JPH0515382B2 - - Google Patents

Info

Publication number
JPH0515382B2
JPH0515382B2 JP7493686A JP7493686A JPH0515382B2 JP H0515382 B2 JPH0515382 B2 JP H0515382B2 JP 7493686 A JP7493686 A JP 7493686A JP 7493686 A JP7493686 A JP 7493686A JP H0515382 B2 JPH0515382 B2 JP H0515382B2
Authority
JP
Japan
Prior art keywords
evoh
copolymer
ethylene
polyoxypropylene
vinyl acetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7493686A
Other languages
Japanese (ja)
Other versions
JPS62231749A (en
Inventor
Akemasa Aoyama
Takeshi Morya
Kyoshi Yonezu
Takuji Okaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP7493686A priority Critical patent/JPS62231749A/en
Priority to US07/027,862 priority patent/US4824904A/en
Priority to CA000533070A priority patent/CA1272822A/en
Priority to DK160687A priority patent/DK160687A/en
Priority to AU70751/87A priority patent/AU599363C/en
Priority to DE19873789991 priority patent/DE3789991T2/en
Priority to EP19870104668 priority patent/EP0247326B1/en
Publication of JPS62231749A publication Critical patent/JPS62231749A/en
Publication of JPH0515382B2 publication Critical patent/JPH0515382B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

A 産業上の利用分野 本発明は柔軟で、耐屈曲疲労性に優れ、耐気体
透過性を備えた積層体に関する。 B 従来の技術 エチレン−ビニルオアルコール共重合体(以下
EVOHと記す)は、耐気体透過性、耐油性、耐
溶剤性、保香性等に優れた溶融成形可能な熱可塑
性樹脂として広く知られ、種々の包装分野でフイ
ルム、シート、容器等に用いられ、特に他の熱可
塑性樹脂との積層体として広く用いられている。 しかしながら、EVOHは硬くて脆く、柔軟性
に欠ける欠点を有しており、EVOH層を有する
積層包装材に対する、例えば輸送による強度の振
動、屈曲疲労等で、EVOH層にクラツク、ピン
ホールを生じ優れた耐気体を透過性を保持するこ
とができない。 またEVOHの他の熱可塑性樹脂と共押出など
により積層し、これを延伸成形する場合、
EVOH層にクラツクや延伸ムラが生じるという
欠点がある。 C 発明が解決しようとする問題点 本発明は柔軟で、耐屈曲疲労性に優れ、耐気体
透過性を備えた、しかも、クラツクや延伸ムラの
ない積層体を提供しようとするものである。 D 問題を解決するための手段 本発明者らは鋭意検討した結果、ポリエーテル
成分がEVOHの末端に付加しているEVOH系ポ
リマーの層と、他の熱可塑性樹脂の層との少なく
とも二層を含む積層体を用いることにより上記目
的が達成されることを見出し、本発明を完成させ
るに至つた。 E 発明の作用効果 本発明による積層体は、耐気体透過性、耐油
性、耐溶剤性、保香性に優れ、通常のEVOH層
を有する積層体にくらべて、柔軟性、耐屈曲疲労
性が飛躍的に向上し、さらにクラツクや延伸ムラ
が生じない。したがつて各種包装分野、特にフレ
キシブル積層包装材として極めて有用である。 F 発明のより詳細な説明 本発明に使用されるEVOHはエチレン含量20
〜60モル%、好適には25〜55モル%、酢酸ビニル
成分のけん化度95%以上、好適には98%以上であ
る。エチレン含量が20モル%以下では成形性が悪
化するばかりでなく、高湿度下での耐気体透過性
が悪化する。エチレン含量が60モル%以上になる
と耐気体透過性が大きく悪化する。またけん化度
が95%未満では柔軟性が増すものの耐気体透過性
が悪化し好ましくない。またEVOHの特性を損
わない範囲で、共重合可能な他の不飽和単量体を
含んでも何ら差しつかえはない。なおここでエチ
レン含量20〜60モル%とはポリエーテル成分を除
いたEVOH中に占めるエチレンの含有量を示す。 本発明に使用されるポリエーテルは、オキシエ
チレン単位、オキシプロピレン単位オキシエチレ
ン−オキシプロピレン単位、オキシテトリメチレ
ン単位等のオキシアルキレン単位を主体として構
成されるものがあげられるが、特にオキシプロピ
レン単位を主体とするものが好適である。ポリエ
ーテルの分子中には例えば、ポリエチレン単位、
アミド基、ウレタン基、エステル基、フエニル基
等を含有してもよい。 本発明におけるEVOH系ポリマーのEVOH成
分とポリエーテル成分の重量比によつて、その性
質は大きく変化する。柔軟性の付与から、ポリエ
ーテル成分は2重量%以上、好ましくは5重量%
以上必要であり、一方耐気体透過性の面からポリ
エーテル成分は50重量%以下、好ましくは20重量
%以下である。 ポリエーテルをEVOHの末端に付加するには、
いくつかの方法が考えられる。例えば末端にメル
カプト基を有するポリエーテルの存在下に酢酸ビ
ニル、エチレンを共重合し、これをけん化する方
法、あるいば末端にメルカプト基を有する
EVOHの存在下に、末端(片末端あるいは両末
端)に重合性の二重結合を有するポリエーテルの
重合する等の方法があげられる。かくして、ポリ
エーテルをP、EVOHをEで表わすとして、P
−EあるいはE−P−Eで示されるブロツク共重
合体が得られる。 ここで末端に重合性の二重結合を有するポリエ
ーテルとは、一般式 [ただし、Rは水素またはメチル基、R1、R2
水素または炭素数1〜10のアルキル基、R3は水
素、炭素数1〜10のアルキル基、アルキルエステ
ル(アルキル中の炭素数1〜10)基、アルキルア
ミド(アルキル中の炭素数1〜10)基等を示し、
nは1〜100の整数を示す。〕で示される(メタ)
アリルエーテル型のもの(例:ポリオキシエチレ
ン(メタ)アリルエーテル、ポリオキプロピレン
(メタ)アリルエーテル等)、あるいは一般式 〔ただし、R、R1、R2、R3は前記と同様〕で示
される(メタ)アリルエーテル型のもの、あるい
は、一般式 〔ただし、R4は水素、炭素数1〜10のアルキル
基または
A. Industrial Application Field The present invention relates to a laminate that is flexible, has excellent bending fatigue resistance, and has gas permeation resistance. B. Conventional technology Ethylene-vinyl alcohol copolymer (hereinafter referred to as
EVOH (abbreviated as EVOH) is widely known as a melt-moldable thermoplastic resin with excellent gas permeability, oil resistance, solvent resistance, and fragrance retention, and is used in various packaging fields for films, sheets, containers, etc. It is widely used, especially as a laminate with other thermoplastic resins. However, EVOH has the drawbacks of being hard, brittle, and lacking in flexibility. For example, strong vibrations caused by transportation, bending fatigue, etc. can cause cracks and pinholes in the EVOH layer, making it difficult to use. It cannot maintain permeability to other gases. In addition, when EVOH is laminated with other thermoplastic resins by coextrusion etc. and then stretch-molded,
The disadvantage is that cracks and uneven stretching occur in the EVOH layer. C Problems to be Solved by the Invention The present invention aims to provide a laminate that is flexible, has excellent bending fatigue resistance, and gas permeation resistance, and is free from cracks and stretching unevenness. D Means for Solving the Problem As a result of intensive studies, the present inventors found that at least two layers, a layer of an EVOH-based polymer in which a polyether component is added to the end of EVOH, and a layer of another thermoplastic resin, The inventors have discovered that the above object can be achieved by using a laminate containing the above-described materials, and have completed the present invention. E Effects of the Invention The laminate according to the present invention has excellent gas permeability, oil resistance, solvent resistance, and fragrance retention, and has better flexibility and bending fatigue resistance than a laminate having a normal EVOH layer. Dramatically improved, and no cracks or uneven stretching occur. Therefore, it is extremely useful in various packaging fields, especially as a flexible laminated packaging material. F. More detailed description of the invention The EVOH used in the invention has an ethylene content of 20
The saponification degree of the vinyl acetate component is 95% or more, preferably 98% or more. If the ethylene content is less than 20 mol%, not only the moldability deteriorates, but also the gas permeability under high humidity conditions deteriorates. When the ethylene content exceeds 60 mol%, the gas permeability resistance deteriorates significantly. Further, if the degree of saponification is less than 95%, although the flexibility increases, the gas permeability resistance deteriorates, which is not preferable. Further, there is no problem in including other copolymerizable unsaturated monomers as long as the characteristics of EVOH are not impaired. Note that the ethylene content of 20 to 60 mol% refers to the ethylene content in EVOH excluding the polyether component. The polyether used in the present invention includes those mainly composed of oxyalkylene units such as oxyethylene units, oxypropylene units, oxyethylene-oxypropylene units, and oxytetrimethylene units. It is preferable that the subject be the main subject. For example, polyether molecules contain polyethylene units,
It may contain an amide group, urethane group, ester group, phenyl group, etc. The properties of the EVOH-based polymer in the present invention vary greatly depending on the weight ratio of the EVOH component to the polyether component. In order to impart flexibility, the polyether component is 2% by weight or more, preferably 5% by weight.
On the other hand, from the viewpoint of gas permeation resistance, the content of the polyether component is 50% by weight or less, preferably 20% by weight or less. To add polyether to the end of EVOH,
Several methods are possible. For example, a method of copolymerizing vinyl acetate and ethylene in the presence of a polyether having a mercapto group at the end, and saponifying this, or a method having a mercapto group at the end.
Examples include a method in which a polyether having a polymerizable double bond at one or both ends is polymerized in the presence of EVOH. Thus, if polyether is represented by P and EVOH is represented by E, then P
A block copolymer represented by -E or E-P-E is obtained. Here, the polyether having a polymerizable double bond at the terminal has the general formula [However, R is hydrogen or a methyl group, R 1 and R 2 are hydrogen or an alkyl group having 1 to 10 carbon atoms, R 3 is hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkyl ester (alkyl having 1 to 10 carbon atoms) ~10) group, alkylamido group (1 to 10 carbon atoms in alkyl) group, etc.
n represents an integer from 1 to 100. ] (meta)
Allyl ether type (e.g. polyoxyethylene (meth)allyl ether, polyoxypropylene (meth)allyl ether, etc.) or general formula [However, R, R 1 , R 2 and R 3 are the same as above] or the (meth)allyl ether type, or the general formula [However, R 4 is hydrogen, an alkyl group having 1 to 10 carbon atoms, or

【式】Xは炭素数1〜 10のアルキルキレン基、置換アルキレン基、フエ
ニレン基、置換フエニレン基、mは0または1以
上の整数をそれぞれ示す。R1、R2、R3は前記と
同様〕で示される片末端に二重結合を有する(メ
タ)アクリルアミド型のもの(例:ポリオキシエ
チレン(メタ)アクリル酸アミド、ポリオキプロ
ピレン(メタ)アクリル酸アミド等)、あるいは
一般式 〔ただし、R、R1、R2、R3、X、m、nは前記
と同様〕で示される(メタ)アクリル酸エステル
型のもの(例:ポリオキシエチレン(メタ)アク
リレート、ポリオキシプロピレン(メタ)アクリ
レート等)、あるいは一般式 〔ただし、R1、R2、R3、X、m、nは前記と同
様〕で示されるビニルエーテル型のもの(例:ポ
リオキシエチレンビニルエーテル、ポリオキプロ
ピレンビニルエーテル等)である。 このようにして得られるEVOH系ポリマーの
メルトインデツクス(MI)は0.1〜50g/10分好
ましくは0.3〜25g/10分に調節される。
(ASTM D−1238−65Tにより190℃測定)MIの
調節はEVOH成分、ポリエーテル成分の重合度、
EVOH成分とポリエーテル成分の重量比によつ
て行われる。 かくして得られたEVOH系ポリマーは通常の
EVOHと比較して、ヤング率が2/3〜1/10、にな
り、柔軟で通常のEVOHと同様に熱溶融成形が
可能である。このEVOH系ポリマーと積層する
ために用いられる熱可塑性樹脂としては、ポリプ
ロピレン、ポリエチレン(分岐状または直鎖状)、
エチレン−プロピレン共重合体、エチレン−酢酸
ビニル共重合体、熱可塑性ポリエステル、ポリア
ミド、ポリスチレン、ポリカーボネート、ポリ塩
化ビリル等があげられるが、このうち直鎖状ポリ
エチレン、ポリプロピレン、エチレン−プロピレ
ン共重合体、熱可塑性ポリエステル、ポリスチレ
ンが特に好適である。 積層体は二層あるいは三層あるいはそれ以上の
多層構造とすることができるが、三層以上とする
場合はEVOH層を中間層として使用することが
多い。 積層体を得るための成形方法は、共押出、共射
出、あるいは押出ラミネート、コーテイング等公
知の方法が用いられるが、とくに共押出法が好適
である。 積層体を得る場合には各層間に接着性樹脂を介
するのがよく、該接着性樹脂としてはとくに制限
はないが、ポリエチレン、エチレン−酢酸ビニル
共重合体、ポリプロピレンまたはエチレン−アク
リル酸エステル(メチルエステルまたはエチルエ
ステルなど)共重合体などをエチレン性不飽和カ
ルボン酸(好適には無水マレイン酸)によりグラ
フトまたは付加変性したもの、あるいはこれらの
変性物と未変性物との混合物が好適に使用され
る。 このようにして成形された積層体は、従来の
EVOHを用いた積層体と比較して、そのEVOH
層の柔軟性の向上により、フレキシブルな積層包
装材として極めて有用であり、輸送中に生ずる強
度の振動、屈曲疲労、落下の衝撃、摩擦による疲
労等に極めて優れた性能を示す。これらの性能は
低温度になることにより更に有効に発揮される。 次に実施例をあげて本発明を更に詳しく説明す
るが、これらの実施例は本発明を何ら限定するも
のではない。 G 実施例 実施例 1 片末端に重合性の二重結合をもつ分子量1500の
ポリオキプロピレンアリルエーテル(日本油脂(株)
製ユニセーフPKA−5014)1000gおよびベンゾ
イルパーオキサイド0.065gを容量2の撹拌機
付き反応槽に仕込み、内温を40℃に保ち、チオ酢
酸を47g/時間の速度で3時間、撹拌しながら連
続的に添加した。ついで未反応のチオ酢酸を35〜
40℃で減圧下に反応系から除去した。次に、メタ
ノール200g、水酸化ナトリウム0.55gを加え、
窒素気流下60℃で2時間撹拌してから、酢酸を加
えて過剰の水酸化ナトリウムを中和した。かくし
て得られたメルカプト化ポリオキシプロピレンの
メルカプト基はI2による滴定の結果、6.45×10-4e
g/gであり、二重結合を有する末端はほぼ定量
的にメルカプトされた。 次に容量50で内部に冷却用コイルをもつ、撹
拌機付き重合槽に、酢酸ビニル27.6Kg、メルカプ
ト化ポリオキシプロピレン11gを仕込み、重合槽
内の空気を窒素で置換した後、60℃に昇温し、エ
チレンを仕込んで圧力を43Kg/cm2とした。ついで
重合開始剤2,2′−アソビスイソプチロニトリル
31gをメタノール400mlに溶解して添加し、以後
メルカプト化ポリオキシプロピレンを147g/時
間の速度で5時間添加して重合反応を実施した。
酢酸ビニルの重合率は39%であつた。ついで該共
重合体反応液を追出塔に供給し、塔下部からのメ
タノールの導入により、未反応酢酸ビニルを塔頂
から除去した後、常法により水酸化ナトリウムを
触媒としてけん化反応を実施した。ついで十分に
水洗した後、希薄酢酸水溶液中で浸漬処理してか
ら、窒素気流下60〜105℃で乾燥した。かくして
得られたEVOH系共重合体はポリオキシプロピ
レンがEVOHの片末端に付加したブロツク共重
合体であり、その組成はNMRで分析した結果、
エチレン含量31.0モル%、ポリオキシプロピレン
含量9.4重量%、酢酸ビニル成分のけん化度99.4
%であつたまた、190℃、2060g荷重の条件下、
ASTM D−1238−65Tの方法で測定したMIは
6.7g/10分であつた。 次に、該共重合体(以下、共重合体Aと記す)
単品のヤング率、および該共重合体を中間層に配
した積層フイルムの耐屈曲疲労性および酸素透過
量を測定した。ヤング率は、該共重合体を押出機
とTダイを有する製膜機を用い、押出機温度180
〜220℃、Tダイ温度225℃の条件で押出製膜した
フイルムを20℃65%RHの条件下、7日間調湿し
たものを試料とし、ASTM・D−638に準じて、
オートグラフにおり、引張速度200%/分の条件
で測定した。耐屈曲性および酸素透過量は、次の
方法で製膜した3種5層の積層フイルム(内層/
接着剤層/中間層/接着剤層/外層)を試料とし
て測定した。製膜機は内外層用押出機、中間層用
押出機、接着剤層押出機各1基と5層用Tダイと
からなり、成形温度は内外層用押出機160〜220
℃、中間層用押出機180〜220℃、接着剤層用押出
機120〜220℃、Tダイ255℃であつた。中間層は
前記共重合体A、内外層は4−メチル−1−ベン
テンを共重合成分とし、該共重合成分を2.6モル
%を含む、MI2.1g/10分の直鎖状低温度ポリエ
チレン、接着剤層は酢酸ビニル含量33重量%、無
水マレイン酸変性度1.5重量%の変性エチレン−
酢酸ビニル共重合体(MI2.0g/10分)である。
該積層フイルムの厚み構成は、中間層12μ、内外
層各30μ、接着剤層各5μであつた。 耐屈曲疲労性の試験は、ゲルボフレツクステス
ター(理学工業(株)製)を使用し、12in×8inの試
験片を直径31/2inの円筒状となし、両端を把持
し、初期把持間隔7in、最大屈曲時の把持間隔
1in.ストロークの最初の31/2iinで440°の角度の
ひねりを加え、その後の21/2inは直線水平動で
ある動作のくり返し往復動を40回/分の速さで、
20℃、65%RHの条件下に実施した。 酸素ガス透過量の測定は、Modern Control社
製OX−TRAN100を使用し、20℃、65%RHおよ
び20℃、、85%RHの条件下、7日間調湿後に実
施した。該測定に供した試料は、前記耐屈曲疲労
性の試験においてくり返し往復動の回数を種々変
えた試料である。 ピンホール数の測定は、吸取紙の上に試料を重
ね、その上に染料(赤色)を塗り、ローラーでこ
すつたあと、試料をはがし、吸取紙上の着色個数
を調べることにより、行なわれた。 これらの測定結果を第1表、第2表に示す。 対照例 1 実施例1においてエチレン含量31.9モル%、ポ
リオキシプロピレン含量9.4重量%、酢酸ビニル
成分のけん化度99.4%、MI6.7g/10分のEVOH
系共重合体に代えて、エチレン含量32.0モル%、
酢酸ビニル成分のけん化度99.4、MI6.4g/10分
のEVOHを用いたほかは、同例と同様にして、
評価した結果を第1表、第2表に示す。
[Formula] X represents an alkylkylene group having 1 to 10 carbon atoms, a substituted alkylene group, a phenylene group, or a substituted phenylene group, and m represents an integer of 0 or 1 or more. R 1 , R 2 , R 3 are the same as above] A (meth)acrylamide type product having a double bond at one end (e.g. polyoxyethylene (meth)acrylamide, polyoxypropylene (meth) (acrylic acid amide, etc.) or general formula [However, R, R 1 , R 2 , R 3 , X, m, and n are the same as above] The (meth)acrylic acid ester type (e.g. polyoxyethylene (meth)acrylate, polyoxypropylene (meth)acrylate, etc.) or general formula [However, R 1 , R 2 , R 3 , X, m, and n are the same as above] (eg, polyoxyethylene vinyl ether, polyoxypropylene vinyl ether, etc.). The melt index (MI) of the EVOH polymer thus obtained is adjusted to 0.1 to 50 g/10 minutes, preferably 0.3 to 25 g/10 minutes.
(Measured at 190℃ using ASTM D-1238-65T) MI can be adjusted by adjusting the degree of polymerization of the EVOH component and polyether component.
This is done by adjusting the weight ratio of the EVOH component and the polyether component. The EVOH polymer thus obtained is
Compared to EVOH, Young's modulus is 2/3 to 1/10, and it is flexible and can be melt-molded like normal EVOH. Thermoplastic resins used for lamination with this EVOH polymer include polypropylene, polyethylene (branched or linear),
Examples include ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, thermoplastic polyester, polyamide, polystyrene, polycarbonate, polyvinyl chloride, etc. Among these, linear polyethylene, polypropylene, ethylene-propylene copolymer, Thermoplastic polyester and polystyrene are particularly suitable. The laminate can have a multilayer structure of two layers, three layers, or more, but when it has three or more layers, an EVOH layer is often used as an intermediate layer. As a molding method for obtaining a laminate, known methods such as co-extrusion, co-injection, extrusion lamination, and coating may be used, and co-extrusion is particularly preferred. When obtaining a laminate, it is preferable to interpose an adhesive resin between each layer, and the adhesive resin is not particularly limited, but polyethylene, ethylene-vinyl acetate copolymer, polypropylene, or ethylene-acrylic acid ester (methyl ester or ethyl ester) copolymers, etc., grafted or addition-modified with an ethylenically unsaturated carboxylic acid (preferably maleic anhydride), or a mixture of these modified and unmodified products are preferably used. Ru. The laminate formed in this way is different from the conventional
Compared to a laminate using EVOH, its EVOH
Due to the improved flexibility of the layers, it is extremely useful as a flexible laminated packaging material, and exhibits extremely excellent performance against strong vibrations that occur during transportation, bending fatigue, impact from dropping, fatigue due to friction, etc. These performances are more effectively exhibited at lower temperatures. Next, the present invention will be explained in more detail with reference to Examples, but these Examples are not intended to limit the present invention in any way. G Examples Example 1 Polyoxypropylene allyl ether with a molecular weight of 1500 having a polymerizable double bond at one end (NOF Corporation)
1,000 g of Unisafe PKA-5014) and 0.065 g of benzoyl peroxide were placed in a reaction tank with a capacity of 2 and equipped with a stirrer, the internal temperature was maintained at 40°C, and thioacetic acid was continuously stirred at a rate of 47 g/hour for 3 hours. added to. Then unreacted thioacetic acid was added to
It was removed from the reaction system under reduced pressure at 40°C. Next, add 200g of methanol and 0.55g of sodium hydroxide.
After stirring for 2 hours at 60°C under a nitrogen stream, acetic acid was added to neutralize excess sodium hydroxide. The mercapto group of the mercaptated polyoxypropylene thus obtained was determined to be 6.45×10 -4 e as a result of titration with I2.
g/g, and the ends with double bonds were almost quantitatively mercaptolated. Next, 27.6 kg of vinyl acetate and 11 g of mercapto polyoxypropylene were charged into a polymerization tank with a capacity of 50 mm and a cooling coil inside, equipped with a stirrer, and after replacing the air in the polymerization tank with nitrogen, the temperature was raised to 60°C. The reactor was heated and ethylene was charged to bring the pressure to 43 Kg/cm 2 . Then, the polymerization initiator 2,2'-azobisisobutyronitrile
31 g was dissolved in 400 ml of methanol and added, and then mercaptated polyoxypropylene was added at a rate of 147 g/hour for 5 hours to carry out a polymerization reaction.
The polymerization rate of vinyl acetate was 39%. The copolymer reaction solution was then fed to a purging tower, and unreacted vinyl acetate was removed from the top of the tower by introducing methanol from the bottom of the tower, followed by a saponification reaction using sodium hydroxide as a catalyst by a conventional method. . After thoroughly washing with water, the sample was immersed in a dilute aqueous acetic acid solution, and then dried at 60 to 105°C under a nitrogen stream. The EVOH copolymer thus obtained is a block copolymer in which polyoxypropylene is added to one end of EVOH, and its composition was analyzed by NMR.
Ethylene content 31.0 mol%, polyoxypropylene content 9.4% by weight, saponification degree of vinyl acetate component 99.4
%, and under the conditions of 190℃ and 2060g load,
MI measured using ASTM D-1238-65T method is
It was 6.7g/10 minutes. Next, the copolymer (hereinafter referred to as copolymer A)
The Young's modulus of a single product, and the bending fatigue resistance and oxygen permeation of a laminated film in which the copolymer was disposed as an intermediate layer were measured. The Young's modulus was determined by using a film forming machine with an extruder and a T-die to measure the copolymer at an extruder temperature of 180°C.
The sample was a film produced by extrusion at ~220°C and a T-die temperature of 225°C, and the humidity was adjusted for 7 days at 20°C and 65% RH, according to ASTM D-638.
Measurements were made using an autograph at a tensile rate of 200%/min. The bending resistance and oxygen permeation amount were determined by the following methods:
Adhesive layer/intermediate layer/adhesive layer/outer layer) was measured as a sample. The film forming machine consists of an extruder for the inner and outer layers, an extruder for the intermediate layer, an extruder for the adhesive layer, and a T-die for 5 layers, and the molding temperature is 160 to 220 for the extruder for the inner and outer layers.
The extruder for the intermediate layer was heated at 180-220°C, the extruder for the adhesive layer was heated at 120-220°C, and the T-die was heated at 255°C. The intermediate layer is made of the copolymer A, and the inner and outer layers are made of linear low-temperature polyethylene containing 2.6 mol% of the copolymerized component, with an MI of 2.1 g/10 min. The adhesive layer is made of modified ethylene with a vinyl acetate content of 33% by weight and a degree of maleic anhydride modification of 1.5% by weight.
It is a vinyl acetate copolymer (MI2.0g/10 minutes).
The thickness of the laminated film was 12 μm for the intermediate layer, 30 μm each for the inner and outer layers, and 5 μm each for the adhesive layer. The bending fatigue resistance test was carried out using a Gerbo Flex Tester (manufactured by Rigaku Kogyo Co., Ltd.). A 12in x 8in test piece was shaped into a cylinder with a diameter of 31/2in, gripped at both ends, and the initial gripping interval 7in, grip distance at maximum bending
1in. The first 31/2in of the stroke adds a twist at an angle of 440°, and the subsequent 21/2in is a linear horizontal movement, repeating the reciprocating motion at a speed of 40 times/min.
It was carried out under the conditions of 20°C and 65%RH. The oxygen gas permeation amount was measured using OX-TRAN100 manufactured by Modern Control under the conditions of 20° C., 65% RH and 20° C., 85% RH after 7 days of humidity control. The samples used for this measurement were samples in which the number of repeated reciprocations was varied in the bending fatigue resistance test. The number of pinholes was measured by stacking the sample on blotting paper, applying dye (red) on top of it, rubbing it with a roller, peeling off the sample, and checking the number of colored spots on the blotting paper. The results of these measurements are shown in Tables 1 and 2. Control example 1 In Example 1, the ethylene content was 31.9 mol%, the polyoxypropylene content was 9.4% by weight, the degree of saponification of the vinyl acetate component was 99.4%, and the EVOH had an MI of 6.7 g/10 min.
In place of the copolymer, ethylene content 32.0 mol%,
In the same manner as in the same example, except that the saponification degree of vinyl acetate component was 99.4, and EVOH with MI 6.4 g/10 minutes was used.
The evaluation results are shown in Tables 1 and 2.

【表】【table】

【表】【table】

【表】 実施例 2 実施例1において、4−メチル−1−ペンテン
変性直鎖状低密度ポリエチレンに代えて、1−オ
クテンを共重合成分とし、該共重合成分を3.3モ
ル%含む、MI1.6g/10分の直鎖状低密度ポリエ
チレンを内外層に用いたほかは同例と同様にして
積層フイルムを得て、耐屈曲疲労性および酸素透
過量を測定した。結果を第3表に示す。 対照例 2 実施例2において、エチレン含量32.0モル%酢
酸ビニル成分のけん化度99.4%、MI6.4g/10分
のEVOHを中間層に用いたほかは、同例と同様
にして積層フイルムを得て、耐屈曲疲労性および
酸素透過量を測定した。結果を第3表に示す。
[Table] Example 2 In Example 1, 1-octene was used as a copolymerization component instead of 4-methyl-1-pentene-modified linear low-density polyethylene, and MI1. A laminated film was obtained in the same manner as in the same example except that 6 g/10 min linear low-density polyethylene was used for the inner and outer layers, and the bending fatigue resistance and oxygen permeation amount were measured. The results are shown in Table 3. Control Example 2 A laminated film was obtained in the same manner as in Example 2, except that EVOH with an ethylene content of 32.0 mol%, a vinyl acetate component with a saponification degree of 99.4%, and an MI of 6.4 g/10 min was used for the intermediate layer. , bending fatigue resistance and oxygen permeation were measured. The results are shown in Table 3.

【表】 実施例 3 実施例1と同様の方法で、前記メルカプト化ポ
リオキシプロピレンを連続的に添加しながら、酢
酸ビニルとエチレンを共重合し、ついで未反応酢
酸ビニルの除去、けん化、洗浄、乾燥を行い、ポ
リオキシプロピレンがEVOHの片末端に付加し
たブロツク共重合体を得た。その組成はNMRで
分析した結果、エチレン含量37.9モル%、ポリオ
キシプロピレン含量13.1重量%、酢酸ビニル成分
のけん化度99.6%であつた。また該共重合体の
MIは10.1g/10分であつた。 次に実施例1と同様にして該共重合体(以下、
共重合体Bと記す)単品フイルムのヤング率を測
定するとともに、中間層を共重合体Bとしたほか
は、実施例1と同一構成の積層フイルムを製膜し
て、その耐屈曲疲労性および酸素透過量を測定し
た。結果を第4表および第5表に示す。 対照例 3 実施例3において、共重合体Bに代えて、エチ
レン含量38.2モル%、酢酸ビニル成分のけん化度
99.5%、MI9.6g/10分のEVOHを用いたほかは
同例と同様にして評価した結果を第4表、第5表
に示す。
[Table] Example 3 In the same manner as in Example 1, vinyl acetate and ethylene were copolymerized while continuously adding the mercaptated polyoxypropylene, and then unreacted vinyl acetate was removed, saponified, washed, Drying was performed to obtain a block copolymer in which polyoxypropylene was added to one end of EVOH. The composition was analyzed by NMR and found to have an ethylene content of 37.9 mol%, a polyoxypropylene content of 13.1% by weight, and a saponification degree of vinyl acetate component of 99.6%. Also, the copolymer
MI was 10.1 g/10 minutes. Next, in the same manner as in Example 1, the copolymer (hereinafter referred to as
In addition to measuring the Young's modulus of a single film (referred to as copolymer B), a laminated film having the same structure as in Example 1 except that copolymer B was used as the intermediate layer was formed, and its bending fatigue resistance and The amount of oxygen permeation was measured. The results are shown in Tables 4 and 5. Control example 3 In Example 3, instead of copolymer B, the ethylene content was 38.2 mol%, and the degree of saponification of the vinyl acetate component was
Tables 4 and 5 show the evaluation results in the same manner as in the same example except that EVOH of 99.5% and MI 9.6 g/10 minutes was used.

【表】【table】

【表】 実施例 4 両末端に重合性の二重結合をもつ分子量3000の
ポリオキシプロピレンアリルエーテル(日本油脂
(株)製ユニセーフPKA−5018)1000gおよびベン
ゾイルパーオキサイド7mgを容量2の撹拌機付
き反応槽に仕込み、内温を30℃に保ち、チオ酢酸
を27g/時間の速度で3時間、撹拌しながら連続
的に添加した。ついで未反応のチオ酢酸を35〜40
℃で減圧下に反応系から除去した。次に、メタノ
ール200g、水酸化ナトリウム0.55gを加え、窒
素気流下60℃で2時間撹拌してから、酢酸を加え
て過剰の水酸化ナトリウムを中和した。かくして
得られたメルカプト化ポリオキシプロピレンのメ
ルカプト基はI2による滴定の結果、6.56×10-4e
g/gであり、二重結合を有する両末端はほぼ定
量的にメルカプト化された。 次に実施例1と同一の重合槽に、酢酸ビニル
26.1Kg、上記メルカプト化ポリオキシプロピレン
11gを仕込み、重合槽内の空気を窒素で置換した
後、60℃に昇温し、エチレンを仕込んで圧力を44
Kg/cm2とした。ついで重合開始剤2,2′−アゾビ
スイソブチロニトリル50gをメタノール500mlに
溶解して添加し、以後メルカプト化ポリオキシプ
ロピレンを230g/時間の速度で3.3時間添加して
重合反応を実施した。酢酸ビニルの重合率は42%
であつた。ついで該共重合反応液を追出塔に供給
し、塔下部からのメタノールの導入により、未反
応酢酸ビニルを塔頂から除去した後、常法により
水酸化ナトリウムを触媒としてけん化反応を実施
した。ついで十分に水洗した後、希簿酢酸水溶液
中で浸漬処理してから、窒素気流下60〜105℃乾
燥した。かくして得られたEVOH系共重合体は
ポリオキシプロピレンの両端末にEVOHが付加
したブロツク共重合体であり、その組成はNMR
で分析した結果、エチレン含量31.0モル%、ポリ
オキシプロピレン含量9.7重量%、酢酸ビニル成
分のけん化度99.3%であつた。またMIは1.4g/
10分であつた。 次に、実施例1と同様にして該共重合体(以下
共重合体Cと記す)単品フイルムのヤング率を測
定するとともに、中間層を共重合体Cとしたほか
は実施例2と同一構成の積層フイルムを製膜し
て、その耐屈曲疲労性および酸素通過量を測定し
た。結果を第6表および第7表に示す。 対照例 4 実施例4において、共重合体Cに代えて、エチ
レン含量31.3モル%、酢酸ビニル成分のけん化度
99.5%、MI1.6g/10分のEVOHを用いたほかは
同例と同様にして評価した結果を第6表、第7表
に示す。
[Table] Example 4 Polyoxypropylene allyl ether (NOF) with a molecular weight of 3000 and having polymerizable double bonds at both ends.
1000 g of Unisafe PKA-5018) manufactured by Unisafe Co., Ltd. and 7 mg of benzoyl peroxide were placed in a reaction tank with a capacity of 2 and equipped with a stirrer, the internal temperature was maintained at 30°C, and thioacetic acid was stirred at a rate of 27 g/hour for 3 hours. Added continuously. Then add unreacted thioacetic acid to 35-40%
It was removed from the reaction system under reduced pressure at °C. Next, 200 g of methanol and 0.55 g of sodium hydroxide were added, and the mixture was stirred at 60° C. for 2 hours under a nitrogen stream, and then acetic acid was added to neutralize excess sodium hydroxide. As a result of titration with I2 , the mercapto group of the mercaptated polyoxypropylene thus obtained was 6.56×10 -4 e
g/g, and both ends with double bonds were almost quantitatively mercaptolyzed. Next, vinyl acetate was added to the same polymerization tank as in Example 1.
26.1Kg, above mercaptated polyoxypropylene
After charging 11g of ethylene and replacing the air in the polymerization tank with nitrogen, the temperature was raised to 60℃, ethylene was charged, and the pressure was increased to 44℃.
Kg/ cm2 . Next, 50 g of the polymerization initiator 2,2'-azobisisobutyronitrile dissolved in 500 ml of methanol was added, and then mercaptated polyoxypropylene was added at a rate of 230 g/hour for 3.3 hours to carry out a polymerization reaction. Polymerization rate of vinyl acetate is 42%
It was hot. The copolymerization reaction solution was then supplied to a purging tower, and unreacted vinyl acetate was removed from the top of the tower by introducing methanol from the bottom of the tower, followed by a saponification reaction using sodium hydroxide as a catalyst in a conventional manner. After thoroughly washing with water, it was immersed in a dilute acetic acid aqueous solution, and then dried at 60 to 105°C under a nitrogen stream. The EVOH copolymer thus obtained is a block copolymer in which EVOH is added to both terminals of polyoxypropylene, and its composition is determined by NMR.
As a result of analysis, the ethylene content was 31.0 mol%, the polyoxypropylene content was 9.7% by weight, and the degree of saponification of the vinyl acetate component was 99.3%. Also, MI is 1.4g/
It was hot in 10 minutes. Next, the Young's modulus of a single film of the copolymer (hereinafter referred to as copolymer C) was measured in the same manner as in Example 1, and the structure was the same as in Example 2 except that copolymer C was used as the intermediate layer. A laminated film was formed, and its bending fatigue resistance and oxygen permeability were measured. The results are shown in Tables 6 and 7. Control example 4 In Example 4, instead of copolymer C, the ethylene content was 31.3 mol%, and the degree of saponification of the vinyl acetate component was
Tables 6 and 7 show the evaluation results in the same manner as in the same example except that EVOH of 99.5% and MI of 1.6 g/10 minutes was used.

【表】【table】

【表】 実施例 5 実施例4と同様の方法で、実施例4に示したメ
ルカプト化ポリオキシプロピレンを連続的に添加
しながら、酢酸ビニルとエチレンを共重合し、つ
いで未反応酢酸ビニルの除去、けん化、洗浄、乾
燥を行い、ポリオキシプロピレンの両端末に
EVOHが付加したブロツク共重合体を得た。そ
の組成はNMRで分析した結果、エチレン含量
43.8モル%、ポリオキシプロピレン含量15.2重量
%、酢酸ビニル成分のけん化度99.6%であつた。
また該共重合体のMIは6.1g/10分であつた。 次に実施例1と同様にして該共重合体(以下、
共重合体Dと記す)単品フイルムのヤング率を測
定するとともに、中間層を共重合体Dとしたほか
は実施例1と同一構成の積層フイルムを製膜し
て、その耐屈曲疲労性および酸素透過量を測定し
た。結果を第8表および第9表に示す。 対照例 5 実施例5において共重合体Dに代えて、エチレ
ン含量44.1モル%、酢酸ビニル成分のけん化度
99.5%、MI5.8g/10分のEVOHを用いたほかは
同例と同様にして評価した結果を第8表、第9表
に示す。
[Table] Example 5 In the same manner as in Example 4, vinyl acetate and ethylene were copolymerized while continuously adding the mercaptated polyoxypropylene shown in Example 4, and then unreacted vinyl acetate was removed. , saponification, washing, drying, and both terminals of polyoxypropylene.
A block copolymer to which EVOH was added was obtained. As a result of NMR analysis, its composition revealed that the ethylene content was
The polyoxypropylene content was 15.2% by weight, and the degree of saponification of the vinyl acetate component was 99.6%.
Moreover, the MI of the copolymer was 6.1 g/10 minutes. Next, in the same manner as in Example 1, the copolymer (hereinafter referred to as
In addition to measuring the Young's modulus of a single film (referred to as copolymer D), a laminated film having the same structure as in Example 1 except that copolymer D was used as the intermediate layer was formed, and its bending fatigue resistance and oxygen The amount of permeation was measured. The results are shown in Tables 8 and 9. Control example 5 In Example 5, instead of copolymer D, the ethylene content was 44.1 mol%, and the degree of saponification of the vinyl acetate component was used.
Tables 8 and 9 show the evaluation results in the same manner as in the same example except that EVOH of 99.5% and MI 5.8 g/10 minutes was used.

【表】【table】

【表】 実施例 6 実施例1に示したポリオキシプロピレンが
EVOHの片末端に付加したEVOH系ブロツク共
重合体を中間層とする積層シートを同例と同様に
して成形した。ただし、内外層はポリプロピレン
(三菱油化製三菱ノーブレンMA−6)であり、
接着剤層は無水マレイン酸変性ポリプロピレン
(三井石油化学製アドマーQF500)である。次に
該積層シートを固相圧空成形法によつてシート表
面温度が145℃となる条件で内径(D)が100mm、深さ
(L)が200mm(絞り比L/D=2)、肉厚が0.5mmで
内容積1.6の円筒状カツプを得た。外層:接着
剤層:中間層:接着剤層:内層の厚み比は45:
2.5:5:2.5:45であつた。該カツプの性質を第
10表に示す。 対照例 6 実施例6において、中間層としてポリオキシプ
ロピレンがEVOHの片末端に付加したEVOH系
ブロツク共重合体に代えて、対照例1に示した
EVOHを用いたほかは実施例6と同様にして円
筒状カツプを成形した。該カツプの性質を第10表
に示す。
[Table] Example 6 The polyoxypropylene shown in Example 1
A laminated sheet having an EVOH block copolymer added to one end of EVOH as an intermediate layer was molded in the same manner as in the same example. However, the inner and outer layers are polypropylene (Mitsubishi Noblen MA-6 manufactured by Mitsubishi Yuka),
The adhesive layer is maleic anhydride-modified polypropylene (Admer QF500 manufactured by Mitsui Petrochemicals). Next, the laminated sheet was formed by solid-state air pressure forming under conditions such that the sheet surface temperature was 145°C, and the inner diameter (D) was 100 mm and the depth was 100 mm.
A cylindrical cup with (L) of 200 mm (drawing ratio L/D=2), wall thickness of 0.5 mm, and internal volume of 1.6 was obtained. The thickness ratio of outer layer: adhesive layer: middle layer: adhesive layer: inner layer is 45:
It was 2.5:5:2.5:45. The properties of the cup are
Shown in Table 10. Control Example 6 In Example 6, instead of the EVOH block copolymer in which polyoxypropylene was added to one end of EVOH as the intermediate layer, the interlayer shown in Control Example 1 was used.
A cylindrical cup was molded in the same manner as in Example 6 except that EVOH was used. The properties of the cup are shown in Table 10.

【表】【table】

【表】 〓
〓× 延伸むらが非常に多い
[Table] 〓
〓× Extremely uneven stretching

Claims (1)

【特許請求の範囲】 1 ポリエーテル成分がエチレン−ビニルアルコ
ール共重合体の末端に付加しているエチレン−ビ
ニルアルコール系重合体の層と、他の熱可塑性樹
脂の層との少なくとも二層を含む耐気体透過性の
優れた積層体。 2 エチレン−ビニルアルコール共重合体のエチ
レン含量が20〜60モル%である特許請求の範囲第
1項記載の積層体。 3 ポリエーテル成分がオキシプロピレン単位か
ら構成される特許請求の範囲第1項記載の積層
体。
[Scope of Claims] 1. Contains at least two layers: a layer of an ethylene-vinyl alcohol polymer in which a polyether component is added to the end of the ethylene-vinyl alcohol copolymer, and a layer of another thermoplastic resin. A laminate with excellent gas permeability. 2. The laminate according to claim 1, wherein the ethylene content of the ethylene-vinyl alcohol copolymer is 20 to 60 mol%. 3. The laminate according to claim 1, wherein the polyether component is composed of oxypropylene units.
JP7493686A 1986-03-31 1986-03-31 Laminate having excellent gas permeability resistance Granted JPS62231749A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP7493686A JPS62231749A (en) 1986-03-31 1986-03-31 Laminate having excellent gas permeability resistance
US07/027,862 US4824904A (en) 1986-03-31 1987-03-19 Resin compositions, laminates and block copolymers
CA000533070A CA1272822A (en) 1986-03-31 1987-03-26 Resin compositions, laminates and block copolymers
DK160687A DK160687A (en) 1986-03-31 1987-03-30 RESIN COMPOSITIONS, LAMINATES AND BLOCK COPOLYMERS.
AU70751/87A AU599363C (en) 1986-03-31 1987-03-30 Resin compositions, laminates and block copolymers
DE19873789991 DE3789991T2 (en) 1986-03-31 1987-03-30 Resin compositions, composites and block copolymers as a component thereof.
EP19870104668 EP0247326B1 (en) 1986-03-31 1987-03-30 Resin compositions, laminates and block copolymers as components thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7493686A JPS62231749A (en) 1986-03-31 1986-03-31 Laminate having excellent gas permeability resistance

Publications (2)

Publication Number Publication Date
JPS62231749A JPS62231749A (en) 1987-10-12
JPH0515382B2 true JPH0515382B2 (en) 1993-03-01

Family

ID=13561734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7493686A Granted JPS62231749A (en) 1986-03-31 1986-03-31 Laminate having excellent gas permeability resistance

Country Status (1)

Country Link
JP (1) JPS62231749A (en)

Also Published As

Publication number Publication date
JPS62231749A (en) 1987-10-12

Similar Documents

Publication Publication Date Title
US4824904A (en) Resin compositions, laminates and block copolymers
US4576988A (en) Saponified products of silicon-containing ethylene-vinyl acetate copolymer as melt molding materials
US4684576A (en) Maleic anhydride grafts of olefin polymers
EP0027375A2 (en) Modified elastomer and laminate thereof
KR910005563B1 (en) Maleic anhydrine grafts of olefin polymers
JPH05503260A (en) Resin blends of maleic anhydride grafts of olefin polymers for extrusion coating onto metal foil substrates
EP1612228B1 (en) Ethylene-vinyl alcohol based copolymer and method for production thereof
US5114795A (en) Multilayered high barrier packaging materials method for the preparation thereof
JP2613198B2 (en) Melt molding material
JP2721542B2 (en) Ethylene-vinyl alcohol random copolymer, molded product and laminate
JPH0515382B2 (en)
JP3850893B2 (en) Laminated structure
JP4689780B2 (en) Gas barrier film and method for producing the same
JPH07647B2 (en) Block copolymer
JPH0713172B2 (en) Resin composition
JPH0515383B2 (en)
JPH02235741A (en) Laminate and preparation thereof
JPH10176020A (en) Ethylene/polyalkylene glycol (ether) (meth)acrylate copolymer and breathable and impermeable film made therefrom
JP2558358B2 (en) Resin composition
JP2509769B2 (en) Multilayer stack
JP2836938B2 (en) Resin composition and laminate
JP2509768B2 (en) Multilayer stack
JP2022120387A (en) Drawn film containing modified vinyl alcoholic polymer, and laminate, and method for producing them
JP3059239B2 (en) Ethylene-vinyl alcohol copolymer, molded article and laminate
JP2934207B2 (en) Ionomer resin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees