JPH05152328A - Manufacturing method of thin film transistor - Google Patents

Manufacturing method of thin film transistor

Info

Publication number
JPH05152328A
JPH05152328A JP33801491A JP33801491A JPH05152328A JP H05152328 A JPH05152328 A JP H05152328A JP 33801491 A JP33801491 A JP 33801491A JP 33801491 A JP33801491 A JP 33801491A JP H05152328 A JPH05152328 A JP H05152328A
Authority
JP
Japan
Prior art keywords
insulating film
gate insulating
thin film
film
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33801491A
Other languages
Japanese (ja)
Other versions
JP3131850B2 (en
Inventor
Hiroshi Matsumoto
広 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP03338014A priority Critical patent/JP3131850B2/en
Publication of JPH05152328A publication Critical patent/JPH05152328A/en
Application granted granted Critical
Publication of JP3131850B2 publication Critical patent/JP3131850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To implant the thin film with impurities with low accelerating energy in the manufacturing process of selfalignment type thin film transistor. CONSTITUTION:Semiconductor thin films 2 are pattern-formed on the surface of an insulating substrate 1, a lower layer gate insulating film 3 about 200Angstrom thick comprising silicon oxide is deposited on the whole surface and then an upper layer gate insulating film 4 comprising silicon nitride about 1600Angstrom thick is deposited on the whole surface so as to pattern-form a gate electrode 5 on a specific position on the surface of the upper layer insulating film 4. Next, the upper layer gate insulating film 4 is etched away using the gate electrode 5 as a mask and then the semiconductor thin films 2 are implanted with impurities (a) by-an ion implanting device also using the gate electrode 5 as a mask. At this time, the lower layer gate insulating film 3 only about 200Angstrom thick is formed on the surface of the impurity implanted regions (source-drain regions 2b) so that when phosphorus ions are implanted as the impurities, the semiconductor thin films 2 may be implanted with the impurities with low accelerating energy of about 30KeV.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は薄膜トランジスタの製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor.

【0002】[0002]

【従来の技術】セルフアライメント型の薄膜トランジス
タを製造する場合、ポリシリコン等からなる半導体薄膜
上にゲート絶縁膜を形成し、該ゲート絶縁膜上にゲート
電極を形成し、該ゲート電極をマスクとしてイオン注入
装置により半導体薄膜に不純物を注入し、これによりゲ
ート電極に対応する部分における半導体薄膜の中央部を
チャネル領域とし、その両側を不純物領域からなるソー
ス・ドレイン領域としている。
2. Description of the Related Art When manufacturing a self-alignment type thin film transistor, a gate insulating film is formed on a semiconductor thin film made of polysilicon or the like, a gate electrode is formed on the gate insulating film, and the gate electrode is used as a mask for ion implantation. Impurities are implanted into the semiconductor thin film by an implanting device, whereby the central portion of the semiconductor thin film in the portion corresponding to the gate electrode is used as a channel region, and both sides thereof are source / drain regions formed of impurity regions.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
このような薄膜トランジスタでは、半導体薄膜上に形成
されたゲート絶縁膜を介して不純物を注入することにな
るので、ゲート絶縁膜が例えば膜厚1000Å程度の酸
化シリコン膜によって形成されている場合、ゲート絶縁
膜の膜厚が比較的厚く、このため半導体薄膜に不純物の
濃度プロファイルのピークを位置させるには、イオン注
入の加速エネルギが高くなり、ひいてはイオン注入装置
のコストが高くなり、またデバイスにダメージを与える
ことがあるという問題があった。なお、ゲート絶縁膜が
酸化シリコン膜の単層からなっていると絶縁耐圧が低い
ので、絶縁耐圧を高くするために、ゲート絶縁膜を酸化
シリコン膜と窒化シリコン膜の二層構造または窒化シリ
コンの単層構造とすると、酸化シリコン膜の単層からな
るものに対応する静電容量を有するようにするには、ゲ
ート絶縁膜の膜厚を1.5〜2倍程度と厚くする必要が
ある。例えば、ゲート絶縁膜を酸化シリコン膜と窒化シ
リコン膜の二層構造とする場合、酸化シリコン膜の膜厚
を200Å程度とし、窒化シリコン膜の膜厚を1600
Å程度として、合計1800Å程度とすると、膜厚10
00Å程度の酸化シリコン膜の単層からなるものに対応
する静電容量を有するようにすることができる。しかし
ながら、この場合、ゲート絶縁膜の膜厚がさらに厚くな
り、不純物としてリンイオンを注入するとすると、加速
エネルギが200keV以上とかなり高くなり、ひいて
はイオン注入装置のコストがらり一層高くなり、またデ
バイスに与えるダメージも大きくなってしまう。この発
明の目的は、不純物を低加速エネルギで注入することの
できる薄膜トランジスタの製造方法を提供することにあ
る。
However, in such a conventional thin film transistor, since impurities are implanted through the gate insulating film formed on the semiconductor thin film, the gate insulating film has a film thickness of, for example, about 1000 Å. When the gate insulating film is relatively thick, the acceleration energy of ion implantation is high to locate the peak of the impurity concentration profile in the semiconductor thin film. There is a problem that the cost of the injection device becomes high and the device may be damaged. Since the withstand voltage is low when the gate insulating film is composed of a single layer of a silicon oxide film, the gate insulating film has a two-layer structure of a silicon oxide film and a silicon nitride film or a silicon nitride film in order to increase the withstand voltage. In the case of a single-layer structure, in order to have a capacitance corresponding to that of a single layer of a silicon oxide film, the thickness of the gate insulating film needs to be increased to about 1.5 to 2 times. For example, when the gate insulating film has a two-layer structure of a silicon oxide film and a silicon nitride film, the thickness of the silicon oxide film is about 200Å and the thickness of the silicon nitride film is 1600.
If the total is about 1800Å, the film thickness is 10
It is possible to have a capacitance corresponding to a single layer of a silicon oxide film of about 00Å. However, in this case, when the gate insulating film becomes thicker and phosphorus ions are implanted as impurities, the acceleration energy becomes considerably high, 200 keV or more, and the cost of the ion implanter becomes higher, and damage to the device is damaged. Will also grow. An object of the present invention is to provide a method of manufacturing a thin film transistor that can implant impurities with low acceleration energy.

