JPH05151891A - Manufacture of x-ray tube rotary anode - Google Patents

Manufacture of x-ray tube rotary anode

Info

Publication number
JPH05151891A
JPH05151891A JP4139696A JP13969692A JPH05151891A JP H05151891 A JPH05151891 A JP H05151891A JP 4139696 A JP4139696 A JP 4139696A JP 13969692 A JP13969692 A JP 13969692A JP H05151891 A JPH05151891 A JP H05151891A
Authority
JP
Japan
Prior art keywords
ray tube
rotating
rotating anode
melting
focal track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4139696A
Other languages
Japanese (ja)
Other versions
JP3345439B2 (en
Inventor
Peter Dr Roedhammer
レートハンマー ペーター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metallwerk Plansee GmbH
Original Assignee
Metallwerk Plansee GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3503501&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05151891(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Metallwerk Plansee GmbH filed Critical Metallwerk Plansee GmbH
Publication of JPH05151891A publication Critical patent/JPH05151891A/en
Application granted granted Critical
Publication of JP3345439B2 publication Critical patent/JP3345439B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/14Manufacture of electrodes or electrode systems of non-emitting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/085Target treatment, e.g. ageing, heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • X-Ray Techniques (AREA)
  • Powder Metallurgy (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Light Receiving Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To reduce porosity and impurity by an after treatment of a focal track area with partial and superficial fusion at a specified depth. CONSTITUTION: A rotating anode body with a tangsten-rhenium focat track area is rotatably fixed to a supporting axis, and inserted in a piston which is highly vacuumed and can exhaust. First a temperature of the rotating anode rotating slowly is raised to a specific temperature by diffusion light elecrtron beam. The rotating anode is then degassed. In addition an output of the electoron beam is raised, so that a surface can be fused by 3 continuous rotations of the rotating anode. Thereby a fused area with a specified width mm and a depth of 1.5mm is produced. The fused area flatly placed each time by an arrangement is condensed smoothly when cooled subsequently, and as a result, when cutting to a specified mm by next polishing a smooth focal track coated film in compliance with requirements can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高溶融金属例えばタン
グステン又はタングステン−レニウムからなる粉末冶金
法又はCVD又はPVD法により製造されたリング状の
焦点軌道領域を有するX線管回転陽極の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an X-ray tube rotating anode having a ring-shaped focal track region produced by a powder metallurgy method or a CVD or PVD method, which is made of a highly molten metal such as tungsten or tungsten-rhenium. Regarding

【0002】[0002]

【従来の技術】X線管回転陽極の基本材料としては今日
高溶融金属又はグラファイト、又はこの両材料の複合体
が使用されている。X線の本来の発生領域、すなわち焦
点軌道領域はタングステン、モリブデン又はその合金か
らなる。金属製X線管回転陽極は形状、使用材料並びに
要求される特性の各理由から粉末冶金法に基づき製造さ
れる。焦点軌道領域自体は粉末冶金法又は最近増々使用
されているCVD又はPVD被覆法によっても製造され
る。この種の回転陽極又は焦点軌道領域は最終仕上げ状
態で理論密度で測定して0.1〜10%の範囲の残留気
孔率を有する。この種のX線管回転陽極は欧州特許出願
公開第0116385号明細書に記載されているが、こ
の場合そこに記載されている方法によれば回転陽極は焦
点軌道層の塗布後選択的に後及び熱処理される。
2. Description of the Related Art High melting metals or graphite, or a composite material of both materials, is used as a basic material for an X-ray tube rotating anode. The original generation area of X-rays, that is, the focal track area is made of tungsten, molybdenum, or an alloy thereof. The metal X-ray tube rotary anode is manufactured based on the powder metallurgy method for each reason of shape, material used and required properties. The focal track area itself is also produced by powder metallurgy or by the more and more recently used CVD or PVD coating methods. Rotating anodes or focal track areas of this kind have a residual porosity in the range of 0.1 to 10% in the final finished state, measured by theoretical density. An X-ray tube rotary anode of this kind is described in EP-A-0116385, in which the rotary anode is selectively post-coated after application of the focal track layer according to the method described therein. And heat treated.

【0003】この残留気孔率は、原則として高真空中で
行われるX線管回転陽極の運転にとって一連の有害な欠
点を有する。この多孔性は気孔中に密閉されたガスの放
出を惹起する。このことはまた陽極の溶封を生じさせる
不所望の管の短絡と共に管の真空中でのガスの放出を招
く。X線管の出力定格にとって極めて重要な熱伝導率は
ほぼ気孔率の二乗で低下する。焦点軌道表面の気孔率は
表面の粗面度を高め、自己吸収の故にX線収量を減少さ
せる。しかし多孔性の表面は表面から粒子が吹き出す危
険性をも意味し、このことは脱ガスのマイナスの作用を
更に著しく強める。
This residual porosity has a series of detrimental drawbacks for the operation of X-ray tube rotating anodes, which are in principle carried out in high vacuum. This porosity causes the release of gas trapped in the pores. This also leads to the release of gas in the vacuum of the tube as well as undesired shorting of the tube which causes the anode to seal. The thermal conductivity, which is very important for the power rating of an X-ray tube, decreases with the square of the porosity. The porosity of the focal track surface increases the surface roughness and reduces the X-ray yield due to self-absorption. However, a porous surface also means the risk of particles expelling from the surface, which further aggravates the negative effects of degassing.

【0004】接合部における個々の結晶子の力学的接合
は一方では多孔性によって、また一方では粒界での冶金
学上の状態、特に粒界での不純物によって影響される。
しかし粉末冶金製造法の途中で粒界における金属に不溶
性の不純物の凝縮は免れ得ない。これはX線管回転陽極
を運転する際の別の障害因子を意味する。
The mechanical joining of the individual crystallites at the joint is influenced, on the one hand, by the porosity and, on the other hand, by the metallurgical conditions at the grain boundaries, especially impurities at the grain boundaries.
However, in the course of the powder metallurgy manufacturing method, metal-insoluble impurities at grain boundaries are inevitably condensed. This represents another impediment to operating a rotating X-ray tube anode.

【0005】粉末冶金法により製造される(特にタング
ステン−レニウムからなる)焦点軌道被膜は場合によっ
ては部分的に脆い金属間タングステン−レニウム相、い
わゆるシグマ相を有する。これは粉末バッチにおいて個
々の合金成分が不十分に混合することによって不均一性
の原因となる。更に運転中の回転陽極の回避不能の熱衝
撃負荷はこれに、またこれから始まる領域内に、焦点軌
道領域内のX線収量を減少させることになる極めて高い
好ましくない亀裂をもたらす。
Focal orbital coatings (particularly composed of tungsten-rhenium) produced by powder metallurgy have in some cases a partially brittle intermetallic tungsten-rhenium phase, the so-called sigma phase. This causes inhomogeneities due to poor mixing of the individual alloy components in the powder batch. In addition, the unavoidable thermal shock loading of the rotating anode during operation leads to this and also in the region which starts from this, a very high undesired crack which will reduce the X-ray yield in the focal track region.

【0006】上述した各種のしばしば生じる障害は耐久
時間を制限し、個々の場合にX線管回転陽極を早期に故
障させる。
The various frequent failures mentioned above limit the endurance time and lead to premature failure of the X-ray tube rotating anode in each case.

【0007】[0007]

【発明が解決しようとする課題】従って本発明の課題
は、上記の諸欠点を排除又は更に著しく減少せることに
ある。特に気孔率及び不純物(特に焦点軌道領域中の粒
界における)を減少させることにある。従来の製造法
(粉末冶金法及びCVD又はPVD法)はその経済性及
びそれによりもたらされる良好な材料特性の故に保持さ
れるべきである。
The object of the present invention is therefore to eliminate or even significantly reduce the abovementioned drawbacks. Especially to reduce porosity and impurities, especially at grain boundaries in the focal track region. Conventional manufacturing methods (powder metallurgy and CVD or PVD methods) should be retained because of their economics and the good material properties they provide.

【0008】[0008]

【課題を解決するための手段】この課題は本発明によれ
ば、X線管回転陽極の焦点軌道領域を1.5mm以下の
深度で局部的、表面的融解により後処理する方法によっ
て解決される。
This problem is solved according to the invention by a method of post-treatment of the focal track region of an X-ray tube rotating anode by a local and superficial melting at a depth of less than 1.5 mm. ..

【0009】[0009]

【作用効果】本発明による表面的融解による後処理は、
実際に選択された方法に相応して、高エネルギーの電子
又は光子の集束光線の作用によって一定の作用深度まで
X線管回転陽極の焦点軌道領域の表面上で行われる。融
解と共にこの領域内には変質された金属接合部が形成さ
れ、気孔率及び不純物の量は、特に粒界範囲において決
定的に低下される。著しい部分的融解及び融解後の極め
て急激な冷却のため通常の溶融冶金法とは異なり粒状組
織は比較的整然としたままである。達成可能の粒径は粉
末冶金法又は塗布法により製造された焦点軌道領域で一
般的であるものに相当する。
[Advantageous effects] The post-treatment by surface melting according to the present invention is
Depending on the method actually chosen, it is carried out on the surface of the focal track region of the X-ray tube rotating anode by the action of a focused beam of energetic electrons or photons to a certain working depth. Degraded metal joints are formed in this region with melting and the porosity and the amount of impurities are decisively reduced, especially in the grain boundary range. The grain structure remains relatively orderly, unlike conventional melt metallurgy processes, due to the significant partial melting and the very rapid cooling after melting. Achievable particle sizes correspond to those typical in focal track regions produced by powder metallurgy or coating processes.

【0010】融解は1回又は数回連続して行うことがで
き、最終状態で得ることのできる焦点軌道領域の金属構
造に影響を及ぼす。残留気孔率を排除することにより冒
頭に挙げたX線管回転陽極を運転する際のこれまでの障
害も消滅する。
The melting can be carried out once or several times in succession and affects the metallic structure of the focal track region which can be obtained in the final state. Eliminating the residual porosity also eliminates the previous obstacles in operating the rotating X-ray tube anode described above.

【0011】融解工程に対して適切な集光可能のエネル
ギー源としてはレーザ、粒子線、特に電子ビームを製造
する装置、並びに高集光可能の高出力灯を挙げることが
できる。個々の場合に選択されるエネルギー源にとって
放射されたエネルギー/熱の材料により制限される相転
移度は重要である。更に装置に対する費用及び工程処
理、例えば保護ガス下又は高真空中での処理も問題であ
る。0.3〜20μm(>80%)のスペクトル領域に
おける電磁波に対する高溶融金属の高い反射能のため、
通常≧60%の作用度を有する電子ビームを使用するこ
とが有利である。
Suitable focusable energy sources for the melting process include lasers, devices for producing particle beams, especially electron beams, and high power lamps capable of high focusing. The degree of phase transition, which is limited by the energy / heat material emitted, is important for the energy source chosen in each case. Furthermore, the expense and processing of the equipment, such as processing under protective gas or in high vacuum, is a problem. Due to the high reflectivity of high melting metals for electromagnetic waves in the spectral region of 0.3-20 μm (> 80%),
It is advantageous to use an electron beam, which usually has an activity of ≧ 60%.

【0012】本発明方法により目的とされる融解深度
は、運転中に見込まれる焦点軌道領域の熱機械的負荷に
同調して測定されるべきである。0.05〜1.5mm
の融解深度は使用可能であることが判明した。応用事例
の大多数において0.5〜0.8mmの融解深度は最良
の費用/利用比を提供する。
The melting depth targeted by the method according to the invention should be measured in synchronism with the thermomechanical load of the focal track region which is expected during operation. 0.05-1.5 mm
The melting depth of was found to be usable. A melting depth of 0.5-0.8 mm provides the best cost / utilization ratio in the majority of applications.

【0013】融解及び迅速な冷却工程はそれぞれ工程処
理法に基づき非晶質であるか、極めて細粒で等方性であ
るか、細柱状又は粗結晶性の構造状態を生じる。その際
構造中に生じる応力はその後に行われる900〜160
0℃の範囲での真空焼きなましにより排除することがで
きる。
The melting and rapid cooling steps each produce an amorphous, extremely fine-grained, isotropic, columnar or coarse crystalline structural state, depending on the process method. The stress that occurs in the structure is then 900-160.
It can be eliminated by vacuum annealing in the range of 0 ° C.

【0014】融解処理は焦点軌道領域内に粗表面深度の
少ない極めて平滑な表面を生じる。それでもなおX線管
回転陽極の表面の平滑性に対する極めて高い要求の故
に、焦点軌道領域内で一般に融解処理後に表面を研磨す
ることは回避することができない。
The melting process produces an extremely smooth surface with a low rough surface depth in the focal track region. Nevertheless, due to the extremely high demands on the smoothness of the surface of the X-ray tube rotating anode, it is generally unavoidable to polish the surface in the focal track region after the melting process.

【0015】[0015]

【実施例】本発明方法を実施例に基づき以下詳述する。
通常の粉末冶金法で製造された、タングステン−レニウ
ム焦点軌道領域を有する回転陽極本体を(その後の運転
中に於いてもそうであるように)回転可能の支承軸に取
り付け、高真空で排気可能のピストン内に装入する。そ
の際回転陽極の焦点軌道領域を集光する白熱放出陰極に
対して配置する。まず緩慢に回転する回転陽極を散光電
子ビームにより一様に約800℃に上げる。その際回転
陽極を脱気する、すなわち異原子及び十分に粘着しない
物質粒子を表面から除去する。更に電子ビームを長さ2
0mm、幅2mmのラインフォーカス並びに6kWの出
力にまで上げ、毎分3〜6回転で回転する回転陽極を連
続して3回転して表面を溶融する。その際幅約17m
m、平均深度0.7mmの融解帯域が生じる。配列によ
ってその都度水平に存在する融解部は引続いての冷却時
に平滑に凝結し、その結果次の研磨により0.2〜0.
3mmに切除した際にはすでに要求に適応した平滑な焦
点軌道被覆表面が得られる。
EXAMPLES The method of the present invention will be described in detail below based on examples.
A rotating anode body with tungsten-rhenium focal orbital area manufactured by conventional powder metallurgy method is mounted on a rotatable bearing shaft (as it is during subsequent operation) and can be evacuated at high vacuum Insert into the piston of. At that time, the focal track region of the rotating anode is arranged with respect to the incandescent emission cathode that collects light. First, the slowly rotating rotating anode is uniformly heated to about 800 ° C. by the scattered electron beam. The rotating anode is then degassed, that is to say that foreign atoms and particles of substances which do not stick sufficiently are removed from the surface. In addition, the electron beam length is 2
A line focus of 0 mm and a width of 2 mm and an output of 6 kW are raised, and a rotating anode rotating at 3 to 6 revolutions per minute is continuously rotated three times to melt the surface. At that time, width is about 17m
m, average depth 0.7 mm melting zone occurs. Due to the arrangement, the horizontally present melted portions each condense smoothly during the subsequent cooling, so that the subsequent polishing results in 0.2-0.
When cut to 3 mm, a smooth focal track coating surface is already obtained which meets the requirements.

【0016】この種の溶融された焦点軌道領域の構造は
平均直径150μmの方向付けられた凝結結晶子を有す
る。これは決して気孔を示さず、個々の粒子又は結晶子
の優れた結合に対して確実に相互寄与する。
Structures of the fused focal track region of this kind have oriented condensed crystallites with an average diameter of 150 μm. It never exhibits porosity and certainly contributes to the excellent binding of individual particles or crystallites.

【0017】本発明により製造されたX線管回転陽極を
先行技術により製造された回転陽極と比較した。それぞ
れのX線管回転陽極の応力を後の運転中に完全にシミュ
レータで同じ状況を作ることのできるいわゆる管の試験
台中で両比較回転陽極を以下の応力サイクル、すなわち
電子ビーム出力:60kW、焦点:12×1.8m
2 、照射サイクル:それぞれ0.1秒間中断(X線撮
影に相応して)しながら7×0.1秒間及び冷却59秒
間で総撮影数1200でテストした。このテスト終了後
両比較回転陽極をその表面的構造の変化に関して走査電
子顕微鏡で検査し、また表面粗面度に対する走査ピンに
よっても測定した。先行技術による回転陽極の場合平均
粗面深度Raは5.5mmであったが、本発明による回
転陽極は平均粗面深度Ra=3.5μmを有していた。
本発明による回転陽極の材料疲労による粗面化は、先行
技術による回転陽極の場合よりも僅かであるばかりでな
く、全焦点軌道領域に対して一層均一であった。すなわ
ち本発明によるX線管回転陽極は先行技術による比較陽
極よりも一様であり、また僅かな亀裂幅を有する僅少な
緊密亀裂網目を示した。本発明による回転陽極は極めて
高い真空安定性を有する。これによりいわゆるウォーミ
ングアップ期間を明らかに短縮することができ、その間
に管中の回転陽極は電子ビームの下に、排出可能の残ガ
スを連続してポンプ排出しながら温められまた初めて運
転条件下にもたらされる。運転中の回転陽極の電気安定
性は申し分ない。テスト終了時に測定された各撮影のX
線投与量は、本発明で製造された回転陽極の場合先行技
術による比較陽極の場合よりも20%高かった。X線管
回転陽極の寿命は前記の品質改良により比較陽極のそれ
よりも明らかに高かった。
The X-ray tube rotating anode produced according to the invention was compared with the rotating anode produced according to the prior art. Both comparative rotating anodes were subjected to the following stress cycles in a so-called tube test stand, in which the stresses of the respective X-ray tube rotating anodes could be made completely identical in the simulator during later operation: electron beam power: 60kW, focus : 12 × 1.8m
m 2 , irradiation cycle: 1200 total exposures were tested for 7 × 0.1 seconds and 59 seconds cooling with 0.1 second interruptions (corresponding to radiography) respectively. After the end of this test, both comparative rotating anodes were examined by scanning electron microscopy for changes in their surface texture and also by scanning pins for surface roughness. In the case of the rotating anode according to the prior art, the average rough surface depth Ra was 5.5 mm, whereas the rotating anode according to the present invention had an average rough surface depth Ra = 3.5 μm.
The material fatigue roughening of the rotating anode according to the invention was not only less than with the rotating anode according to the prior art, but was more uniform over the entire focal track region. That is, the X-ray tube rotating anode according to the present invention was more uniform than the comparative anode according to the prior art and showed a slight tight crack network with a small crack width. The rotating anode according to the invention has a very high vacuum stability. This makes it possible to significantly reduce the so-called warm-up period, during which the rotating anode in the tube is warmed under the electron beam while continuously pumping off the residual gas which can be discharged and is brought to operating conditions for the first time. Be done. The electrical stability of the rotating anode during operation is satisfactory. X of each photo taken at the end of the test
The line dose was 20% higher for the rotating anode produced according to the invention than for the comparative anode according to the prior art. The life of the X-ray tube rotating anode was clearly higher than that of the comparative anode due to the above quality improvement.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 高溶融金属からなる粉末冶金法又はCV
D又はPVD法により製造されたリング状の焦点軌道領
域を有するX線管回転陽極を製造する方法において、焦
点軌道領域を1.5mm以下の深度で局部的表面的融解
により後処理することを特徴とするX線管回転陽極の製
造方法。
1. A powder metallurgical method or CV made of a highly molten metal.
A method for producing an X-ray tube rotating anode having a ring-shaped focal track region produced by the D or PVD method, characterized in that the focal track region is post-treated by local superficial melting at a depth of 1.5 mm or less. And a method of manufacturing an X-ray tube rotating anode.
【請求項2】 融解を0.05〜1.5mmまでの深度
で行うことよりなる請求項1記載のX線管回転陽極の方
法。
2. The method for rotating an X-ray tube according to claim 1, which comprises melting at a depth of from 0.05 to 1.5 mm.
【請求項3】 融解を0.5〜0.8mmまでの深度で
行うことよりなる請求項1記載のX線管回転陽極の方
法。
3. The method for rotating an X-ray tube according to claim 1, wherein the melting is carried out at a depth of 0.5 to 0.8 mm.
【請求項4】 融解を集光された電子ビームにより行う
ことよりなる請求項1ないし3の1つに記載のX線管回
転陽極の方法。
4. The method of an X-ray tube rotating anode according to claim 1, wherein the melting is carried out by means of a focused electron beam.
【請求項5】 融解を集光されたレーザ光線により行う
ことよりなる請求項1ないし3の1つに記載のX線管回
転陽極の方法。
5. A method for rotating an X-ray tube according to claim 1, wherein the melting is carried out by means of a focused laser beam.
【請求項6】 溶解された領域の表面を機械的に研磨す
ることよりなる請求項1ないし5の1つに記載のX線管
回転陽極の方法。
6. A method of rotating X-ray tube anodes as claimed in claim 1, which comprises mechanically polishing the surface of the melted areas.
【請求項7】 溶解された領域に付加的に白熱処理を施
すことよりなる請求項1ないし6の1つに記載のX線管
回転陽極の方法。
7. The method of rotating X-ray tube anodes as claimed in claim 1, wherein the melted areas are additionally subjected to a white heat treatment.
【請求項8】 焦点軌道領域の融解を1回又は数回繰り
返すことよりなる請求項1ないし7の1つに記載のX線
管回転陽極の方法。
8. The method for rotating an X-ray tube according to claim 1, wherein the melting of the focal track region is repeated once or several times.
【請求項9】 焦点軌道領域の材料がタングステン−レ
ニウム合金であることよりなる請求項1ないし8の1つ
に記載の方法により製造されるX線管回転陽極。
9. An X-ray tube rotating anode manufactured by the method according to claim 1, wherein the material of the focal track region is a tungsten-rhenium alloy.
JP13969692A 1991-05-07 1992-05-01 Method for producing X-ray tube rotating anode Ceased JP3345439B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT947/91 1991-05-07
AT0094791A AT397005B (en) 1991-05-07 1991-05-07 METHOD FOR PRODUCING AN X-RAY ROTARY ANODE

Publications (2)

Publication Number Publication Date
JPH05151891A true JPH05151891A (en) 1993-06-18
JP3345439B2 JP3345439B2 (en) 2002-11-18

Family

ID=3503501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13969692A Ceased JP3345439B2 (en) 1991-05-07 1992-05-01 Method for producing X-ray tube rotating anode

Country Status (4)

Country Link
EP (1) EP0512633B1 (en)
JP (1) JP3345439B2 (en)
AT (2) AT397005B (en)
DE (1) DE59200292D1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008026910A1 (en) * 2008-06-05 2009-12-10 H.C. Starck Gmbh Process for the preparation of pure ammonium barrier phenate
DE102012217194A1 (en) 2012-09-24 2014-03-27 Siemens Aktiengesellschaft Producing a refractory metal component
US11043352B1 (en) * 2019-12-20 2021-06-22 Varex Imaging Corporation Aligned grain structure targets, systems, and methods of forming

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD109768A1 (en) * 1974-01-10 1974-11-12
NL8300251A (en) * 1983-01-25 1984-08-16 Philips Nv METHOD OF MANUFACTURING A TURNING ANOD FOR ROENTGEN TUBES AND ANODE THAT OBTAINED

Also Published As

Publication number Publication date
ATA94791A (en) 1993-05-15
DE59200292D1 (en) 1994-08-25
EP0512633A2 (en) 1992-11-11
EP0512633A3 (en) 1993-02-17
JP3345439B2 (en) 2002-11-18
ATE108948T1 (en) 1994-08-15
AT397005B (en) 1994-01-25
EP0512633B1 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
JP2844304B2 (en) Plasma facing material
JPH0231456B2 (en)
JPH0472347B2 (en)
US4534993A (en) Method of manufacturing a rotary anode for X-ray tubes and anode thus produced
KR910001514B1 (en) X-ray tube
EP0756308B1 (en) X-ray tube and anode target thereof
US6132812A (en) Process for making an anode for X-ray tubes
JPH05151891A (en) Manufacture of x-ray tube rotary anode
US5246742A (en) Method of posttreating the focal track of X-ray rotary anodes
US4641333A (en) Method of manufacturing an X-ray tube rotary anode and an X-ray tube rotary anode manufactured according to this method
JPH08279344A (en) X-ray tube and its manufacture
US20120057681A1 (en) X-ray target manufactured using electroforming process
JP4542696B2 (en) Rotating anode X-ray tube target and method for manufacturing the same
WO2021025130A1 (en) Cathode component for discharge lamp and discharge lamp
JP3320650B2 (en) Tungsten or molybdenum metal material, method for manufacturing secondary product material using the metal material, and heat treatment apparatus for performing the method
RU2226304C1 (en) Process of manufacture of rotary anode of x-ray tube
TW201212726A (en) Method of improving the operation efficiency of a EUV plasma discharge lamp
JP2714004B2 (en) Rotary anode target for X-ray tube and method of manufacturing the same
JP3696148B2 (en) Recycling method of anode target
CN114799460A (en) Method for preparing multilayer composite anode matrix by diffusion bonding
JPWO2020196192A1 (en) Cathode parts for discharge lamps and discharge lamps
CN116475423A (en) W/TZM composite material and preparation method thereof
JP2021171787A (en) Yttrium ingot and sputtering target using the same
JP2023535599A (en) hot parts
JP2019112671A (en) Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR MANUFACTURING THE SAME

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020725

RVOP Cancellation by post-grant opposition