JPH0515383B2 - - Google Patents

Info

Publication number
JPH0515383B2
JPH0515383B2 JP7493786A JP7493786A JPH0515383B2 JP H0515383 B2 JPH0515383 B2 JP H0515383B2 JP 7493786 A JP7493786 A JP 7493786A JP 7493786 A JP7493786 A JP 7493786A JP H0515383 B2 JPH0515383 B2 JP H0515383B2
Authority
JP
Japan
Prior art keywords
evoh
copolymer
ethylene
vinyl acetate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7493786A
Other languages
Japanese (ja)
Other versions
JPS62231750A (en
Inventor
Akemasa Aoyama
Takeshi Morya
Kyoshi Yonezu
Takuji Okaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP7493786A priority Critical patent/JPS62231750A/en
Priority to US07/027,862 priority patent/US4824904A/en
Priority to CA000533070A priority patent/CA1272822A/en
Priority to DK160687A priority patent/DK160687A/en
Priority to AU70751/87A priority patent/AU599363C/en
Priority to DE19873789991 priority patent/DE3789991T2/en
Priority to EP19870104668 priority patent/EP0247326B1/en
Publication of JPS62231750A publication Critical patent/JPS62231750A/en
Publication of JPH0515383B2 publication Critical patent/JPH0515383B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

 産業䞊の利甚分野 本発明は柔軟で、耐衝撃性に優れ、耐気䜓透過
性を備えた積局䜓に関する。  埓来の技術 ゚チレン−ビニルアルコヌル共重合䜓以䞋
EVOHの蚘すは、耐気䜓透過性、耐油性、耐
溶剀性、保銙性等に優れた溶融成圢可胜な熱可塑
性暹脂ずしお広く知られ、皮々の包装分野でフむ
ルム、シヌト、容噚等に甚いられ、特に他の熱可
塑性暹脂ずの積局䜓ずしお広く甚いられおいる。
しかしながら、EVOHは硬くお脆く柔軟性に欠
ける欠点を有しおおり、EVOH局を有する積局
包装材に察する、䟋えば茞送による匷床の振動、
屈曲疲劎等で、EVOH局にクラツク、ピンホヌ
ルを生じ優れた耐気䜓透過性を保持するこずがで
きない。 たたEVOHを他の熱可塑性暹脂ず共抌出など
により積局し、これを延䌞成圢する堎合、
EVOH局にクラツクや延䌞ムラが生じるずいう
欠点がある。  発明が解決しようずする問題点 本発明は柔軟で、耐衝撃に優れ、耐気䜓透過性
を備えた、しかもクラツクや延䌞ムラのない積局
䜓を提䟛しようずするものである。  問題点を解決するための手段 本発明者らは鋭意怜蚎した結果、ポリ゚ヌテル
成分がEVOHの枝ポリマヌずしおグラフト状に
付加しおいるEVOH系ポリマヌの局ず、他の熱
可塑性暹脂の局ずの少なくずも二局を含む積局䜓
を甚いるこずにより䞊蚘目的が達成されるこずを
芋出し、本発明を完成させるに至぀た。  発明の䜜甚効果 本発明による積局䜓は、耐気䜓透過性、耐油
性、耐溶剀性、保銙性に優れ、EVOH局を有す
る積局䜓にくらべお、耐衝撃性、耐屈曲疲劎性が
飛躍的に向䞊し、さらにクラツクや延䌞ムラが生
じない。したが぀お各皮包装分野、特にフレキシ
ブル積局包装材ずしお極めお有甚である。  発明のより詳现な説明 本発明に䜿甚されるEVOHぱチレン含量20
〜60モル、奜適には25〜55モル、酢酞ビニル
成分のけん化床95、奜適には98以䞊である。
゚チレン含量が20モル以䞋では成圢性が悪化す
るばかりでなく、高湿床䞋での耐気䜓透過性が悪
化する。゚チレン含量が60モル以䞊になるず耐
気䜓透過性が倧きく悪化する。たたけん化床が95
未満では柔軟性が増すものの耐気䜓透過性が悪
化し奜たしくない。たたEVOHの特性を損わな
い範囲で、共重合可胜な他の䞍飜和単量䜓を含ん
でも䜕ら差し぀かえはない。なおここで゚チレン
含量20〜60モルずはポリ゚ヌテル成分を陀いた
EVOH䞭に占める゚チレンの含有量を瀺す。 本発明に䜿甚されるポリ゚ヌテルは、オキシ゚
チレン単䜍、オキシプロピレン単䜍、オキシ゚チ
レン−オキシプロピレン単䜍、オキシテトラメチ
レン単䜍等のオキシアルキレン単䜍を䞻䜓ずしお
構成されるものがあげられるが、特にオキシプロ
ピレン単䜍を䞻䜓ずするものが奜適である。ポリ
゚ヌテルの分子䞭にはそれ以倖の単䜍、あるいは
基、䟋えば、ポリメチレン単䜍、アミド基、りレ
タン基、゚ステル基、プニル基等を含有しおも
よい。 本発明におけるEVOH系ポリマヌのEVOH成
分ずポリ゚ヌテル成分の重量比によ぀お、その性
質は倧きく倉化する。柔軟性、耐衝撃性の付䞎か
ら、ポリ゚ヌテル成分は重量以䞊、奜たしく
は重量以䞊必芁であり、䞀方耐気䜓透過性の
面からポリ゚ヌテル成分は50重量以䞋、奜たし
くは20重量以䞋である。 ポリ゚ヌテルをEVOHの枝ポリマヌずしグラ
フト状に付加するには、いく぀かの方法が考えら
れる。䟋えば末端に重合性の二重結合を有するポ
リ゚ヌテルの存圚䞋に酢酞ビニル、゚チレンを共
重合し、これをけん化する方法によ぀お埗られ
る。 ここで末端に重合性の二重結合を有するポリ゚
ヌテルずは、䞀般匏 〔ただし、は氎玠たたはメチル基、R1、R2は
氎玠たたは炭玠数〜10のアルキル基、R3は氎
玠、炭玠数〜10のアルキル基、アルキル゚ステ
ルアルキル䞭の炭玠数〜10基、アルキルア
ミドアルキル䞭の炭玠数〜10基等を瀺し、
は〜100の敎数を瀺す。〕で瀺されるメタ
アリル゚ヌテル型のもの䟋ポリオキシ゚チレ
ンメタアリル゚ヌテル、ポリオキシプロピレ
ンメタアリル゚ヌテル等、あるいは、䞀般
匏 〔ただし、、R1、R2、R3は前蚘ず同様〕で瀺
されるメタアリル゚ヌテル型のもの、あるい
は䞀般匏 〔ただし、R4は氎玠、炭玠数〜10のアルキル
基たたは
A. Industrial Application Field The present invention relates to a laminate that is flexible, has excellent impact resistance, and is resistant to gas permeation. B. Prior art Ethylene-vinyl alcohol copolymer (hereinafter referred to as
EVOH) is widely known as a melt-moldable thermoplastic resin with excellent gas permeability, oil resistance, solvent resistance, and fragrance retention, and is used in various packaging fields for films, sheets, containers, etc. It is widely used, especially as a laminate with other thermoplastic resins.
However, EVOH has the drawbacks of being hard, brittle, and lacking in flexibility, and it is difficult for laminated packaging materials with an EVOH layer to undergo strong vibrations due to transportation, for example.
Due to bending fatigue, etc., cracks and pinholes occur in the EVOH layer, making it impossible to maintain excellent gas permeability. In addition, when EVOH is laminated with other thermoplastic resins by coextrusion etc. and then stretch-molded,
The disadvantage is that cracks and uneven stretching occur in the EVOH layer. C Problems to be Solved by the Invention The present invention aims to provide a laminate that is flexible, has excellent impact resistance, and gas permeation resistance, and is free from cracks and stretching unevenness. D Means for Solving the Problems As a result of intensive studies, the inventors found that a layer of EVOH polymer in which a polyether component is added as a grafted EVOH branch polymer, and a layer of other thermoplastic resin. The inventors have discovered that the above object can be achieved by using a laminate containing at least two layers of the following, and have completed the present invention. E Effects of the Invention The laminate according to the present invention has excellent gas permeability, oil resistance, solvent resistance, and fragrance retention, and has significantly higher impact resistance and bending fatigue resistance than a laminate having an EVOH layer. In addition, cracks and uneven stretching do not occur. Therefore, it is extremely useful in various packaging fields, especially as a flexible laminated packaging material. F. More detailed description of the invention The EVOH used in the invention has an ethylene content of 20
~60 mol%, preferably 25-55 mol%, and the degree of saponification of the vinyl acetate component is 95%, preferably 98% or more.
If the ethylene content is less than 20 mol%, not only the moldability deteriorates, but also the gas permeability under high humidity conditions deteriorates. When the ethylene content exceeds 60 mol%, the gas permeability resistance deteriorates significantly. Also, the saponification degree is 95
If it is less than %, the flexibility will increase, but the gas permeability will deteriorate, which is not preferable. Further, there is no problem in including other copolymerizable unsaturated monomers as long as the characteristics of EVOH are not impaired. Note that the ethylene content of 20 to 60 mol% means excluding the polyether component.
Shows the ethylene content in EVOH. The polyether used in the present invention includes those mainly composed of oxyalkylene units such as oxyethylene units, oxypropylene units, oxyethylene-oxypropylene units, and oxytetramethylene units, but especially oxypropylene units. It is preferable that the main component is The polyether molecule may contain other units or groups such as polymethylene units, amide groups, urethane groups, ester groups, and phenyl groups. The properties of the EVOH-based polymer in the present invention vary greatly depending on the weight ratio of the EVOH component to the polyether component. In order to impart flexibility and impact resistance, the polyether component is required to be at least 2% by weight, preferably at least 5% by weight, while in terms of gas permeation resistance, the polyether component is at most 50% by weight, preferably 20% by weight. % or less. Several methods can be considered to add polyether as a branched polymer of EVOH in the form of a graft. For example, it can be obtained by copolymerizing vinyl acetate and ethylene in the presence of a polyether having a polymerizable double bond at the end, and saponifying the copolymer. Here, the polyether having a polymerizable double bond at the terminal has the general formula [However, R is hydrogen or a methyl group, R 1 and R 2 are hydrogen or an alkyl group having 1 to 10 carbon atoms, R 3 is hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkyl ester (alkyl having 1 to 10 carbon atoms) ~10) group, alkylamido group (1 to 10 carbon atoms in alkyl) group, etc.
n represents an integer from 1 to 100. ] (meta)
Allyl ether type (e.g. polyoxyethylene (meth)allyl ether, polyoxypropylene (meth)allyl ether, etc.) or general formula [However, R, R 1 , R 2 and R 3 are the same as above] or the (meth)allyl ether type, or the general formula [However, R 4 is hydrogen, an alkyl group having 1 to 10 carbon atoms, or