【0004】[0004]

【課題を解決するための手段】この発明は、半導体薄膜
上にゲート絶縁膜を形成し、該ゲート絶縁膜上にゲート
電極を形成し、該ゲート電極をマスクとして前記ゲート
絶縁膜をその厚さ方向の途中までエッチングして除去
し、この状態で前記ゲート電極をマスクとしてイオン注
入装置により前記半導体薄膜に不純物を注入するように
したものである。
According to the present invention, a gate insulating film is formed on a semiconductor thin film, a gate electrode is formed on the gate insulating film, and the gate insulating film has a thickness The semiconductor thin film is removed by etching halfway in the direction, and in this state, impurities are implanted into the semiconductor thin film by an ion implantation device using the gate electrode as a mask.

【0005】[0005]

【作用】この発明によれば、ゲート絶縁膜をその厚さ方
向の途中までエッチングして除去した状態で、ゲート電
極をマスクとしてイオン注入装置により半導体薄膜に不
純物を注入することになるので、ゲート絶縁膜の膜厚が
所期の膜厚よりも薄い状態で不純物を注入することとな
り、したがって不純物を低加速エネルギで注入すること
ができる。
According to the present invention, the impurity is implanted into the semiconductor thin film by the ion implantation device using the gate electrode as a mask in a state where the gate insulating film is etched and removed partway in the thickness direction. Impurities are implanted in a state where the film thickness of the insulating film is thinner than the desired film thickness, and therefore the impurities can be implanted with low acceleration energy.

【0006】[0006]

【実施例】図1〜図3はそれぞれこの発明の一実施例に
おけるセルフアライメント型の薄膜トランジスタの各製
造工程を示したものである。そこで、これらの図を順に
参照しながら、セルフアライメント型の薄膜トランジス
タの製造方法について説明する。
1 to 3 show respective manufacturing steps of a self-alignment type thin film transistor according to an embodiment of the present invention. Therefore, a method of manufacturing a self-alignment type thin film transistor will be described with reference to these drawings in order.

【0007】まず、図1に示すように、ガラス等からな
る絶縁基板1の上面に半導体薄膜2をパターン形成す
る。すなわち、まず絶縁基板1の上面全体にプラズマC
VDにより半導体薄膜2を形成するためのアモルファス
シリコン膜を500Å程度の厚さに堆積し、次いでエキ
シマレーザを照射することにより、アモルファスシリコ
ン膜を結晶化してポリシリコン膜とし、次いでフォトリ
ソグラフィ技術により不要な部分のポリシリコン膜をエ
ッチングして除去することにより、薄膜トランジスタ形
成領域のみに半導体薄膜2をパターン形成する。次に、
全表面にスパッタ装置により酸化シリコンからなる下層
ゲート絶縁膜3を200Å程度の厚さに堆積する。次
に、全表面にプラズマCVDにより窒化シリコンからな
る上層ゲート絶縁膜4を1600Å程度の厚さに堆積す
る。次に、半導体薄膜2の中央部に対応する部分の上層
ゲート絶縁膜4の上面にスパッタ装置によりアルミニウ
ムからなるゲート電極5を5000Å程度の厚さにパタ
ーン形成する。
First, as shown in FIG. 1, a semiconductor thin film 2 is patterned on an upper surface of an insulating substrate 1 made of glass or the like. That is, first, plasma C is applied to the entire upper surface of the insulating substrate 1.
An amorphous silicon film for forming the semiconductor thin film 2 by VD is deposited to a thickness of about 500 Å, and then the excimer laser is irradiated to crystallize the amorphous silicon film into a polysilicon film, which is then unnecessary by photolithography technology. By etching and removing the polysilicon film at a certain portion, the semiconductor thin film 2 is patterned only in the thin film transistor forming region. next,
A lower gate insulating film 3 made of silicon oxide is deposited on the entire surface by a sputtering device to a thickness of about 200 Å. Next, the upper gate insulating film 4 made of silicon nitride is deposited on the entire surface by plasma CVD to a thickness of about 1600 Å. Next, a gate electrode 5 made of aluminum is patterned in a thickness of about 5000Å on the upper surface of the upper gate insulating film 4 corresponding to the center of the semiconductor thin film 2 by a sputtering apparatus.

【0008】次に、図2に示すように、ゲート電極5を
マスクとして上層ゲート絶縁膜4をエッチングして除去
する。この状態では、半導体薄膜2を含む絶縁基板1の
全表面に下層ゲート絶縁膜3が残存し、半導体薄膜2の
中央部(チャネル領域2a)に対応する部分の下層ゲー
ト絶縁膜3の上面のみに上層ゲート絶縁膜4が残存し、
この残存した上層ゲート絶縁膜4の上面にゲート電極5
がそのまま残存している。次に、ゲート電極5をマスク
としてイオン注入装置により半導体薄膜2に不純物を注
入し、半導体薄膜2のチャネル領域2aの両側にソース
・ドレイン領域2bを形成する。この場合、半導体薄膜
2のチャネル領域2aの両側のソース・ドレイン領域2
bとなる部分の上面には膜厚200Å程度の下層ゲート
絶縁膜3のみが形成されているので、不純物としてリン
イオンを注入するとすると、30keV程度の低加速エ
ネルギで注入することができ、したがってイオン注入装
置のコストを低減することができ、またデバイスに与え
るダメージを小さくすることができる。次に、エキシマ
レーザを照射し、注入した不純物を活性化する。
Next, as shown in FIG. 2, the upper gate insulating film 4 is etched and removed using the gate electrode 5 as a mask. In this state, the lower gate insulating film 3 remains on the entire surface of the insulating substrate 1 including the semiconductor thin film 2, and only the upper surface of the lower gate insulating film 3 corresponding to the central portion (channel region 2a) of the semiconductor thin film 2 is formed. The upper gate insulating film 4 remains,
The gate electrode 5 is formed on the upper surface of the remaining upper gate insulating film 4.
Remains as it is. Next, using the gate electrode 5 as a mask, impurities are implanted into the semiconductor thin film 2 by an ion implantation device to form source / drain regions 2b on both sides of the channel region 2a of the semiconductor thin film 2. In this case, the source / drain regions 2 on both sides of the channel region 2a of the semiconductor thin film 2
Since only the lower gate insulating film 3 having a film thickness of about 200 Å is formed on the upper surface of the portion to be b, if phosphorus ions are implanted as impurities, the implantation can be performed with a low acceleration energy of about 30 keV. The cost of the device can be reduced, and the damage given to the device can be reduced. Next, excimer laser is irradiated to activate the implanted impurities.

【0009】次に、図3に示すように、全上面にプラズ
マCVD法により窒化シリコンからなる層間絶縁膜6を
3000Å程度の厚さに堆積する。この場合、半導体薄
膜2の表面を覆っている下層ゲート絶縁膜3の上面に層
間絶縁膜6を形成することになるので、下層ゲート絶縁
膜3および上層ゲート絶縁膜4からなるゲート絶縁膜の
絶縁耐圧が低下しないようにすることができる。次に、
ソース・ドレイン領域2bに対応する部分における層間
絶縁膜6および下層ゲート絶縁膜3にコンタクトホール
7を形成する。次に、コンタクトホール7および層間絶
縁膜6の上面の所定の個所にスパッタ装置によりアルミ
ニウムからなるソース・ドレイン電極8を5000Å程
度の厚さにパターン形成し、ソース・ドレイン領域2b
と接続させる。かくして、セルフアライメント型の薄膜
トランジスタが製造される。
Next, as shown in FIG. 3, an interlayer insulating film 6 made of silicon nitride is deposited on the entire upper surface by plasma CVD to a thickness of about 3000 Å. In this case, since the interlayer insulating film 6 is formed on the upper surface of the lower gate insulating film 3 covering the surface of the semiconductor thin film 2, insulation of the gate insulating film composed of the lower gate insulating film 3 and the upper gate insulating film 4 is performed. It is possible to prevent the breakdown voltage from decreasing. next,
A contact hole 7 is formed in the interlayer insulating film 6 and the lower gate insulating film 3 in the portion corresponding to the source / drain region 2b. Next, a source / drain electrode 8 made of aluminum is patterned at a predetermined position on the contact hole 7 and the upper surface of the interlayer insulating film 6 by a sputtering device to a thickness of about 5000 Å to form the source / drain region 2b.
Connect with. Thus, a self-aligned thin film transistor is manufactured.

【0010】なお、上記実施例では、半導体薄膜2の上
面に酸化シリコンからなる下層ゲート絶縁膜3を形成
し、該下層ゲート絶縁膜3の上面に窒化シリコンからな
る上層ゲート絶縁膜4を形成し、該上層ゲート絶縁膜4
の上面に形成したゲート電極5をマスクとして上層ゲー
ト絶縁膜4をエッチングして除去し、この状態で不純物
を注入しているが、これに限定されるものではない。例
えば、上層ゲート絶縁膜4をその厚さ方向の途中までエ
ッチングして除去し、この状態で不純物を注入するよう
にしてもよい。また、下層ゲート絶縁膜3をもっと厚く
形成した場合には、上層ゲート絶縁膜4だけでなく、下
層ゲート絶縁膜3をその厚さ方向の途中までエッチング
して除去し、この状態で不純物を注入するようにしても
よい。さらに、ゲート絶縁膜を酸化シリコン膜または窒
化シリコン膜のいずれかの単層で形成した場合には、こ
の単層をその厚さ方向の途中までエッチングして除去
し、この状態で不純物を注入するようにしてもよい。
In the above embodiment, the lower gate insulating film 3 made of silicon oxide is formed on the upper surface of the semiconductor thin film 2, and the upper gate insulating film 4 made of silicon nitride is formed on the upper surface of the lower gate insulating film 3. , The upper gate insulating film 4
The upper gate insulating film 4 is etched and removed using the gate electrode 5 formed on the upper surface of the mask as a mask, and impurities are implanted in this state, but the present invention is not limited to this. For example, the upper gate insulating film 4 may be removed by etching halfway in the thickness direction, and impurities may be implanted in this state. Further, when the lower gate insulating film 3 is formed thicker, not only the upper gate insulating film 4 but also the lower gate insulating film 3 is etched and removed halfway in the thickness direction, and impurities are injected in this state. You may do so. Furthermore, when the gate insulating film is formed of a single layer of either a silicon oxide film or a silicon nitride film, the single layer is etched and removed halfway in its thickness direction, and impurities are implanted in this state. You may do it.

【0011】[0011]

【発明の効果】以上説明したように、この発明によれ
ば、ゲート絶縁膜をその厚さ方向の途中までエッチング
して除去した状態で、ゲート電極をマスクとしてイオン
注入装置により半導体薄膜に不純物を注入しているの
で、ゲート絶縁膜の膜厚が所期の膜厚よりも薄い状態で
不純物を注入することとなり、したがって不純物を低加
速エネルギで注入することができ、ひいてはイオン注入
装置のコストを低減することができ、またデバイスに与
えるダメージを小さくすることができる。
As described above, according to the present invention, impurities are added to the semiconductor thin film by the ion implantation device using the gate electrode as a mask in a state where the gate insulating film is removed by etching to the middle of its thickness direction. Since the implantation is performed, the impurities are implanted with the thickness of the gate insulating film being thinner than the intended thickness, and therefore the impurities can be implanted with low acceleration energy, which in turn reduces the cost of the ion implantation apparatus. It is possible to reduce the damage and to reduce the damage given to the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例における薄膜トランジスタ
の製造に際し、絶縁基板の上面に半導体薄膜、下層ゲー
ト絶縁膜、上層ゲート絶縁膜およびゲート電極を形成し
た状態の断面図。
FIG. 1 is a cross-sectional view showing a state in which a semiconductor thin film, a lower gate insulating film, an upper gate insulating film, and a gate electrode are formed on an upper surface of an insulating substrate when manufacturing a thin film transistor according to an embodiment of the present invention.

【図2】同薄膜トランジスタの製造に際し、ゲート電極
をマスクとして上層ゲート絶縁膜をエッチングして除去
した後、ゲート電極をマスクとして半導体薄膜に不純物
を注入した状態の断面図。
FIG. 2 is a cross-sectional view showing a state where impurities are implanted into the semiconductor thin film using the gate electrode as a mask after the upper gate insulating film is etched and removed using the gate electrode as a mask in manufacturing the same thin film transistor.

【図3】同薄膜トランジスタの製造に際し、層間絶縁
膜、コンタクトホールおよびソース・ドレイン電極を形
成した状態の断面図。
FIG. 3 is a cross-sectional view showing a state in which an interlayer insulating film, contact holes, and source / drain electrodes are formed in manufacturing the same thin film transistor.

【符号の説明】[Explanation of symbols]

1 絶縁基板 2 半導体薄膜 3 下層ゲート絶縁膜 4 上層ゲート絶縁膜 5 ゲート電極 1 Insulating Substrate 2 Semiconductor Thin Film 3 Lower Gate Insulating Film 4 Upper Gate Insulating Film 5 Gate Electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体薄膜上にゲート絶縁膜を形成し、
該ゲート絶縁膜上にゲート電極を形成し、該ゲート電極
をマスクとして前記ゲート絶縁膜をその厚さ方向の途中
までエッチングして除去し、この状態で前記ゲート電極
をマスクとしてイオン注入装置により前記半導体薄膜に
不純物を注入することを特徴とする薄膜トランジスタの
製造方法。
1. A gate insulating film is formed on a semiconductor thin film,
A gate electrode is formed on the gate insulating film, and the gate insulating film is etched and removed halfway in the thickness direction using the gate electrode as a mask. A method of manufacturing a thin film transistor, which comprises implanting impurities into a semiconductor thin film.
【請求項2】 前記ゲート絶縁膜は前記半導体薄膜上に
形成された酸化シリコンからなる下層ゲート絶縁膜と該
下層ゲート絶縁膜上に形成された窒化シリコンからなる
上層ゲート絶縁膜とからなり、前記ゲート電極をマスク
として前記上層ゲート絶縁膜をエッチングして除去した
状態で前記ゲート電極をマスクとしてイオン注入装置に
より前記半導体薄膜に不純物を注入することを特徴とす
る請求項1記載の薄膜トランジスタの製造方法。
2. The gate insulating film comprises a lower layer gate insulating film made of silicon oxide formed on the semiconductor thin film and an upper layer gate insulating film made of silicon nitride formed on the lower layer gate insulating film. 2. The method of manufacturing a thin film transistor according to claim 1, wherein impurities are implanted into the semiconductor thin film by an ion implanter using the gate electrode as a mask while the upper gate insulating film is removed by etching using the gate electrode as a mask. ..
【請求項3】 前記下層ゲート絶縁膜の膜厚は200Å
程度であり、前記上層ゲート絶縁膜の膜厚は1600Å
程度であることを特徴とする請求項2記載の薄膜トラン
ジスタの製造方法。
3. The film thickness of the lower gate insulating film is 200Å
And the film thickness of the upper gate insulating film is 1600Å
3. The method of manufacturing a thin film transistor according to claim 2, wherein the degree is about the same.
JP03338014A 1991-11-28 1991-11-28 Method for manufacturing thin film transistor Expired - Fee Related JP3131850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03338014A JP3131850B2 (en) 1991-11-28 1991-11-28 Method for manufacturing thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03338014A JP3131850B2 (en) 1991-11-28 1991-11-28 Method for manufacturing thin film transistor

Publications (2)

Publication Number Publication Date
JPH05152328A true JPH05152328A (en) 1993-06-18
JP3131850B2 JP3131850B2 (en) 2001-02-05

Family

ID=18314139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03338014A Expired - Fee Related JP3131850B2 (en) 1991-11-28 1991-11-28 Method for manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JP3131850B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1017108A2 (en) * 1998-12-25 2000-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor devices and methods of manufacturing the same
US6891236B1 (en) 1999-01-14 2005-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
JP2005229096A (en) * 2004-02-12 2005-08-25 Samsung Sdi Co Ltd Thin film transistor with ldd structure and its manufacturing method
JP2020509603A (en) * 2017-03-30 2020-03-26 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. Manufacturing method of TFT backplane and TFT backplane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1017108A2 (en) * 1998-12-25 2000-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor devices and methods of manufacturing the same
EP1017108A3 (en) * 1998-12-25 2001-01-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor devices and methods of manufacturing the same
US6891236B1 (en) 1999-01-14 2005-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US7491655B2 (en) 1999-01-14 2009-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
JP2005229096A (en) * 2004-02-12 2005-08-25 Samsung Sdi Co Ltd Thin film transistor with ldd structure and its manufacturing method
JP2020509603A (en) * 2017-03-30 2020-03-26 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. Manufacturing method of TFT backplane and TFT backplane

Also Published As

Publication number Publication date
JP3131850B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
US6200866B1 (en) Use of silicon germanium and other alloys as the replacement gate for the fabrication of MOSFET
JP3019885B2 (en) Method for manufacturing field effect thin film transistor
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
US5518941A (en) Maskless method for formation of a field implant channel stop region
US7176071B2 (en) Semiconductor device and fabrication method with etch stop film below active layer
JPH0793442B2 (en) Laminated thin film transistor and manufacturing method thereof
JP2965283B2 (en) Method for manufacturing thin film transistor
JP3131850B2 (en) Method for manufacturing thin film transistor
JP2935083B2 (en) Method for manufacturing thin film transistor
JPH07161835A (en) Manufacture of semiconductor memory device
US6338997B2 (en) Method of fabricating semiconductor device having improved bias dependability
JP3127580B2 (en) Method for manufacturing thin film transistor
JPH07131018A (en) Thin film transistor and fabrication thereof
JPH06291314A (en) Manufacture of thin film transistor
JPH0298143A (en) Manufacture of ldd structure polysilicon thin film transistor
JPS62285468A (en) Manufacture of ldd field-effect transistor
JP3200640B2 (en) Thin film transistor and method of manufacturing the same
JP2669399B2 (en) Semiconductor device and manufacturing method thereof
JP2759153B2 (en) Thin film E @ 2 PROM and method of manufacturing the same
JP3052489B2 (en) Method for manufacturing thin film transistor
JP3197669B2 (en) Thin film transistor and method of manufacturing the same
JPH06260498A (en) Thin-film transistor and manufacture thereof
JPH06338614A (en) Thin-film transistor and manufacture thereof
JPH07131028A (en) Fabrication of thin film transistor
JP2777333B2 (en) Method for manufacturing semiconductor memory device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20071124

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091124

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees