JPH0515200Y2 - - Google Patents

Info

Publication number
JPH0515200Y2
JPH0515200Y2 JP1987172969U JP17296987U JPH0515200Y2 JP H0515200 Y2 JPH0515200 Y2 JP H0515200Y2 JP 1987172969 U JP1987172969 U JP 1987172969U JP 17296987 U JP17296987 U JP 17296987U JP H0515200 Y2 JPH0515200 Y2 JP H0515200Y2
Authority
JP
Japan
Prior art keywords
vertical
wind
rotor
ship
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987172969U
Other languages
Japanese (ja)
Other versions
JPS63171299U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987172969U priority Critical patent/JPH0515200Y2/ja
Publication of JPS63171299U publication Critical patent/JPS63171299U/ja
Application granted granted Critical
Publication of JPH0515200Y2 publication Critical patent/JPH0515200Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels
    • Y02T70/5236Renewable or hybrid-electric solutions

Landscapes

  • Wind Motors (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は風力利用船舶推進装置に関する。[Detailed explanation of the idea] [Industrial application field] The present invention relates to a ship propulsion device using wind power.

〔従来の技術〕[Conventional technology]

風力利用船舶推進装置としては、従来、例え
ば、第5図斜視図に示すように、上甲板020上
に鉛直軸線Zの周りに回転するローター01を樹
立し、その作用により推進方向X向きの推力を得
るフレツトナー船021がある。
Conventionally, as a wind-powered ship propulsion system, for example, as shown in the perspective view of FIG. There is a Flettonner ship 021 that obtains.

この種のフレツトナー船021では第6図部分
拡大平面図に示すように、推進方向xに対し角度
θの方向により船体速度と絶対風速とのベクトル
和である相対風速Vの風06を受けている状態で
ローター01を時計方向に回転すると、揚力L、
抗力Dが発生し、その結果推進方向に次のような
推進力Fxが得られる。
As shown in the partially enlarged plan view of Figure 6, this type of Fletner ship 021 receives wind 06 at a relative wind speed V, which is the vector sum of the ship speed and the absolute wind speed, in a direction at an angle θ with respect to the propulsion direction x. When rotor 01 is rotated clockwise in this state, lift force L,
A drag force D is generated, and as a result, the following propulsive force Fx is obtained in the propulsion direction.

Fx=Lsinθ−Dcosθ ところが、このような装置では、ローター01
を電動機で回転するので、一般にローター01に
よつて得られる推進動力の約30%相当の電力が損
失となる。
Fx=Lsinθ−Dcosθ However, in such a device, the rotor 01
Since the rotor 01 is rotated by an electric motor, power loss is generally equivalent to about 30% of the propulsive power obtained by the rotor 01.

そこで、本出願人は、さきに第7図斜視図に示
すように、ローター01の水平円形頂部端板02
上に、その鉛直中心軸線Zに関し等距離で対称的
に平行して翼軸08,09を介して枢支される平
行竪翼03,03と、それ等の上端を枢支する水
平アーム04とより構成されるダリウス型風車0
5を取付けることにより、風の力を利用して、ロ
ーター01を回転させる装置を提案した。
Therefore, as shown in the perspective view of FIG.
Above, parallel vertical wings 03, 03 are pivoted via wing axes 08, 09 equidistantly and symmetrically in parallel with respect to the vertical center axis Z, and a horizontal arm 04 that pivots their upper ends. Darius-type wind turbine consisting of 0
We proposed a device that rotates the rotor 01 by using the force of the wind by attaching the rotor 01.

しかしながら、ダリウス型風車05がローター
01の頂部に突設されたフレツトナー船では、橋
梁の下等を通航する際に上甲板上の構造物の高さ
が制限されるので、ローター01の高さをあまり
大きくすることができず、その出力が制限される
のみならず、ローターがトツプヘビーになるので
強度上及び安定上の問題がある。
However, in a Flettonner ship in which the Darius-type wind turbine 05 is installed protruding from the top of the rotor 01, the height of the structure on the upper deck is restricted when passing under bridges, etc., so the height of the rotor 01 is limited. It cannot be made very large, which not only limits its output, but also makes the rotor top-heavy, which poses problems in terms of strength and stability.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

本考案は、このような事情に鑑みて提案された
もので、竪円筒体の回転に消費される損失馬力を
なくして、竪円筒体により得られる推力を最大限
にするとともに、全高を低くして橋梁下通過の便
及び船体の安定を図ることができる省エネルギの
風力利用船舶推進装置を提供することを目的とす
る。
The present invention was proposed in view of these circumstances, and aims to eliminate the loss of horsepower consumed by the rotation of the vertical cylinder, maximize the thrust obtained by the vertical cylinder, and lower the overall height. The purpose of the present invention is to provide an energy-saving wind-powered ship propulsion device that can facilitate passage under bridges and stabilize the ship.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本考案は、船上に樹立された竪円筒
体をその鉛直中心線の周りに回転することにより
推進力を得る風力利用船舶推進装置において、上
記竪円筒体の両側方に上記鉛直中心線に対し対称
的に配設され上記竪円筒体を回転するダリウス型
風車翼を具えたことを特徴とする。
To this end, the present invention provides a wind-powered ship propulsion system that obtains propulsive force by rotating a vertical cylindrical body installed on a ship around its vertical center line. It is characterized by comprising Darrieus-type wind turbine blades arranged symmetrically with respect to each other and rotating the vertical cylindrical body.

〔作用〕[Effect]

上述の構成により、竪円筒体の回転に必要なト
ルクを上記竪円筒体の側方に上記鉛直中心線に対
称的に取付けられたダリウス型風車によつて得る
ことができるとともに、全高を低くし、船体の安
定及び橋梁下通過の便を図ることができる。
With the above configuration, the torque necessary for the rotation of the vertical cylindrical body can be obtained by the Darius type wind turbine installed symmetrically to the vertical center line on the side of the vertical cylindrical body, and the overall height can be reduced. This makes it possible to stabilize the ship and facilitate passage under bridges.

〔実施例〕〔Example〕

本考案の実施例を図面について説明すると、第
1図はその斜視図、第2図は第1図の装置が左舷
側より風を受けた際の作動状態を示す水平断面
図、第3図は第1図の装置が右舷側より風を受け
た際の作動状態を示す水平断面図、第4図は第1
図の変形例を示す同じく斜視図である。
To explain the embodiment of the present invention with reference to the drawings, Fig. 1 is a perspective view thereof, Fig. 2 is a horizontal cross-sectional view showing the operating state when the device of Fig. 1 receives wind from the port side, and Fig. 3 is a perspective view thereof. A horizontal sectional view showing the operating state of the device shown in Figure 1 when it receives wind from the starboard side.
It is the same perspective view which shows the modification of a figure.

上図において、第5〜7図と同一の記号はそれ
ぞれ同図と同一の部材を示し、まず、第1図にお
いて、1は鉛直軸線Zの周りに回転自在に上甲板
上に樹立された竪ローター、2,2aはそれぞれ
竪ローター1の上端、下端を塞ぐ水平円形の頂
板、底板、3,3は竪ローター1の側方にそれぞ
れ等間隔を存して対称的に配置されるとともに、
上端、下端がそれぞれ頂板2、底板2aから側方
へ水平に延びる水平アーム4,4に枢支された平
行竪翼、5は3〜4が協働して構成するダリウス
型風車である。ここで、6,7はそれぞれ風、
8,9はそれぞれ翼軸である。
In the above figure, the same symbols as in Figs. 5 to 7 indicate the same members as in the same figure. First, in Fig. 1, 1 is a vertical shaft established on the upper deck so as to be rotatable around the vertical axis Z. The rotors 2 and 2a are horizontal circular top plates and bottom plates that close the upper and lower ends of the vertical rotor 1, respectively, and the rotors 3 and 3 are arranged symmetrically at equal intervals on the sides of the vertical rotor 1, and
Parallel vertical blades 5 whose upper and lower ends are pivoted by horizontal arms 4, 4 extending horizontally from the top plate 2 and the bottom plate 2a to the sides, respectively, are Darrieus type wind turbines constituted by 3 and 4 working together. Here, 6 and 7 are wind, respectively.
8 and 9 are wing axes, respectively.

このような装置において、第2図に示すよう
に、竪ローター1が左舷方向より風速Vの風6を
受けた場合には、風6に対して竪翼3が鉛直軸線
Zの左舷側を通過するときに前縁が船首方向を向
き、右舷側を通過するときに前縁が船尾方向を向
くように配設し、rを竪翼3の回転半径とする
と、次式で示すような右回りのトルクがそれぞれ
発生する。
In such a device, as shown in FIG. 2, when the vertical rotor 1 receives wind 6 from the port direction at a wind speed V, the vertical blade 3 passes on the port side of the vertical axis Z relative to the wind 6. When passing on the starboard side, the leading edge points toward the bow, and when passing on the starboard side, the leading edge points toward the stern, and if r is the radius of rotation of the vertical wing 3, the clockwise rotation will be as shown in the following formula. torque is generated respectively.

左舷側の竪翼3により発生するトルクは Tp=(L1sinα1−D1cosα1)×r 右舷側竪翼3により発生するトルクは Ts=(L2sinα2−D2cosα2)×r ここで、W1は左舷側竪翼3への風の流入速度、
W2は右舷側竪翼3への風の流入速度、α1は左舷
側竪翼3への風の流入角度、α2は右舷側竪翼3へ
の風の流入角度である。
The torque generated by the port side vertical blade 3 is T p = (L 1 sinα 1 − D 1 cosα 1 ) × r The torque generated by the starboard side vertical blade 3 is T s = (L 2 sin α 2 − D 2 cos α 2 ) × r Here, W 1 is the inflow speed of the wind into the port side vertical wing 3,
W 2 is the speed of wind inflow into the starboard side vertical blade 3, α 1 is the inflow angle of the wind into the port side vertical blade 3, and α 2 is the inflow angle of the wind into the starboard side vertical blade 3.

上記トルクTp及びTsによつて竪ローター1は
時計方向に回転するので、第6図に示したと同一
の理由により推進方向x向きに推力を発生する。
Since the vertical rotor 1 rotates clockwise due to the torques T p and T s , a thrust is generated in the propulsion direction x for the same reason as shown in FIG.

また、第3図に示すように、竪ローター1が右
舷方向より風速Vの風7を受けた場合には、竪翼
3,3を第2図の場合よりそれぞれ180°翼軸8,
9の周りに回動させて左回りのトルクを得ること
により竪ローター1は反時計方向に回転され、そ
の結果、同上の理由により推進方向x向きに推力
を発生する。
Further, as shown in FIG. 3, when the vertical rotor 1 receives wind 7 from the starboard direction at a wind speed V, the vertical blades 3, 3 are moved 180 degrees from the case of FIG.
9 to obtain counterclockwise torque, the vertical rotor 1 is rotated counterclockwise, and as a result, a thrust is generated in the propulsion direction x for the same reason.

なお、竪翼は、必ずしもローター1の全高にわ
たつて延ばす必要はなく、その一部のみに並設し
てもよい。
Note that the vertical blades do not necessarily need to extend over the entire height of the rotor 1, and may be arranged side by side only in a portion thereof.

すなわち、第4図において、3a,3aは竪ロ
ーター1の上半分の両側方にそれぞれ等間隔を存
して対称的に配置されるとともに、上端、下端が
それぞれ頂板2、竪ローター側壁から水平に延び
る水平アーム4,4aに枢支された平行竪翼、5
aは3a,4,4aが協働して構成するダリウム
型風車で、このような構造においても、ダリウス
型風車5と同一の作用効果を奏するほか、竪ロー
ター1の下半分の側方に突出する回転部分がない
ので、上甲板の一般配置が容易となる特長があ
る。
That is, in FIG. 4, 3a and 3a are arranged symmetrically at equal intervals on both sides of the upper half of the vertical rotor 1, and their upper and lower ends are horizontally connected to the top plate 2 and the side wall of the vertical rotor, respectively. Parallel vertical wings 5 pivoted on extending horizontal arms 4, 4a;
3a, 4, and 4a cooperate to form a Darium-type wind turbine. Even with this structure, in addition to achieving the same effect as the Darius-type wind turbine 5, Since there are no rotating parts, the general arrangement of the upper deck is easy.

このような装置によれば、下記効果が奏せられ
る。
According to such a device, the following effects can be achieved.

(1) 竪ローターの回転に必要なトルクをそれの側
部に付設したダリウス型風車によつて得ること
ができるので、風力利用船舶推進装置の省エネ
ルギを図ることが可能である。
(1) Since the torque necessary to rotate the vertical rotor can be obtained by the Darrieus-type wind turbine attached to the side thereof, it is possible to save energy in the wind-powered ship propulsion system.

(2) ダリウス型風車が竪ローターの側部に付設さ
れているので、装置全高を低くし橋梁下通過の
便及び船体の安定を図るとともに、竪ローター
鉛直中止線からのダリウス型風車の回転半径が
大きくとれ、従つて大きなトルクを得ることが
できる。
(2) Since the Darius-type wind turbine is attached to the side of the vertical rotor, the overall height of the device is lowered, making it easier to pass under bridges and stabilizing the hull, and the rotation radius of the Darius-type wind turbine from the vertical stop line of the vertical rotor. can be large, and therefore large torque can be obtained.

〔考案の効果〕[Effect of idea]

要するに本考案によれば、船上に樹立された竪
円筒体をその鉛直中心線の周りに回転することに
より推進力を得る風力利用船舶推進装置におい
て、上記竪円筒体の両側方に上記鉛直中心線に対
し対称的に配設され上記竪円筒体を回転するダリ
ウス型風車翼を具えたことにより、竪円筒体の回
転に消費される損失馬力をなくして、竪円筒体に
より得られる推力を最大限にするとともに、全高
を低くして橋梁下通過の便及び船体の安定を図る
ことができる省エネルギの風力利用船舶推進装置
を得るから、本考案は産業上極めて有益なもので
ある。
In short, according to the present invention, in a wind-powered ship propulsion device that obtains propulsive force by rotating a vertical cylindrical body installed on a ship around its vertical center line, the vertical center line is located on both sides of the vertical cylindrical body. By providing Darrieus-type wind turbine blades that are arranged symmetrically with respect to the cylinder body and rotate the vertical cylinder body, the loss of horsepower consumed in the rotation of the vertical cylinder body is eliminated, and the thrust obtained by the vertical cylinder body is maximized. In addition, the present invention is industrially extremely useful because it provides an energy-saving wind-powered ship propulsion device that can reduce the overall height to facilitate passage under bridges and stabilize the ship.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の斜視図、第2図は第1図の装
置が左舷側より風を受けた際の作動状態を示す水
平断面図、第3図は第1図の装置が右舷側より風
を受けた際の作動状態を示す水平断面図、第4図
は第1図の変形例を示す同じく斜視図である。第
5図は公知のフレツトナー船を示す斜視図、第6
図は第5図の−線に沿つた部分水平断面図、
第7図は本出願人の先願特願昭61−314096に係る
竪ローターの斜視図である。 1……竪ローター、2……頂板、2a……底
板、3……竪翼、4……水平アーム、5……ダリ
ウス型風車、6,7……風、8,9……翼軸、D
……抗力、L……揚力、V……風速、W1,W2
…風の竪翼への流入速度、x……推進方向、Z…
…鉛直中心軸線、α……角度、α1,α2……風の竪
翼への流入角、θ……角度。
Figure 1 is a perspective view of the present invention, Figure 2 is a horizontal sectional view showing the operating state of the device in Figure 1 when it is exposed to wind from the port side, and Figure 3 is a perspective view of the device in Figure 1 from the starboard side. FIG. 4 is a horizontal sectional view showing the operating state when exposed to wind, and FIG. 4 is a perspective view showing a modification of FIG. 1. Figure 5 is a perspective view of a known Flettner ship;
The figure is a partial horizontal sectional view taken along the - line in Figure 5.
FIG. 7 is a perspective view of a vertical rotor according to the applicant's earlier patent application No. 61-314096. 1...Vertical rotor, 2...Top plate, 2a...Bottom plate, 3...Vertical blade, 4...Horizontal arm, 5...Darrius type windmill, 6, 7...Wind, 8, 9...Blade axis, D
...Drag force, L...Lift force, V...Wind speed, W 1 , W 2 ...
...Inflow speed of wind into the vertical blade, x... Propulsion direction, Z...
...Vertical central axis, α... angle, α 1 , α 2 ... angle of inflow of wind into the vertical blade, θ... angle.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 船上に樹立された竪円筒体をその鉛直中心線の
周りに回転することにより推進力を得る風力利用
船舶推進装置において、上記竪円筒体の両側方に
上記鉛直中心線に対し対称的に配設され上記竪円
筒体を回転するダリウス型風車翼を具えたことを
特徴とする風力利用船舶推進装置。
In a wind-powered ship propulsion device that obtains propulsion force by rotating a vertical cylindrical body installed on a ship around its vertical center line, the wind-powered ship propulsion system is arranged symmetrically with respect to the vertical center line on both sides of the vertical cylindrical body. A wind power vessel propulsion device comprising a Darrieus-type wind turbine blade that rotates the vertical cylindrical body.
JP1987172969U 1986-12-25 1987-11-12 Expired - Lifetime JPH0515200Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987172969U JPH0515200Y2 (en) 1986-12-25 1987-11-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP31409686 1986-12-25
JP1987172969U JPH0515200Y2 (en) 1986-12-25 1987-11-12

Publications (2)

Publication Number Publication Date
JPS63171299U JPS63171299U (en) 1988-11-08
JPH0515200Y2 true JPH0515200Y2 (en) 1993-04-21

Family

ID=31189753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987172969U Expired - Lifetime JPH0515200Y2 (en) 1986-12-25 1987-11-12

Country Status (1)

Country Link
JP (1) JPH0515200Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI121170B (en) * 2009-04-09 2010-08-13 Waertsilae Finland Oy Ship
JP5841106B2 (en) * 2013-08-16 2016-01-13 鈴木 健一 Magnus lift generator for ships using expanded flow

Also Published As

Publication number Publication date
JPS63171299U (en) 1988-11-08

Similar Documents

Publication Publication Date Title
CA1212333A (en) Wind-driven generation plant
EP0935554B1 (en) A pivoting sailing rig
CN108891569B (en) Marine sail with variable airfoil profile
WO2004027259A1 (en) Windmill for wind power generation
US20080199314A1 (en) Wind driven power system
JPH0515200Y2 (en)
US4392780A (en) Wind powering of turbine having variable pitch vanes
JP2915607B2 (en) Wind-powered ship
JPH0526031B2 (en)
CN211230704U (en) Sail navigation-aid wind power generation device
JPS61263892A (en) Wind power ship
JPH0712045A (en) Vertical shaft windmill to be layered and mounted on multistory tower
CN209305806U (en) A kind of full circle swinging steering engine paddle for wind-powered electricity generation O&M ship
JPS5918091A (en) Blade-type sail device
JPH0324477Y2 (en)
JPS6328789A (en) Rigid canvas device with rotor and split flap
JPS6131919Y2 (en)
FI97352B (en) Wind-powered and/or electrically powered boat
JPS6318029B2 (en)
JPS62160987A (en) Ship with cylindrical rotor for wind force propulsion
JPH0127519Y2 (en)
JPS5928958Y2 (en) marine propeller
JPS6118593A (en) Vessel having rigid member sail
JP2023088803A (en) Free navigation system with wind power
JPH0513676Y2 (en)