Separation method of α-l-aspartyl-l-phenylalanine methyl ester
JP2976609B2 (en) Method for producing α-L-aspartyl-L-phenylalanine methyl ester or hydrochloride thereof
US5616791A (en) Method of preparing L-aspartyl-D-α-aminoalkane carboxylic acid-(S)-N-α-alkylbenzylamide
JP2598470B2 (en) Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester
JPS61268699A (en) Production of alpha-l-aspartyl-l-phenylalanine methyl ester
JPS63150295A (en) Separation of alpha-l-aspartyl-l-phenylalanine methyl ester
JPS61218597A (en) Production of alpha-l-aspartyl-l-phenylalanine methyl ester or its hydrochloride
JPH0665168A (en) Method for purifying glycine
JPS61227593A (en) Preparation of alpha-l-aspartyl-l-phenylalanine methyl ester or its hydrochloride
JPH04334397A (en) Production of alpha-l-aspartyl-l-phenylalanine methyl ester

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees