JPH05151997A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH05151997A
JPH05151997A JP3341940A JP34194091A JPH05151997A JP H05151997 A JPH05151997 A JP H05151997A JP 3341940 A JP3341940 A JP 3341940A JP 34194091 A JP34194091 A JP 34194091A JP H05151997 A JPH05151997 A JP H05151997A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
lithium
lithium carbonate
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3341940A
Other languages
Japanese (ja)
Other versions
JP3303319B2 (en
Inventor
Naoyuki Kato
尚之 加藤
Yoshikatsu Yamamoto
佳克 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP34194091A priority Critical patent/JP3303319B2/en
Priority to EP92909565A priority patent/EP0536425B2/en
Priority to DE69205542T priority patent/DE69205542T3/en
Priority to US07/962,583 priority patent/US5427875A/en
Priority to PCT/JP1992/000541 priority patent/WO1992020112A1/en
Publication of JPH05151997A publication Critical patent/JPH05151997A/en
Application granted granted Critical
Publication of JP3303319B2 publication Critical patent/JP3303319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To prevent rapid temp. rise and breakage even at over-charging by furnishing a current shutoff device actuated with rise of the intra-battery pressure, and giving the carbon-distributed lithium in the positive electrode a specific surface area exceeding 0.1m<2>/g. CONSTITUTION:A positive electrode 2 has the composition LixMO2 where lithium carbonate is added to lithium composite oxides as active material for positive electrode, while a negative electrode 1 is capable of being doped with lithium or dedoped, where M represents one or more of the transfer metals and (x) is conditioned as 0.05<=x<=1.10. The negative electrode 1 prepared by applying a negative electrode active material to a negative electrode current collector 9 and a positive electrode 2 prepared by applying the positive electrode active material, to which lithium carbonate is added, to a positive electrode current collector are wound with a separator 3 interposed. Insulation 4 is arranged over and below this winding, and the resultant is housed in a battery can 5. The specific surface area of the lithium carbonate is made over 0.1m<2>/g, and a current shutting thin film is provided which is actuated with rise of the intra- battery pressure. This quickens decomposition of the lithium, and there is no risk of breakage due to quick temp. rise even at over-charging.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上に利用分野】本発明は非水電解液二次電池に関
し、特に過充電時に作動する電流遮断手段を備えた非水
電解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery provided with a current interruption means that operates during overcharge.

【0002】[0002]

【従来の技術】近年、電子技術の進歩により、電子機器
の高性能化、小型化、ポータブル化が進み、これら電子
機器に使用される高エネルギー密度の二次電池の要求が
強まっている。従来、これらの電子機器に使用される二
次電池としては、ニッケル・カドミウム電池や鉛電池等
が挙げられるが、これら電池では放電電位が低くエネル
ギー密度の高い電池を得るという点では未だ不十分であ
る。
2. Description of the Related Art In recent years, advances in electronic technology have led to advances in performance, miniaturization, and portability of electronic devices, and the demand for secondary batteries of high energy density used in these electronic devices is increasing. Conventionally, secondary batteries used in these electronic devices include nickel-cadmium batteries and lead batteries, but these batteries are still insufficient in terms of obtaining batteries with low discharge potential and high energy density. is there.

【0003】最近、リチウムやリチウム合金さらには炭
素材料のようなリチウムイオンをドープかつ脱ドープ可
能な物質を負極として使用し、また、正極にリチウムコ
バルト複合酸化物等のリチウム複合酸化物を使用する非
水電解液二次電池の研究・開発が盛んに行われている。
この電池は、電池電圧が高く、高エネルギー密度を有
し、自己放電も少なく、サイクル特性に優れている電池
である。
Recently, substances capable of doping and dedoping lithium ions such as lithium and lithium alloys and carbon materials have been used as negative electrodes, and lithium composite oxides such as lithium cobalt composite oxides have been used as positive electrodes. Research and development of non-aqueous electrolyte secondary batteries are being actively conducted.
This battery has a high battery voltage, a high energy density, little self-discharge, and excellent cycle characteristics.

【0004】ところが、上述のような非水電解液二次電
池は、何らかの原因で充電時に所定以上の電気量の電流
が流れて過充電状態になると、電池電圧が高くなり、電
解液等が分解してガスが発生し、電池内圧や電池温度が
上昇する。さらに、この過充電状態が続くと電解質や活
物質の急速な分解といった異常反応が起こり、温度上昇
を伴う発熱や比較的急速な破損といった損傷状態を呈す
る場合がある。
However, in the non-aqueous electrolyte secondary battery as described above, if an electric current of a predetermined amount or more flows at the time of charging for some reason and the battery is overcharged, the battery voltage increases and the electrolyte or the like decomposes. Then, gas is generated, and the battery internal pressure and battery temperature rise. Further, if this overcharged state continues, an abnormal reaction such as rapid decomposition of the electrolyte or active material may occur, resulting in a damage state such as heat generation accompanied by temperature rise or relatively rapid damage.

【0005】かかる問題についての対策として、本発明
者らは電池内圧の上昇に応じて作動する電流遮断装置を
備えるとともに正極に電池内圧上昇剤として炭酸リチウ
ムを含有させた非水電解質二次電池を提案した。この電
池では、過充電状態が進むと正極中の炭酸リチウムが電
気分解されて炭酸ガスが発生する。このガス発生により
電池内圧が上昇し、電流遮断装置が作動して電流が遮断
される。これにより、電池の異常反応が抑制され、電池
温度や電池内圧の急速な上昇による電池破損が防止され
ることとなる。
As a measure against such a problem, the inventors of the present invention have provided a non-aqueous electrolyte secondary battery which is equipped with a current interrupting device which operates in response to an increase in battery internal pressure and which contains lithium carbonate as a battery internal pressure increasing agent in the positive electrode. Proposed. In this battery, as the overcharged state progresses, lithium carbonate in the positive electrode is electrolyzed to generate carbon dioxide gas. Due to this gas generation, the internal pressure of the battery rises, and the current interrupt device operates to interrupt the current. As a result, the abnormal reaction of the battery is suppressed and the battery is prevented from being damaged due to the rapid increase in the battery temperature and the battery internal pressure.

【0006】[0006]

【発明が解決しようとする課題】しかし、近年、さら
に、電池の急速充電化が進行しており、より高い充電電
流での安全性が要求されるようになってきている。上述
の電流遮断装置を備え、かつ正極に炭酸リチウムを添加
した構成の電池は、従来の充電電流での過充電状態に対
する安全性は確保されていたが、さらに高い充電電流で
過充電を行ったところ、遮断装置の作動前に急速な温度
上昇を伴う発熱が生じ、比較的急速な破損といった損傷
状態を呈するものがあった。
However, in recent years, the rapid charging of batteries has further progressed, and safety at a higher charging current is required. The battery with the above-mentioned current cutoff device and the structure in which lithium carbonate was added to the positive electrode was secured against the overcharge state at the conventional charging current, but was overcharged at a higher charging current. However, there are some cases in which a heat generation accompanied by a rapid temperature rise occurs before the operation of the circuit breaker, which causes a damage state such as a relatively rapid breakage.

【0007】そこで、本発明はこのような従来の実情に
鑑みて提案されたものであり、高い充電電流で過充電を
行った場合でも、温度上昇や破損の生じない非水電解液
二次電池を提供することを目的とする。
Therefore, the present invention has been proposed in view of such conventional circumstances, and a non-aqueous electrolyte secondary battery in which temperature rise and damage do not occur even when overcharging is performed at a high charging current. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成するた
めに本発明者らが検討を重ねた結果、正極に添加する炭
酸リチウムとして比表面積の大きいものを使用すれば、
高い充電電流で過充電した場合でも電流遮断装置が確実
に作動し、急速な温度上昇や破損が防止されることを見
いだすに至った。
Means for Solving the Problems As a result of repeated studies by the present inventors in order to achieve the above-mentioned object, if lithium carbonate having a large specific surface area is used as lithium carbonate to be added to the positive electrode,
We have found that the current interruption device operates reliably even when overcharged with a high charging current, and a rapid temperature rise and damage are prevented.

【0009】本発明の非水電解液二次電池は、このよう
な知見に基づいて提案されたものであり、LiX MO2
(但し、Mは1種以上の遷移金属を表し、0.05≦X
≦1.10である)と炭酸リチウムからなる正極と、リ
チウムをドープかつ脱ドープし得る負極と、非水電解液
と、電池内圧上昇に応じて作動する電流遮断手段とをそ
れぞれ備えてなり、上記炭酸リチウムの比表面積が0.
1m2 /g以上であることを特徴とするものである。
The non-aqueous electrolyte secondary battery of the present invention has been proposed on the basis of such findings, and Li X MO 2
(However, M represents one or more kinds of transition metals, and 0.05 ≦ X
≦ 1.10) and lithium carbonate, a negative electrode capable of being doped and dedoped with lithium, a non-aqueous electrolyte solution, and a current interrupting device that operates in response to an increase in internal pressure of the battery. The specific surface area of the lithium carbonate is 0.
It is characterized by being 1 m 2 / g or more.

【0010】本発明において、正極は、正極活物質とな
るリチウム複合酸化物に炭酸リチウムを添加してなるも
のである。
In the present invention, the positive electrode is formed by adding lithium carbonate to a lithium composite oxide which is a positive electrode active material.

【0011】上記リチウム複合酸化物としては、Lix
MO2 (ただし、Mは一種以上の遷移金属好ましくはC
oまたはNiの少なくとも1種を表し、0.05≦x≦
1.10である。)で表されるリチウム複合酸化物、た
とえば、LiCoO2 ,LiNiO2 、LiX NiY
1-Y 2 (ただし、0.05≦X≦1.10、0<Y
≦1.0)で表されるリチウム複合酸化物等が挙げられ
る。
As the lithium composite oxide, Li x
MO 2 (where M is one or more transition metals, preferably C
represents at least one of o and Ni, and 0.05 ≦ x ≦
It is 1.10. ) Lithium composite oxide represented by, for example, LiCoO 2 , LiNiO 2 , Li X Ni Y C
o 1-Y O 2 (however, 0.05 ≦ X ≦ 1.10, 0 <Y
Examples include lithium composite oxides represented by ≦ 1.0).

【0012】上記リチウム複合酸化物は、たとえばリチ
ウム、コバルト、ニッケルの炭酸塩を出発原料とし、こ
れら炭酸塩を組成に応じて混合し酸素存在雰囲気下60
0℃〜1000℃の温度範囲で焼成することによって得
られる。なお、出発原料は炭酸塩に限定されず、水酸化
物,酸化物からも合成可能である。
The above lithium composite oxide is prepared by using, for example, a carbonate of lithium, cobalt, or nickel as a starting material, and mixing these carbonates according to the composition in an oxygen-existing atmosphere.
It is obtained by firing in a temperature range of 0 ° C to 1000 ° C. The starting material is not limited to carbonate, and can be synthesized from hydroxide or oxide.

【0013】上記炭酸リチウムは、過充電に際して電流
遮断装置を作動させる電池内圧上昇剤として添加される
ものである。すなわち、上記電池では、過充電状態が進
むと正極中の炭酸リチウムが電気分解されて炭酸ガスが
発生する。このガス発生により電池内圧が上昇し、電流
遮断装置が作動して電流が遮断される。
The above-mentioned lithium carbonate is added as a battery internal pressure increasing agent for activating the current interruption device during overcharge. That is, in the above battery, when the overcharged state progresses, lithium carbonate in the positive electrode is electrolyzed to generate carbon dioxide gas. Due to this gas generation, the internal pressure of the battery rises, and the current interrupt device operates to interrupt the current.

【0014】ここで、炭酸リチウムの電気分解をより速
やかに進行するようにするためには、炭酸リチウムの比
表面積が0.1m2 /g以上であることが重要である。
炭酸リチウムの比表面積が0.1m2 /g未満の場合に
は、炭酸リチウムの分解反応の進行が遅くなり、高い充
電電流で過充電した場合に電流遮断装置の作動が異常反
応の発生に間に合わず、電池破損を招く。
Here, in order to promote the electrolysis of lithium carbonate more quickly, it is important that the specific surface area of lithium carbonate is 0.1 m 2 / g or more.
If the specific surface area of lithium carbonate is less than 0.1 m 2 / g, the progress of the decomposition reaction of lithium carbonate will be slow, and the operation of the current interrupt device will be delayed until the abnormal reaction occurs if overcharged with a high charging current. Without causing damage to the battery.

【0015】なお、炭酸リチウムの表面積は、炭酸リチ
ウム塊をボールミルで粉砕して添加用の炭酸リチウムと
するに際し、ボールミルに仕込む炭酸リチウムの添加量
および粉砕時間を制御することにより調整することがで
きる。
The surface area of the lithium carbonate can be adjusted by controlling the amount of lithium carbonate added to the ball mill and the crushing time when the lithium carbonate lumps are crushed by a ball mill into lithium carbonate for addition. ..

【0016】一方、負極材料としては、リチウムをドー
プ、脱ドープ可能なものであれば良く、熱分解炭素類、
コークス類(ピッチコークス、ニードルコークス、石油
コークス等)、グラファイト類、ガラス状炭素類、有機
高分子化合物焼成体(フェノール樹脂、フラン樹脂等を
適当な温度で焼成して炭素化したもの)、炭素繊維、活
性炭等の炭素材料、あるいは、金属リチウム、リチウム
合金の他、ポリアセチレン、ポリピロール等のポリマー
も使用可能である。
On the other hand, as the negative electrode material, any material that can be doped with lithium and dedoped can be used, and pyrolytic carbons,
Cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organic polymer compound fired bodies (carbonized by firing phenolic resin, furan resin, etc. at an appropriate temperature), carbon In addition to carbon materials such as fibers and activated carbon, metallic lithium and lithium alloys, polymers such as polyacetylene and polypyrrole can also be used.

【0017】電解液としては、例えばリチウム塩を電解
質としこれを有機溶媒に溶解させた電解液が用いられ
る。ここで、有機溶媒としては特に限定されるものでは
ないが、プロピレンカーボネート、エチレンカーボネー
ト、1,2−ジメトキシエタン、γ−ブチルラクトン、
テトラヒドロフラン、2−メチル−テトラヒドロフラ
ン、1,3−ジオキソラン、スルホラン、アセトニトリ
ル、ジメチルカーボネート、ジエチルカーボネート、ジ
プロピルカーボネート等の単独もしくは2種類以上の混
合溶媒が使用可能である。
As the electrolytic solution, for example, an electrolytic solution in which a lithium salt is used as an electrolyte and this is dissolved in an organic solvent is used. Here, the organic solvent is not particularly limited, but propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyl lactone,
Tetrahydrofuran, 2-methyl-tetrahydrofuran, 1,3-dioxolane, sulfolane, acetonitrile, dimethyl carbonate, diethyl carbonate, dipropyl carbonate and the like can be used alone or in combination of two or more kinds.

【0018】電解質としては、LiClO4 ,LiAs
6 ,LiPF6 ,LiBF4 ,LiB(C
6 5 4 ,LiCl,LiBr,CH3 SO3 Li,
CF3 SO3 Li等が使用可能である。
As the electrolyte, LiClO 4 , LiAs
F 6 , LiPF 6 , LiBF 4 , LiB (C
6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li,
CF 3 SO 3 Li or the like can be used.

【0019】本発明の非水電解液二次電池においては、
電流遮断手段が設けられていることが必要であるが、こ
の電流遮断手段としては、通常この種の電池に設けられ
る電流遮断手段がいずれも採用可能であり、電池の内圧
上昇に応じて電流を遮断できるものであれば如何なるも
のであっても良い。
In the non-aqueous electrolyte secondary battery of the present invention,
It is necessary to provide a current interrupting means, but as this current interrupting means, any current interrupting means usually provided in this type of battery can be adopted, and the current is increased in accordance with the increase in the internal pressure of the battery. Anything can be used as long as it can be cut off.

【0020】[0020]

【作用】電池内圧上昇に応じて作動する電流遮断装置を
備えるとともに正極に電池内圧上昇剤として炭酸リチウ
ムが添加された非水電解液二次電池において、炭酸リチ
ウムとして表面積が0.1m2 /g以上と大きなものを
使用すると、高い充電電流で過充電した場合でも、電流
遮断装置が確実に作動し、引き続き発生する急速な温度
上昇や電池破損が防止される。
In a non-aqueous electrolyte secondary battery having a current interrupting device that operates according to an increase in battery internal pressure and lithium carbonate as a battery internal pressure increasing agent added to the positive electrode, the surface area of lithium carbonate is 0.1 m 2 / g. If a large one is used, the current interruption device operates reliably even when overcharged with a high charging current, and the rapid temperature rise and battery damage that occur subsequently are prevented.

【0021】この理由については明らかではないが、以
下の理由によるものと考えられる。すなわち、上記非水
電解液二次電池においては、過充電状態になると炭酸リ
チウムが電気化学的に分解されて炭酸ガスが発生し、こ
の炭酸ガスの発生により電流遮断装置が作動する。
The reason for this is not clear, but it is considered to be due to the following reason. That is, in the non-aqueous electrolyte secondary battery, when it is in an overcharged state, lithium carbonate is electrochemically decomposed to generate carbon dioxide gas, and the carbon dioxide gas is generated, and the current interrupt device operates.

【0022】その際、炭酸リチウムの比表面積が小さい
と、炭酸リチウムは反応面積が小さいために、分解反応
の進行が遅い。このため、高い充電電流で過充電される
と、炭酸リチウムの分解反応が異常反応の発生に間に合
わず電流遮断装置が作動する前に異常反応に至る。ま
た、比表面積の小さい炭酸リチウムは、添加量を増加さ
せることにより、反応面積を大きくすると、今度は電極
内での分極が大きくなり、やはり、炭酸リチウムの分解
反応の進行が遅く、電流遮断装置の作動が異常反応の発
生に間に合わない。
At this time, when the specific surface area of lithium carbonate is small, the reaction area of lithium carbonate is small and the decomposition reaction proceeds slowly. Therefore, when overcharged with a high charging current, the decomposition reaction of lithium carbonate does not catch up with the occurrence of the abnormal reaction, and the abnormal reaction occurs before the current interrupting device operates. In addition, when the reaction area of the lithium carbonate having a small specific surface area is increased by increasing the addition amount, the polarization inside the electrode is increased, and the decomposition reaction of lithium carbonate slows down, so that the current interrupt device Does not catch up with the occurrence of abnormal reaction.

【0023】これに対して、炭酸リチウムの比表面積を
大きくすると炭酸リチウムの反応面積が大きくなり、ま
た、電極内での炭酸リチウム自身の分極も小さくなる。
したがって、高い充電電流で過充電状態にしても炭酸リ
チウムの分解が速やかに起こって確実に電流遮断装置が
作動し、電池の急速な温度上昇を伴う発熱や比較的急速
な破損が防止される。
On the other hand, when the specific surface area of lithium carbonate is increased, the reaction area of lithium carbonate increases, and the polarization of lithium carbonate itself in the electrode also decreases.
Therefore, even if the battery is overcharged with a high charging current, the decomposition of lithium carbonate occurs promptly and the current interrupting device operates reliably, and the heat generation associated with the rapid temperature rise of the battery and the relatively rapid damage are prevented.

【0024】[0024]

【実施例】本発明の好適な実施例について図面を参照し
ながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described with reference to the drawings.

【0025】作製した電池の構造 後述の各実施例において作製した電池の構造を図1に示
す。
Structure of Battery Produced FIG. 1 shows the structure of the battery produced in each Example described later.

【0026】この非水電解液二次電池は、図1に示すよ
うに、負極集電体9に負極活物質を塗布してなる負極1
と、正極集電体10に炭酸リチウムが添加された正極活
物質を塗布してなる正極2とを、セパレータ3を介して
巻回し、この巻回体の上下に絶縁体4を載置した状態で
電池缶5に収納してなるものである。前記電池缶5には
電池蓋7が封口ガスケット6を介してかしめることによ
って取付けられ、それぞれ負極リード11及び正極リー
ド12を介して負極1あるいは正極2と電気的に接続さ
れ、電池の負極あるいは正極として機能するように構成
されている。
As shown in FIG. 1, this non-aqueous electrolyte secondary battery has a negative electrode 1 in which a negative electrode current collector 9 is coated with a negative electrode active material.
A state in which the positive electrode current collector 10 and the positive electrode 2 formed by applying the positive electrode active material to which lithium carbonate is added are wound around the separator 3 and the insulator 4 is placed above and below the wound body. It is stored in the battery can 5. A battery lid 7 is attached to the battery can 5 by caulking through a sealing gasket 6, and is electrically connected to the negative electrode 1 or the positive electrode 2 through a negative electrode lead 11 and a positive electrode lead 12, respectively, and a negative electrode of the battery or It is configured to function as a positive electrode.

【0027】そして、本実施例の電池では、前記正極リ
ード12は電池遮断用薄板8に溶接されて取り付けら
れ、この電流遮断用薄板8を介して電池蓋7との電気的
接続が図られている。このような構成を有する電池にお
いて、電池内部の圧力が上昇すると、前記電流遮断等薄
板8が押し上げられた変形する。すると、正極リード1
2が電流遮断用薄板8と溶接された部分を残して切断さ
れ、電流が遮断される。
In the battery of this embodiment, the positive electrode lead 12 is attached by welding to the thin plate 8 for cutting off the battery, and is electrically connected to the battery lid 7 through the thin plate 8 for breaking off the current. There is. In the battery having such a structure, when the pressure inside the battery rises, the thin plate 8 for current interruption is pushed up and deformed. Then, the positive electrode lead 1
2 is cut off except for the portion welded to the current breaking thin plate 8 to cut off the current.

【0028】実施例1 正極を次のように作製した。先ず、正極活物質(LiC
oO2 )を得るには、炭酸リチウムと炭酸コバルトをL
i/Co=1となるように混合し、空気中で900℃、
5時間焼成して得た。この正極活物質料についてX線回
折測定を行った結果、JCPDSカードのLiCoO2
と良く一致していた。その後、自動乳鉢を用いて粉砕し
てLiCoO2 を得た。
Example 1 A positive electrode was prepared as follows. First, the positive electrode active material (LiC
In order to obtain oO 2 ) lithium carbonate and cobalt carbonate
i / Co = 1 and mixed in air at 900 ° C,
It was obtained by firing for 5 hours. As a result of X-ray diffraction measurement of this positive electrode active material, LiCoO 2 of JCPDS card
Was in good agreement with. Then, to obtain a LiCoO 2 was pulverized using an automatic mortar.

【0029】このようにして得られたLiCoO2 に比
表面積が5.10m2 /gである炭酸リチウムを添加、
混合してLiCoO2 95.0重量%・炭酸リチウム
5.0重量%の混合物を調整し、このLiCoO2 ・炭
酸リチウム混合物91重量%、導電剤としてグラファイ
ト6重量%、結着剤としてポリフッ化ビニリデン3重量
%の割合で混合して正極合剤を作成し、これをN−メチ
ル−2−ピロリドンに分散してスラリー状とした。
LiCoO 2 thus obtained was added with lithium carbonate having a specific surface area of 5.10 m 2 / g,
A mixture of 95.0% by weight of LiCoO 2 and 5.0% by weight of lithium carbonate was prepared by mixing, and 91% by weight of this mixture of LiCoO 2 and lithium carbonate, 6% by weight of graphite as a conductive agent, and polyvinylidene fluoride as a binder. 3% by weight was mixed to prepare a positive electrode mixture, which was dispersed in N-methyl-2-pyrrolidone to form a slurry.

【0030】次に、このスラリーを正極集電体10であ
る帯状のアルミニウム箔の両面に塗布し、乾燥後ロール
プレス機で圧縮成形して正極2を作成した。
Next, this slurry was applied on both sides of a strip-shaped aluminum foil as the positive electrode current collector 10, dried and then compression-molded by a roll press machine to form a positive electrode 2.

【0031】次に、負極を次のように作製した。負極活
物質には、出発原料に石油ピッチを用い、これに酸素を
含む官能基を10〜20重量%導入(いわゆる酸素架
橋)した後、不活性ガス気流中1000℃で焼成して得
たガラス状炭素に近い性質の軟黒鉛炭素材料を用いた。
この材料についてX線回折測定を行ったところ、(00
2)面の面間隔は3.76Åで、真比重は1.58g/
cm2であった。
Next, a negative electrode was prepared as follows. Glass obtained by using petroleum pitch as a starting material for the negative electrode active material, introducing 10 to 20% by weight of a functional group containing oxygen (so-called oxygen cross-linking), and then firing at 1000 ° C. in an inert gas stream. A soft graphite carbon material having properties close to those of linear carbon was used.
When X-ray diffraction measurement was performed on this material, (00
2) Surface spacing is 3.76Å and true specific gravity is 1.58g /
It was cm 2 .

【0032】このようにして得られた炭素材料を90重
量%,結着材としてポリフッ化ビニリデン10重量%の
割合で混合して負極合剤を作成し、これをN−メチル−
2−ピロリドンに分散させてスラリー状とした。次に、
このスラリーを負極集電体9である帯状の銅箔の両面に
塗布し、乾燥後ロールプレス機で圧縮成形し、負極1を
作成した。
90% by weight of the carbon material thus obtained and 10% by weight of polyvinylidene fluoride as a binder were mixed to prepare a negative electrode mixture, and this was mixed with N-methyl-
It was dispersed in 2-pyrrolidone to form a slurry. next,
This slurry was applied to both sides of a strip-shaped copper foil which is the negative electrode current collector 9, dried and then compression-molded with a roll press machine to prepare the negative electrode 1.

【0033】この帯状の正極2、負極1及び25μmの
微孔性ポリプロピレンフィルムからなるセパレータ3を
順に積層してから渦巻き型に多数回巻回することにより
巻回体を作成した。
The strip-shaped positive electrode 2, negative electrode 1 and separator 25 made of a microporous polypropylene film having a thickness of 25 μm were laminated in this order and then spirally wound many times to form a wound body.

【0034】次に、ニッケルメッキを施した鉄製の電池
缶5の底部に絶縁板4を挿入し、上記巻回体を収納し
た。そして、負極の集電をとるためにニッケル製の負極
リード11の一端を負極1に圧着し、他端を電池缶に溶
接した。また、正極の集電を取るためにアルミニウム製
の正極リード12の一端を正極2に取付け、他端を電流
遮断用薄板8を介して電池蓋7と電気的に接続した。
Next, the insulating plate 4 was inserted into the bottom of the nickel-plated iron battery can 5 to house the wound body. Then, in order to collect the current of the negative electrode, one end of a negative electrode lead 11 made of nickel was pressure-bonded to the negative electrode 1, and the other end was welded to a battery can. Further, one end of a positive electrode lead 12 made of aluminum was attached to the positive electrode 2 in order to collect current from the positive electrode, and the other end was electrically connected to the battery lid 7 via a thin plate 8 for cutting off current.

【0035】そして、この電池缶5の中に、プロピレン
カーボネート50容量%とジエチルカーボネート50容
量%の混合溶媒にLiPF6 1モルを溶解させた電解液
を注入した。そしてアスファルトを塗布した絶縁封口ガ
スケット6を介して電池缶5をかしめることで、電池蓋
7を固定し、直径14mm,高さ50mmの円筒型非水
電解液二次電池(実施例電池1)を作成した。
Then, into the battery can 5, an electrolytic solution in which 1 mol of LiPF 6 was dissolved in a mixed solvent of 50% by volume of propylene carbonate and 50% by volume of diethyl carbonate was injected. Then, the battery lid 5 is fixed by caulking the battery can 5 via the insulating sealing gasket 6 coated with asphalt, and the cylindrical non-aqueous electrolyte secondary battery having a diameter of 14 mm and a height of 50 mm (Example battery 1) It was created.

【0036】実施例2〜実施例7 正極に添加する炭酸リチウムとして表1に示す比表面積
のものを使用する以外は実施例1と同様にして円筒型非
水電解液二次電池(実施例電池2〜実施例電池7)を作
成した。
Examples 2 to 7 Cylindrical nonaqueous electrolyte secondary batteries (Example batteries) were used in the same manner as in Example 1 except that lithium carbonate having a specific surface area shown in Table 1 was used as the lithium carbonate added to the positive electrode. 2 to Example batteries 7) were prepared.

【0037】[0037]

【表1】 [Table 1]

【0038】比較例1 正極に添加する炭酸リチウムとして比表面積が0.05
2 /gのものを使用する以外は実施例1と同様にして
円筒型非水電解液二次電池(比較例電池1)を作成し
た。
Comparative Example 1 Lithium carbonate added to the positive electrode has a specific surface area of 0.05.
A cylindrical non-aqueous electrolyte secondary battery (Comparative Example Battery 1) was produced in the same manner as in Example 1 except that m 2 / g was used.

【0039】比較例2 正極に添加する炭酸リチウムとして比表面積が0.05
2 /gのものを使用してLiCoO2 90重量%・炭
酸リチウム10重量%混合物を調整し、この混合物を9
1重量%、導電材としてグラファイト6重量%、結着材
としてポリフッ化ビニリデン3重量%の割合で混合して
正極合剤を作成した以外は実施例1と同様にして円筒型
非水電解液二次電池(比較例電池2)を作成した。
Comparative Example 2 The specific surface area of lithium carbonate added to the positive electrode was 0.05.
A mixture of 90% by weight of LiCoO 2 and 10% by weight of lithium carbonate was prepared using m 2 / g, and the mixture was mixed with 9%.
A cylindrical non-aqueous electrolyte solution 2 was prepared in the same manner as in Example 1 except that 1% by weight, 6% by weight of graphite as a conductive material, and 3% by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture. A next battery (Comparative battery 2) was prepared.

【0040】比較例3 正極に添加する炭酸リチウムとして比表面積が0.05
2 /gのものを使用して、LiCoO2 85重量%・
炭酸リチウム15重量%混合物を調整し、この混合物を
91重量%、導電材としてグラファイト6重量%、結着
材としてポリフッ化ビニリデン3重量%の割合で混合し
て正極合剤を作成した以外は実施例1と同様にして円筒
型非水電解液二次電池(比較例電池2)を作成した。
Comparative Example 3 Lithium carbonate added to the positive electrode has a specific surface area of 0.05.
m 2 / g, using LiCoO 2 85% by weight
A mixture of 15% by weight of lithium carbonate was prepared, and this mixture was mixed at a ratio of 91% by weight, 6% by weight of graphite as a conductive material, and 3% by weight of polyvinylidene fluoride as a binder to prepare a positive electrode mixture. A cylindrical non-aqueous electrolyte secondary battery (Comparative Example Battery 2) was prepared in the same manner as in Example 1.

【0041】なお、実施例1〜実施例7および比較例1
〜比較例3において使用した炭酸リチウムの比表面積
は、炭酸リチウム塊をボールミルにて粉砕して添加用炭
酸リチウムとする際に、ボールミルに仕込む炭酸リチウ
ムの投入量および粉砕時間を変えることによって調整し
た。また、炭酸リチウムの比表面積の測定はBET1点
法に準じて行った。
Incidentally, Examples 1 to 7 and Comparative Example 1
-The specific surface area of the lithium carbonate used in Comparative Example 3 was adjusted by changing the charging amount and the crushing time of the lithium carbonate charged into the ball mill when the lithium carbonate lump was crushed by the ball mill into the lithium carbonate for addition. .. The specific surface area of lithium carbonate was measured according to the BET one-point method.

【0042】上記に示した実施例1〜実施例7および比
較例1〜比較例3において作成された電池各20個につ
いて、1.5A、3.7Aの充電電流で過充電状態に
し、電池の急速な温度上昇を伴う発熱や比較的急速な破
損が生じるといった電池の損傷の発生率を調査した。そ
の結果を表2に示す。
Each of the 20 batteries prepared in Examples 1 to 7 and Comparative Examples 1 to 3 shown above was overcharged with a charging current of 1.5 A and 3.7 A, and The incidence of battery damage such as heat generation with rapid temperature rise and relatively rapid damage was investigated. The results are shown in Table 2.

【0043】[0043]

【表2】 [Table 2]

【0044】表2に示すように、充電電流を1.5Aに
設定した場合には、実施例電池1〜実施例電池7および
比較例電池1〜比較例電池3は、ともに電池損傷の発生
は見られなかった。しかし、充電電流をさらに3.7A
まで高くすると実施例電池1〜実施例電池7では、損傷
の発生は見られなかったが、比較例電池1〜比較例電池
3においては損傷の発生が見られた。
As shown in Table 2, when the charging current is set to 1.5 A, the battery of Examples 1 to 7 and the batteries of Comparative 1 to 1 are not damaged. I couldn't see it. However, the charging current is 3.7A.
When the temperature was raised to 0, no damage was found in Example battery 1 to Example battery 7, but damage was found in Comparative example battery 1 to Comparative example battery 3.

【0045】したがって、このことから、正極に添加す
る炭酸リチウムの比表面積を0.1m2 /g以上にする
ことにより、高い充電電流で過充電状態にした場合でも
急速な温度上昇を伴う発熱や比較的急速な損傷が発生し
ない非水電解液二次電池が得られることがわかった。ま
た、特に、比較例電池2,比較例電池3の結果から、炭
酸リチウムの比表面積が0.1m2 /g未満である場合
には、炭酸リチウムの添加量を多くして反応面積を大き
くしても、異常反応を完全に防止することはできないこ
ともわかった。
Therefore, by making the specific surface area of the lithium carbonate added to the positive electrode to be 0.1 m 2 / g or more, heat generation accompanied by a rapid temperature rise even when the battery is overcharged with a high charging current. It was found that a non-aqueous electrolyte secondary battery in which relatively rapid damage does not occur can be obtained. Further, especially from the results of Comparative Example Battery 2 and Comparative Example Battery 3, when the specific surface area of lithium carbonate is less than 0.1 m 2 / g, the amount of lithium carbonate added was increased to increase the reaction area. However, it was also found that the abnormal reaction cannot be completely prevented.

【0046】なお、本実施例では、正極活物質としてL
iCoO2 を用いたが、他の正極活物質たとえば、Li
X NiY Co(1-Y) 2 (ただし、0.05≦X≦1.
10、0<Y≦1.0)を使用した場合でも本発明は同
様に効果を発揮した。
In this example, L was used as the positive electrode active material.
iCoO 2 was used, but other positive electrode active materials such as Li
X Ni Y Co (1-Y) O 2 (where 0.05 ≦ X ≦ 1.
Even when 10, 0 <Y ≦ 1.0) was used, the present invention exhibited the same effect.

【0047】[0047]

【発明の効果】以上の説明からも明らかなように、本発
明は、電池内圧上昇に応じて作動する電流遮断装置を備
えるとともに正極に電池内圧上昇剤として炭酸リチウム
が添加された非水電解液二次電池において、上記炭酸リ
チウムとして比表面積が0.1m2 /gのものを使用し
ているので、高い充電電流で過充電状態としても、電流
遮断装置が確実に作動し、破損を防止することが可能で
ある。
As is apparent from the above description, the present invention is a non-aqueous electrolytic solution that includes a current interrupting device that operates in response to an increase in battery internal pressure and has lithium carbonate added to the positive electrode as a battery internal pressure increasing agent. In the secondary battery, since the lithium carbonate having a specific surface area of 0.1 m 2 / g is used, the current interrupting device operates reliably even if the battery is overcharged with a high charging current to prevent damage. It is possible.

【0048】したがって、本発明は、高エネルギー密度
でサイクル特性に優れ、且つ安全性の高い非水電解液二
次電池を提供することができ、その工業的及び商業的価
値は大である。
Therefore, the present invention can provide a non-aqueous electrolyte secondary battery with high energy density, excellent cycle characteristics and high safety, and its industrial and commercial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】 非水電解液二次電池の構成例を示す概略断面
図である。
FIG. 1 is a schematic cross-sectional view showing a configuration example of a non-aqueous electrolyte secondary battery.

【符号の説明】[Explanation of symbols]

1・・・負極 2・・・正極 3・・・セパレータ 8・・・電流遮断用薄膜 1 ... Negative electrode 2 ... Positive electrode 3 ... Separator 8 ... Current blocking thin film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 LiX MO2 (但し、Mは1種以上の遷
移金属を表し、0.05≦X≦1.10である)と炭酸
リチウムからなる正極と、リチウムをドープかつ脱ドー
プし得る負極と、非水電解液と、電池内圧上昇に応じて
作動する電流遮断手段とをそれぞれ備えてなり、 上記炭酸リチウムの比表面積が0.1m2 /g以上であ
ることを特徴とする非水電解液二次電池。
1. A positive electrode comprising Li X MO 2 (wherein M represents one or more kinds of transition metals and 0.05 ≦ X ≦ 1.10) and lithium carbonate, and lithium is doped and dedoped. The negative electrode to be obtained, a non-aqueous electrolytic solution, and a current interrupting device that operates in response to an increase in internal pressure of the battery, respectively, and the lithium carbonate has a specific surface area of 0.1 m 2 / g or more. Water electrolyte secondary battery.
JP34194091A 1991-04-26 1991-11-30 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3303319B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP34194091A JP3303319B2 (en) 1991-11-30 1991-11-30 Non-aqueous electrolyte secondary battery
EP92909565A EP0536425B2 (en) 1991-04-26 1992-04-24 Nonaqueous electrolyte secondary battery
DE69205542T DE69205542T3 (en) 1991-04-26 1992-04-24 SECONDARY BATTERY WITH NON-AQUE ELECTROLYTE.
US07/962,583 US5427875A (en) 1991-04-26 1992-04-24 Non-aqueous electrolyte secondary cell
PCT/JP1992/000541 WO1992020112A1 (en) 1991-04-26 1992-04-24 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34194091A JP3303319B2 (en) 1991-11-30 1991-11-30 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH05151997A true JPH05151997A (en) 1993-06-18
JP3303319B2 JP3303319B2 (en) 2002-07-22

Family

ID=18349941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34194091A Expired - Lifetime JP3303319B2 (en) 1991-04-26 1991-11-30 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3303319B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110251A (en) * 2000-09-27 2002-04-12 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
WO2009128410A1 (en) * 2008-04-17 2009-10-22 トヨタ自動車株式会社 Lithium secondary battery and production method thereof
KR101222345B1 (en) * 2006-03-03 2013-01-14 삼성에스디아이 주식회사 Electrode Assembly for lithium rechargeable battery and Lithium rechargeable battery using the same
WO2019022422A1 (en) * 2017-07-28 2019-01-31 주식회사 엘지화학 Secondary battery cathode and lithium secondary battery comprising same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110251A (en) * 2000-09-27 2002-04-12 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
KR101222345B1 (en) * 2006-03-03 2013-01-14 삼성에스디아이 주식회사 Electrode Assembly for lithium rechargeable battery and Lithium rechargeable battery using the same
WO2009128410A1 (en) * 2008-04-17 2009-10-22 トヨタ自動車株式会社 Lithium secondary battery and production method thereof
JP2009259604A (en) * 2008-04-17 2009-11-05 Toyota Motor Corp Lithium secondary battery and its manufacturing method
JP4636341B2 (en) * 2008-04-17 2011-02-23 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
US9531033B2 (en) 2008-04-17 2016-12-27 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and manufacturing method therefor
WO2019022422A1 (en) * 2017-07-28 2019-01-31 주식회사 엘지화학 Secondary battery cathode and lithium secondary battery comprising same
US11145860B2 (en) 2017-07-28 2021-10-12 Lg Chem, Ltd. Positive electrode for secondary battery and lithium secondary battery including the same

Also Published As

Publication number Publication date
JP3303319B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
JP3010781B2 (en) Non-aqueous electrolyte secondary battery
EP0536425B1 (en) Nonaqueous electrolyte secondary battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP2009048981A (en) Nonaqueous electrolyte secondary battery
KR20020080448A (en) Positive electrode active material and nonaqueous electrolyte secondary cell
JPH097638A (en) Nonaqueous electrolytic secondary battery
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JP2010186689A (en) Nonaqueous electrolyte secondary battery
JP2006134758A (en) Secondary battery
JP3010783B2 (en) Non-aqueous electrolyte secondary battery
JP3103899B2 (en) Non-aqueous electrolyte secondary battery
JP2734822B2 (en) Non-aqueous electrolyte secondary battery
JPH0997626A (en) Nonaqueous electrolytic battery
JP3303319B2 (en) Non-aqueous electrolyte secondary battery
US20020197531A1 (en) Negative electrode active material and nonaqueous electrolyte battery
JPH09213375A (en) Non-aqueous electrolyte secondary battery
JP3267867B2 (en) Organic electrolyte lithium secondary battery
JP2002117903A (en) Nonaqueous electrolyte battery
JP3230279B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2003077478A (en) Lithium ion secondary battery
JP4798742B2 (en) Non-aqueous secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP2002025607A (en) Battery
JPH05151998A (en) Nonaqueous electrolyte secondary battery
JP2010171019A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10