【匏】は炭玠数〜 10のアルキレン基、眮換アルキレン基、プニレ
ン基、眮換プニレン基、はたたは以䞊の
敎数をそれぞれ瀺す。R1、R2、R3は前蚘ず同
様。〕で瀺される片末端に二重結合を有するメ
タアクリルアミド型のもの䟋ポリオキシ゚
チレンメタアクリル酞アミド、ポリオキシプ
ロピレンメタアクリル酞アミド等、あるい
は䞀般匏 〔ただし、、R1、R2、R3、、、は前蚘
ず同様〕で瀺されるメタアクリル酞゚ステル
型のもの䟋ポリオキシ゚チレンメタアク
リレヌト、ポリオキシプロピレンメタアクリ
レヌト等、あるいは䞀般匏 〔ただし、、R1、R2、R3、、、は前蚘
ず同様〕で瀺されるビニル゚ヌテル型のもの
䟋ポリオキシ゚チレンビニル゚ヌテル、ポリ
オキシプロピレンビニル゚ヌテル等である。 このようにしお埗られるEVOH系ポリマヌの
メルトむンデツクスMIは0.1〜5010分、
奜たしくは0.3〜2510分に調節される。
ASTM −1238−65Tにより190℃枬定MIの
調節はEVOH成分、ポリ゚ヌテル成分の重合床、
EVOH成分ずポリ゚ヌテル成分の重量比によ぀
お行われる。かくしお埗られたEVOH系ポリマ
ヌは通垞のEVOHず比范しお、ダング率が2/3〜
、衝撃匷床が〜50倍になり、柔軟か぀耐衝
撃性に優れおおり、又通垞のEVOHず同様に熱
溶融成圢が可胜である。このEVOH系ポリマヌ
ず積局するために甚いられる熱可塑性暹脂ずしお
は、ポリプロピレン、ポリ゚チレン分岐状たた
は盎鎖状、゚チ゚ン−プロピレン共重合䜓、゚
チレン−酢酞ビニル共重合䜓、熱可塑性ポリ゚ス
テル、ポリアミド、ポリスチレン、ポリカヌボネ
ヌト、ポリ塩化ビニル等があげられるが、このう
ち盎鎖状ポリ゚チレン、ポリプロピレン、゚チレ
ン−プロピレン共重合䜓、熱可塑性ポリ゚ステ
ル、ポリスチレンが特に奜適である。 積局䜓は二局あるいは䞉局あるいはそれ以䞊の
倚局構造ずするこずができるが、䞉局以䞊ずする
堎合はEVOH局を䞭間局ずしお䜿甚するこずが
倚い。 積局䜓を埗るための成圢方法は、共抌出、共射
出、あるいは抌出ラミネヌト、コヌテむング等公
知の方法が甚いられるが、ずくに共抌出法が奜適
である。 積局䜓を埗る堎合には各局間に接着性暹脂を介
するのがよく、該接着性暹脂ずしおはずくに制限
はないが、ポリ゚チレン、゚チレン−酢酞ビニル
共重合䜓、ポリプロピレンたたぱチレン−アク
リル酞゚ステルメチル゚ステル、゚チル゚ステ
ルなど共重合䜓などを゚チレン性䞍飜和カルボ
ン酞奜適には無氎マレむン酞によりグラフト
たたは付加倉性したもの、あるいはこれらの倉性
物ず未倉性物ずの混合物が奜適に䜿甚される。 このようにしお成圢された積局䜓は、埓来の
EVOHを甚いた積局䜓ず比范しお、そのEVOH
局の柔軟性、耐衝撃性の向䞊により、フレキシブ
ルな積局包装材ずしお極めお有甚であり、茞送䞭
に生ずる匷床の振動、屈曲疲劎、萜䞋の衝撃、摩
擊による疲劎等に極めお優れた性胜を瀺す。これ
らの性胜は䜎枩床になるこずにより曎に有効に発
揮される。 次に実斜䟋をあげお本発明を曎に詳しく説明す
るが、これらの実斜䟋は本発明を䜕ら限定するも
のではない。  実斜䟋 実斜䟋  容量50で内郚に冷华甚コむルをも぀撹拌機付
き重合槜に、酢酞ビニル13.7Kg、片末端に重合性
の二重結合をも぀分子量1500のポリオキシプロピ
レンアリル゚ヌテル日本油脂(æ ª)補ナニセヌフ
PKA−50140.70Kg、メタノヌル1.0Kgおよび重
合開始剀2′−アゟヒスむ゜ブチロニトリル11
を仕蟌み、゚チレン圧力を40Kgcm2ずし、60℃
で時間共重合を実斜した。酢酞ビニルの重合率
は40であ぀た。次に該共重合反応液を远出塔に
䟛絊し、塔䞋郚からのメタノヌルの導入により、
未反応酢酞ビニルを塔頂から陀去した埌、垞法に
より氎酞化ナトリりムを觊媒ずしおけん化反応を
実斜した。぀いで十分にメタノヌル掗浄および氎
掗浄をした埌、垌薄酢酞氎溶液䞭で浞挬凊理しお
から60〜105℃で也燥した。かくしお埗られた
EVOH系共重合䜓は、ポリオキシプロピレンが、
EVOHの枝ポリマヌずしおグラフト状に付加し
おおり、その組成はNMRで分析した結果、゚チ
レン含量31.9モル、ポリオキシプロピレン含量
7.2重量、酢酞ビニル成分のけん化床99.4で
あ぀た。たた、190℃、2160荷重の条件䞋、
ASTM −1238−65Tの方法で枬定したMIは
1.310分であ぀た。 次に、該共重合䜓単品のダング率、衝撃匷床、
および該共重合䜓を䞭間局に配した積局フむルム
の耐屈曲疲劎性および酞玠透過量を枬定した。ダ
ング率は、該共重合䜓を抌出機ずダむを有する
補膜機を甚い、抌出機枩床180〜220℃、ダむ枩
床225℃の条件で抌出補膜したフむルムを20℃65
RHの条件䞋、日間調湿したものを詊料ず
し、ASTM −638に準じお、オヌトグラフに
より、匕匵速床200分の条件で枬定した。 衝撃匷床アむゟツト衝撃匷床ノツチ付き
は、該共重合䜓を暙準鋳型䞭で220℃で加圧成圢
した成圢物2.5in×2in×8inを詊料ず
し、ASTM −256に準じお、枩床を倉え、65
RHの条件で枬定した。 耐屈曲性および酞玠透過量は、次の方法で補膜
した皮局の積局フむルム内局接着剀局
䞭間局接着剀局倖局を詊料ずしお枬定し
た。補膜機は内倖局甚抌出機、䞭間局甚抌出機、
接着剀局甚抌出機各基ず局甚ダむずからな
り、成圢枩床は内倖局甚抌出機160〜220℃、䞭間
局甚抌出機180〜220℃、接着剀局甚抌出機120〜
220℃、ダむ225℃であ぀た。䞭間局は前蚘ポリ
オキシプロピレンがグラフト状に付加した
EVOH系共重合䜓、内倖局は−メチル−−
ペンテンを共重合成分ずし、該共重合成分を3.2
モルを含む、MI2.110分の盎鎖状䜎密床ポ
リ゚チレン、接着剀局は酢酞ビニル含量33重量
、無氎マレむン酞倉性床1.5重量の倉性゚チ
レン−酢酞ビニル共重合䜓MI2.010分で
ある。該積局フむルムの厚み構成は、䞭間局
12Ό、内倖局各30Ό、接着剀局各5Όであ぀た。 耐屈曲疲劎性の詊隓は、ゲルボフレツクステス
タヌ理孊工業(æ ª)補を䜿甚し、12in×8inの詊
料片を盎埄 1/2inの円筒状ずなし、䞡端を把持
し、初期把持間隔7in、最倧屈曲時の把持間隔
1in、ストロヌクの最初の 1/2inで440°の角床
のひねりを加え、その埌の 1/2inは盎線氎平動
である動䜜のくり返し埀埩動を40回分の速さ
で、20℃、65RHの条件䞋に実斜した。 酞玠ガス透過量の枬定は、Modern Control瀟
補OX−TRAN100を䜿甚し、20℃、65RHおよ
び20℃、85RHの条件䞋、日間調湿埌に実斜
した。該枬定に䟛した詊料は、前蚘耐屈曲疲劎性
の詊隓においおくり返し埀埩動の回数を皮々倉え
た詊料である。 ピンホヌル数の枬定は、吞取玙の䞊に詊料を重
ね、その䞊に染料赀色を塗り、ロヌラヌでこ
す぀たあず、詊料をはがし、吞取玙䞊の着色個数
を調べるこずにより、行なわれた。 これらの枬定結果を第衚、第衚に瀺す。 察照䟋  実斜䟋においお、゚チレン含量31.9モル、
ポリオキシプロピレン含量7.2重量、酢酞ビニ
ル成分のけん化床99.4、MI1.310分の
EVOH系共重合䜓に代えお、゚チレン含量32.0モ
ル、酢酞ビニル成分のけん化床99.4、MI1.3
10分のEVOHを甚いたほかは、同䟋ず同様
にしお、評䟡した結果を第衚、第衚に瀺す。
[Formula] X represents an alkylene group having 1 to 10 carbon atoms, a substituted alkylene group, a phenylene group, or a substituted phenylene group, and m represents an integer of 0 or 1 or more. R 1 , R 2 and R 3 are the same as above. ] A (meth)acrylamide type having a double bond at one end (e.g. polyoxyethylene (meth)acrylamide, polyoxypropylene (meth)acrylamide, etc.), or a general formula [However, R, R 1 , R 2 , R 3 , X, m, and n are the same as above] The (meth)acrylic acid ester type (e.g. polyoxyethylene (meth)acrylate, polyoxypropylene (meth)acrylate, etc.) or general formula [However, R, R 1 , R 2 , R 3 , X, m, and n are the same as above] of vinyl ether type (eg, polyoxyethylene vinyl ether, polyoxypropylene vinyl ether, etc.). The melt index (MI) of the EVOH polymer obtained in this way is 0.1 to 50 g/10 min.
Preferably it is adjusted to 0.3 to 25 g/10 minutes.
(Measured at 190℃ using ASTM D-1238-65T) MI can be adjusted by adjusting the degree of polymerization of the EVOH component and polyether component.
This is done by adjusting the weight ratio of the EVOH component and the polyether component. The EVOH polymer obtained in this way has a Young's modulus of 2/3 to 2/3 that of normal EVOH.
1/10, impact strength is 2 to 50 times higher, has excellent flexibility and impact resistance, and can be hot-melted and molded like normal EVOH. Thermoplastic resins used for lamination with this EVOH polymer include polypropylene, polyethylene (branched or linear), ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, thermoplastic polyester, polyamide, Examples include polystyrene, polycarbonate, polyvinyl chloride, etc., and among these, linear polyethylene, polypropylene, ethylene-propylene copolymer, thermoplastic polyester, and polystyrene are particularly preferred. The laminate can have a multilayer structure of two layers, three layers, or more, but when it has three or more layers, an EVOH layer is often used as an intermediate layer. As a molding method for obtaining a laminate, known methods such as co-extrusion, co-injection, extrusion lamination, and coating may be used, and co-extrusion is particularly preferred. When obtaining a laminate, it is preferable to interpose an adhesive resin between each layer, and the adhesive resin is not particularly limited, but polyethylene, ethylene-vinyl acetate copolymer, polypropylene, or ethylene-acrylic acid ester (methyl esters, ethyl esters, etc.) copolymers, etc., grafted or addition-modified with ethylenically unsaturated carboxylic acids (preferably maleic anhydride), or mixtures of these modified and unmodified products are preferably used. Ru. The laminate formed in this way is different from the conventional
Compared to a laminate using EVOH, its EVOH
Due to the improved flexibility and impact resistance of the layers, it is extremely useful as a flexible laminated packaging material, and exhibits extremely excellent performance against strong vibrations that occur during transportation, bending fatigue, impact from dropping, fatigue due to friction, etc. These performances are more effectively exhibited at lower temperatures. Next, the present invention will be explained in more detail with reference to Examples, but these Examples are not intended to limit the present invention in any way. G Examples Example 1 In a polymerization tank with a capacity of 50 and equipped with a stirrer and a cooling coil inside, 13.7 kg of vinyl acetate and polyoxypropylene allyl ether (NOF) with a molecular weight of 1500 having a polymerizable double bond at one end were placed Manufactured by Unisafe Co., Ltd.
PKA-5014) 0.70Kg, methanol 1.0Kg and polymerization initiator 2,2'-Azohisisobutyronitrile 11
g, set the ethylene pressure to 40Kg/ cm2 , and heated to 60℃.
Copolymerization was carried out for 6 hours. The polymerization rate of vinyl acetate was 40%. Next, the copolymerization reaction liquid is supplied to the expulsion tower, and by introducing methanol from the bottom of the tower,
After removing unreacted vinyl acetate from the top of the column, a saponification reaction was carried out by a conventional method using sodium hydroxide as a catalyst. After thoroughly washing with methanol and water, the sample was immersed in a dilute aqueous acetic acid solution and dried at 60 to 105°C. thus obtained
EVOH copolymer is polyoxypropylene,
It is added in a graft form as a branch polymer of EVOH, and its composition was analyzed by NMR, and the ethylene content was 31.9 mol%, and the polyoxypropylene content was 31.9 mol%.
The saponification degree of the vinyl acetate component was 7.2% by weight and 99.4%. In addition, under the conditions of 190℃ and 2160g load,
MI measured using ASTM D-1238-65T method is
It was 1.3g/10 minutes. Next, the Young's modulus, impact strength, and
The bending fatigue resistance and oxygen permeation of a laminated film in which the copolymer was disposed as an intermediate layer were measured. Young's modulus is determined by extruding the copolymer into a film using a film forming machine having an extruder and a T-die under conditions of an extruder temperature of 180 to 220°C and a T-die temperature of 225°C.
A sample was subjected to humidity control for 7 days under the condition of % RH, and was measured using an autograph at a tensile rate of 200%/min according to ASTM D-638. Impact strength (Izotsu impact strength (notched))
The sample was a molded product (2.5in x 1/2in x 1/8in) obtained by pressure molding the copolymer at 220°C in a standard mold, and the temperature was varied according to ASTM D-256.
Measured under the condition of %RH. The bending resistance and oxygen permeation amount were determined by the following methods:
(intermediate layer/adhesive layer/outer layer) was measured as a sample. Film forming machines include extruders for inner and outer layers, extruders for intermediate layers,
Consists of one extruder for the adhesive layer and a T-die for five layers, and the molding temperature is 160-220℃ for the extruder for the inner and outer layers, 180-220℃ for the middle layer, and 120-220℃ for the extruder for the adhesive layer.
The temperature was 220℃ and the T-die temperature was 225℃. The intermediate layer is made of the polyoxypropylene added in a grafted manner.
EVOH copolymer, inner and outer layers are 4-methyl-1-
Pentene is used as a copolymerization component, and the copolymerization component is 3.2
The adhesive layer is a modified ethylene-vinyl acetate copolymer with a vinyl acetate content of 33% by weight and a degree of maleic anhydride modification of 1.5% by weight (MI2. 0g/10min). The thickness structure of the laminated film is as follows:
The thickness was 12Ό, the inner and outer layers each had a thickness of 30Ό, and the adhesive layer each had a thickness of 5Ό. The bending fatigue resistance test was conducted using a Gelbo Flex Tester (manufactured by Rigaku Kogyo Co., Ltd.). A 12 inch x 8 inch sample piece was shaped into a cylindrical shape with a diameter of 3 1/2 inches, gripped at both ends, and the initial grip was performed. 7in spacing, grip spacing at maximum bending
1 inch, the first 3 1/2 inch of the stroke is a twist at an angle of 440°, and the subsequent 2 1/2 inch is a linear horizontal motion. Repeated reciprocating motion at a speed of 40 times/minute, 20 degrees, It was conducted under the condition of 65% RH. The oxygen gas permeation amount was measured using OX-TRAN100 manufactured by Modern Control under the conditions of 20° C., 65% RH and 20° C., 85% RH after 7 days of humidity control. The samples used for this measurement were samples in which the number of repeated reciprocations was varied in the bending fatigue resistance test. The number of pinholes was measured by stacking the sample on blotting paper, applying dye (red) on top of it, rubbing it with a roller, peeling off the sample, and checking the number of colored spots on the blotting paper. These measurement results are shown in Tables 1 and 2. Control example 1 In Example 1, the ethylene content was 31.9 mol%,
Polyoxypropylene content 7.2% by weight, saponification degree of vinyl acetate component 99.4%, MI 1.3g/10 minutes
In place of EVOH copolymer, ethylene content 32.0 mol%, saponification degree of vinyl acetate component 99.4%, MI 1.3
The evaluation results are shown in Tables 1 and 2 in the same manner as in the same example except that EVOH of g/10 minutes was used.

【衚】【table】

【衚】 実斜䟋  実斜䟋においお、−メチル−−ペンテン
倉性盎鎖状䜎密床ポリ゚チレンに代えお、−オ
クテンを共重合成分ずし、該共重合成分を3.3モ
ル含む、MI1.610分の盎鎖状䜎密床ポリ゚
チ゚ンを内倖局に甚いたほかは同䟋ず同様にしお
積局フむルムを埗お、耐屈曲疲劎性および酞玠透
過量を枬定した。結果を第衚に瀺す。 察照䟋  実斜䟋においお、゚チレン含量32.0モル、
酢酞ビニル成分のけん化床99.4、MI1.310
分のEVOHを䞭間局に甚いたほかは、同䟋ず同
様にしお積局フむルムを埗お、耐屈曲疲劎性およ
び酞玠透過量を枬定した。結果を第衚に瀺す。
[Table] Example 2 In Example 1, 1-octene was used as a copolymerization component instead of 4-methyl-1-pentene-modified linear low-density polyethylene, and MI1. A laminated film was obtained in the same manner as in the same example except that linear low-density polyethylene of 6 g/10 min was used for the inner and outer layers, and its bending fatigue resistance and oxygen permeation were measured. The results are shown in Table 3. Control example 2 In Example 2, the ethylene content was 32.0 mol%,
Saponification degree of vinyl acetate component: 99.4%, MI1.3g/10
A laminated film was obtained in the same manner as in the same example except that EVOH of 100% was used for the intermediate layer, and its bending fatigue resistance and oxygen permeation were measured. The results are shown in Table 3.

【衚】 実斜䟋  実斜䟋ず同様の方法で、酢酞ビニル、䞡末端
に重合性の二重結合をも぀分子量3000のポリオキ
シプロピレンアリル゚ヌテル日本油脂(æ ª)補ナニ
セヌフPKA−5018および゚チレンを共重合し、
぀いで未反応酢酞ビニルの陀去、けん化、掗浄、
也燥を行い、ポリオキシプロピレンがEVOHの
枝ポリマヌずしおグラフト状に付加した共重合䜓
を埗た。該共重合䜓の組成は、NMRで分析した
結果、゚チレン含量38.0モル、ポリオキシプロ
ピレン含量12.2重量、酢酞ビニル成分のけん化
床99.6であ぀た。たた、該共重合䜓のMIは2.1
10分であ぀た。 次に、実斜䟋ず同様にしお該共重合䜓単品の
ダング率、アむゟツト衝撃匷床ノツチ付きを
枬定するずずもに、䞭間局を該共重合䜓ずしたほ
かは実斜䟋ず同䞀構成の積局フむルムを補膜し
お、その耐屈曲疲劎性および酞玠透過量を枬定し
た。結果を第衚および第衚に瀺す。 察照䟋  実斜䟋においお、゚チレン含量38.0モル、
ポリオキシプロピレン含量12.2重量、酢酞ビニ
ル成分のけん化床99.6、MI2.110分の
EVOH系共重合䜓に代えお、゚チレン含量38.2モ
ル、酢酞ビニル成分のけん化床99.5、MI1.7
10分のEVOHを甚いたほかは同䟋ず同様に
しお評䟡した結果を第衚および第衚に瀺す。
[Table] Example 3 In the same manner as in Example 1, vinyl acetate, polyoxypropylene allyl ether with a molecular weight of 3000 having polymerizable double bonds at both ends (Unisafe PKA-5018 manufactured by NOF Corporation), and Copolymerize ethylene,
Next, unreacted vinyl acetate is removed, saponified, washed,
After drying, a copolymer in which polyoxypropylene was added as a grafted EVOH branch polymer was obtained. As a result of NMR analysis, the composition of the copolymer was found to have an ethylene content of 38.0 mol%, a polyoxypropylene content of 12.2% by weight, and a degree of saponification of the vinyl acetate component of 99.6%. In addition, the MI of the copolymer is 2.1
g/10 minutes. Next, the Young's modulus and Izod impact strength (notched) of the single copolymer were measured in the same manner as in Example 1, and a laminate having the same structure as in Example 1 except that the interlayer was made of the copolymer. A film was formed, and its bending fatigue resistance and oxygen permeation were measured. The results are shown in Tables 4 and 5. Control example 3 In Example 3, the ethylene content was 38.0 mol%,
Polyoxypropylene content 12.2% by weight, saponification degree of vinyl acetate component 99.6%, MI 2.1g/10 minutes
In place of EVOH copolymer, ethylene content 38.2 mol%, saponification degree of vinyl acetate component 99.5%, MI 1.7
Tables 4 and 5 show the results of evaluation in the same manner as in the same example except that EVOH of g/10 minutes was used.

【衚】【table】

【衚】【table】

【衚】 実斜䟋  実斜䟋ず同様の方法で酢酞ビニル、片末端に
重合性の二重結合をも぀分子量2300のポリオキシ
テトラメチレンおよび゚チレンを共重合し、぀い
でけん化、掗浄、也燥しお、ポリオキシテトラメ
チレンがEVOHの枝ポリマヌずしおグラフト状
に付加した共重合䜓を埗た。該共重合䜓の組成
は、NMRで枬定した結果、゚チレン含量44.5モ
ル、ポリオキシテトラメチレン含量9.8重量、
酢酞ビニル成分のけん化床99.3であ぀た。たた
該共重合䜓のMIは5.110分であ぀た。 次に、実斜䟋ず同様にしお該共重合䜓単品の
ダング率、アむゟツト衝撃匷床ノツチ付きを
枬定するずずもに、䞭間局を該共重合䜓ずしたほ
かは実斜䟋ず同䞀構成の積局フむルムを補膜し
お、その耐屈曲疲劎性および酞玠透過量を枬定し
た。結果を第衚および第衚に瀺す。 察照䟋  実斜䟋においお、゚チレン含量44.5モル、
ポリオキシテトラメチレン含量9.8重量、酢酞
ビニル成分のけん化床99.3、MI5.110分の
EVOH系共重合䜓に代えお、゚チレン含量44.2モ
ル、酢酞ビニル成分のけん化床99.5、MI5.4
10分のEVOHを甚いたほかは同䟋ず同様に
評䟡した結果を第衚および第衚に瀺す。
[Table] Example 4 Vinyl acetate, polyoxytetramethylene with a molecular weight of 2300 having a polymerizable double bond at one end, and ethylene were copolymerized in the same manner as in Example 1, and then saponified, washed, and dried. , a copolymer in which polyoxytetramethylene was grafted as a branch polymer of EVOH was obtained. As a result of NMR measurement, the composition of the copolymer was as follows: ethylene content: 44.5 mol%, polyoxytetramethylene content: 9.8% by weight.
The degree of saponification of the vinyl acetate component was 99.3%. Moreover, the MI of the copolymer was 5.1 g/10 minutes. Next, the Young's modulus and Izod impact strength (notched) of the single copolymer were measured in the same manner as in Example 1, and a laminate having the same structure as in Example 1 except that the interlayer was made of the copolymer. A film was formed, and its bending fatigue resistance and oxygen permeation were measured. The results are shown in Tables 6 and 7. Control example 4 In Example 4, the ethylene content was 44.5 mol%,
Polyoxytetramethylene content 9.8% by weight, saponification degree of vinyl acetate component 99.3%, MI 5.1g/10 minutes
In place of EVOH copolymer, ethylene content 44.2 mol%, saponification degree of vinyl acetate component 99.5%, MI5.4
Tables 6 and 7 show the results of evaluation in the same manner as in the same example except that EVOH of g/10 minutes was used.

【衚】【table】

【衚】 実斜䟋  実斜䟋に瀺したポリオキシプロピレンが
EVOHの枝ポリマヌずしおグラフト状に付加し
たEVOH系共重合䜓を䞭間局ずする積局シヌト
を同䟋ず同様にしお成圢した。ただし、内倖局は
ポリプロピレン䞉菱油化補䞉菱ノヌブレンMA
−であり、接着剀局は無氎マレむン酞倉性ポ
リプロピレン䞉井石油化孊補アドマヌQF500
である。次に該積局シヌトを固盞圧空成圢法によ
぀おシヌト衚面枩床が145℃ずなる条件で、内埄
が100mm、深さが200mm絞り比、
肉厚が0.5mmで内容積1.6の円筒状カツプを埗
た。倖局接着剀局䞭間局接着剀局内局の
厚み比は452.52.545であ぀た。該カツ
プの性質を第衚に瀺す。 察照䟋  実斜䟋においお、䞭間局ずしおポリオキシプ
ロピレンがEVOHの枝ポリマヌずしおグラフト
状に付加したEVOH系共重合䜓に代えお、察照
䟋に瀺したEVOHを甚いたほかは、実斜䟋
ず同様にしお円筒状カツプを成圢した。該カツプ
の性質を第衚に瀺す。
[Table] Example 5 The polyoxypropylene shown in Example 1
A laminated sheet having an intermediate layer of an EVOH copolymer grafted as a branch polymer of EVOH was molded in the same manner as in the same example. However, the inner and outer layers are polypropylene (Mitsubishi Noblen MA manufactured by Mitsubishi Yuka)
-6), and the adhesive layer is maleic anhydride-modified polypropylene (Mitsui Petrochemical Admer QF500).
It is. Next, the laminated sheet was subjected to solid-state air forming under conditions such that the sheet surface temperature was 145°C, the inner diameter D was 100 mm, the depth L was 200 mm (drawing ratio L/D = 2),
A cylindrical cup with a wall thickness of 0.5 mm and an internal volume of 1.6 was obtained. The thickness ratio of outer layer: adhesive layer: intermediate layer: adhesive layer: inner layer was 45:2.5:5:2.5:45. The properties of the cup are shown in Table 8. Comparative Example 5 In Example 5, the EVOH shown in Comparative Example 1 was used instead of the EVOH copolymer in which polyoxypropylene was grafted as a branch polymer of EVOH as the intermediate layer.
A cylindrical cup was formed in the same manner as above. The properties of the cup are shown in Table 8.

【衚】【table】

【衚】 〓
〓× 延䌞むらが非垞に倚い。
[Table] 〓
〓× There is a lot of uneven stretching.

Claims (1)

【特蚱請求の範囲】  ポリ゚ヌテル成分が゚チレン−ビニルアルコ
ヌル共重合䜓の枝ポリマヌずしおグラフト状に付
加しおいる゚チレン−ビニルアルコヌル系共重合
䜓の局ず、他の熱可塑性暹脂の局ずの少なくずも
二局を含む耐気䜓透過性の優れた積局䜓。  ゚チレン−ビニルアルコヌル共重合䜓の゚チ
レン含量が20〜60モルである特蚱請求の範囲第
項蚘茉の積局䜓。  ポリ゚ヌテル成分がオキシプロピレン単䜍か
ら構成される特蚱請求の範囲第項蚘茉の積局
䜓。
[Scope of Claims] 1. A layer of an ethylene-vinyl alcohol copolymer to which a polyether component is added in the form of a graft as a branch polymer of an ethylene-vinyl alcohol copolymer, and a layer of another thermoplastic resin. A laminate with excellent gas permeation resistance that includes at least two layers. 2. The laminate according to claim 1, wherein the ethylene content of the ethylene-vinyl alcohol copolymer is 20 to 60 mol%. 3. The laminate according to claim 1, wherein the polyether component is composed of oxypropylene units.
JP7493786A 1986-03-31 1986-03-31 Laminate Granted JPS62231750A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP7493786A JPS62231750A (en) 1986-03-31 1986-03-31 Laminate
US07/027,862 US4824904A (en) 1986-03-31 1987-03-19 Resin compositions, laminates and block copolymers
CA000533070A CA1272822A (en) 1986-03-31 1987-03-26 Resin compositions, laminates and block copolymers
DK160687A DK160687A (en) 1986-03-31 1987-03-30 RESIN COMPOSITIONS, LAMINATES AND BLOCK COPOLYMERS.
AU70751/87A AU599363C (en) 1986-03-31 1987-03-30 Resin compositions, laminates and block copolymers
DE19873789991 DE3789991T2 (en) 1986-03-31 1987-03-30 Resin compositions, composites and block copolymers as a component thereof.
EP19870104668 EP0247326B1 (en) 1986-03-31 1987-03-30 Resin compositions, laminates and block copolymers as components thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7493786A JPS62231750A (en) 1986-03-31 1986-03-31 Laminate

Publications (2)

Publication Number Publication Date
JPS62231750A JPS62231750A (en) 1987-10-12
JPH0515383B2 true JPH0515383B2 (en) 1993-03-01

Family

ID=13561760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7493786A Granted JPS62231750A (en) 1986-03-31 1986-03-31 Laminate

Country Status (1)

Country Link
JP (1) JPS62231750A (en)

Also Published As

Publication number Publication date
JPS62231750A (en) 1987-10-12

Similar Documents

Publication Publication Date Title
EP0380123B1 (en) Blends of ethylene vinyl alcohol copolymer and amorphous polyamide, and multilayer containers made therefrom
US4576988A (en) Saponified products of silicon-containing ethylene-vinyl acetate copolymer as melt molding materials
KR960008304B1 (en) Laminar articles of a polyolefin and a nylon/pilyvinyl alcohol bland and method of manufacturing the same
JPH05220911A (en) Multilayer plastic tubing
US5240525A (en) Method of fabricating a multilayer barrier packaging material
US4824904A (en) Resin compositions, laminates and block copolymers
JPS6211644A (en) Laminate having excellent gas permeability resistance
US5114795A (en) Multilayered high barrier packaging materials method for the preparation thereof
US20080268254A1 (en) Multilayered structures
JPS5949191B2 (en) resin laminate
JP2613198B2 (en) Melt molding material
JP2721542B2 (en) Ethylene-vinyl alcohol random copolymer, molded product and laminate
JP3850893B2 (en) Laminated structure
JPH0515383B2 (en)
JPH02235741A (en) Laminate and preparation thereof
JPH0515382B2 (en)
JPH07224202A (en) Resin composition
JPH0713172B2 (en) Resin composition
JPS6346202A (en) Block copolymer
JP2509769B2 (en) Multilayer stack
JP2836938B2 (en) Resin composition and laminate
JP2509768B2 (en) Multilayer stack
JPH04110336A (en) Resin composition and multilayer structure prepared by using same
JPH06145267A (en) Polyolefin mixture containing reactive low-molecular compound and its production
JP3109813B2 (en) Polyvinyl alcohol resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees