JPH05151826A - Transparent conductive film and manufacture thereof - Google Patents

Transparent conductive film and manufacture thereof

Info

Publication number
JPH05151826A
JPH05151826A JP33758791A JP33758791A JPH05151826A JP H05151826 A JPH05151826 A JP H05151826A JP 33758791 A JP33758791 A JP 33758791A JP 33758791 A JP33758791 A JP 33758791A JP H05151826 A JPH05151826 A JP H05151826A
Authority
JP
Japan
Prior art keywords
oxide
conductive film
transparent conductive
coating liquid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33758791A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tomonaga
浩之 朝長
Kazuya Hiratsuka
和也 平塚
Takeshi Morimoto
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP33758791A priority Critical patent/JPH05151826A/en
Publication of JPH05151826A publication Critical patent/JPH05151826A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To form a transparent conductive film having high transparency and high durability. CONSTITUTION:Coating liquid made by adding zirconium organic compound capable of forming a coating film and boron compound to dispersion liquid in which conductive oxide of transparent conductivity of tin oxide containing antimony, indium oxide containing tin and the like is dispersed in the state of ultra-fine particle having average diameter of not more than 100nm, is applied and then heated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はブラウン管用パネル、自
動車用ガラス等に利用できる高い透明性を有する導電膜
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive film having high transparency which can be used for cathode ray tube panels, automobile glass and the like.

【0002】[0002]

【従来の技術】従来、透明導電膜は錫含有酸化インジウ
ムやフッ素含有酸化錫、アンチモン含有酸化錫といった
ような物質をスパッタリング法、CVD法といった乾式
法や、塩化物や有機化合物を加熱した基体上にスプレー
する熱分解法によって得られてきた。しかし、これらの
方法は高温を必要としたり、複雑な装置を必要とすると
いった問題点が存在していた。
2. Description of the Related Art Conventionally, a transparent conductive film has been formed on a substrate prepared by subjecting a material such as tin-containing indium oxide, fluorine-containing tin oxide or antimony-containing tin oxide to a dry method such as a sputtering method or a CVD method, or heating a chloride or an organic compound. It has been obtained by a pyrolysis method of spraying on. However, these methods have problems that they require high temperatures and complicated devices.

【0003】[0003]

【発明が解決しようとする課題】本発明は従来技術の有
する前述の問題点を解消し、複雑な装置を必要とせずに
高硬度、高耐久性を有する透明導電膜を製造する方法を
提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and provides a method for producing a transparent conductive film having high hardness and high durability without requiring a complicated device. The purpose is that.

【0004】[0004]

【課題を解決するための手段】即ち、本発明は、導電性
酸化物の超微粒子と、ジルコニウム化合物、ホウ素化合
物とを主成分とするコーティング液を塗布した後、加熱
することによって透明導電膜を製造することを特徴とす
る透明導電膜の製造方法を提供するものである。
That is, according to the present invention, a transparent conductive film is formed by applying a coating solution containing ultrafine particles of a conductive oxide, a zirconium compound, and a boron compound as main components, and then heating. The present invention provides a method for manufacturing a transparent conductive film, which is characterized by manufacturing.

【0005】本発明における導電性酸化物の超微粒子と
しては、アンチモン含有酸化錫(ATO)、錫含有酸化
インジウム(ITO)等が利用できるが、経済性、化学
的耐久性、再現性等から考えてアンチモン含有酸化錫が
比較的好適に使用できる。
As the ultrafine particles of the conductive oxide in the present invention, antimony-containing tin oxide (ATO), tin-containing indium oxide (ITO) and the like can be used, but it is considered from the viewpoint of economical efficiency, chemical durability and reproducibility. Thus, tin oxide containing antimony can be used relatively favorably.

【0006】導電性酸化物の超微粒子の分散媒、分散法
は特に限定されるものではなく種々使用可能である。例
えば、水あるいはアルコール等の有機溶媒中に導電性酸
化物超微粒子を添加し、酸あるいはアルカリを添加しp
Hを調整した後、コロイドミル、ボールミル、サンドミ
ル、ホモミキサー等の市販の粉砕器や超音波分散器など
により分散させて得ることできる。
The dispersion medium and dispersion method of the ultrafine particles of the conductive oxide are not particularly limited, and various kinds can be used. For example, conductive oxide ultrafine particles may be added to an organic solvent such as water or alcohol, and an acid or alkali may be added to p.
After adjusting H, it can be obtained by dispersing with a commercially available pulverizer such as a colloid mill, a ball mill, a sand mill, a homomixer, or an ultrasonic disperser.

【0007】分散液中に導入する導電性酸化物超微粒子
の平均粒径は100nm 以下となっていることが好ましい。
好ましくは50nm以下、特に好ましくは20nm以下であるこ
とが望ましい。100nm 以上の粒径を有する粒子を用いる
と形成された透明導電膜の透明性を阻害するおそれがあ
り、また被膜強度にも悪影響を与える。またこの分散液
はアルコール、水などで任意に希釈して用いることがで
きる。
The average particle diameter of the conductive oxide ultrafine particles introduced into the dispersion is preferably 100 nm or less.
It is preferably 50 nm or less, particularly preferably 20 nm or less. If particles having a particle size of 100 nm or more are used, the transparency of the formed transparent conductive film may be impaired, and the film strength may be adversely affected. Further, this dispersion can be diluted with alcohol, water or the like.

【0008】上記の導電性酸化物の超微粒子の分散液に
は、バインダ成分としてのジルコニウム化合物、ホウ素
化合物を添加してコーティング液とする。
A zirconium compound and a boron compound as a binder component are added to the dispersion liquid of the ultrafine particles of the conductive oxide to prepare a coating liquid.

【0009】ジルコニウム化合物としては、特に限定さ
れないが、Zr(OR)mn (ただし、m+n=4、
m=1〜4、n=0〜3、R=C1 〜C4 のアルキル
基、L=キレート配位子)、その加水分解物または重合
体のうち少なくとも1種が代表的な例として挙げられ
る。かかるキレート配位子としては、β−ジケトンまた
はβ−ケト酸エステルのエノール型陰イオンが挙げら
れ、その具体例としては、アセチルアセトン、トリフル
オロアセチルアセトン、ベンゾイルアセトン、ヘキサフ
ルオロアセチルアセトン、ベンゾイルトリフルオロアセ
チルアセトン、ジベンゾイルメタン、アセト酢酸メチル
エステル、アセト酢酸エチルエステル、アセト酢酸ブチ
ルエステル等の陰イオンが挙げられる。ジルコニウム化
合物としては、これらの他に、ステアリン酸ジルコニウ
ム等の有機酸塩も使用できる。
The zirconium compound is not particularly limited, but Zr (OR) m L n (where m + n = 4,
At least one of m = 1 to 4, n = 0 to 3, R = C 1 to C 4 alkyl group, L = chelate ligand), a hydrolyzate or a polymer thereof is a typical example. Be done. Examples of such chelate ligands include enol-type anions of β-diketones or β-keto acid esters, and specific examples thereof include acetylacetone, trifluoroacetylacetone, benzoylacetone, hexafluoroacetylacetone, benzoyltrifluoroacetylacetone, Examples thereof include anions such as dibenzoylmethane, acetoacetic acid methyl ester, acetoacetic acid ethyl ester and acetoacetic acid butyl ester. Other than these, organic acid salts such as zirconium stearate can also be used as the zirconium compound.

【0010】ホウ素化合物としては、特に限定されない
が、B(OR’)3 (ただし、R’はアルキル基)、そ
の加水分解物または重合体のうち少なくとも1種が好適
に使用できる。
The boron compound is not particularly limited, but at least one of B (OR ') 3 (provided that R'is an alkyl group), its hydrolyzate or polymer can be preferably used.

【0011】ジルコニウム化合物とホウ素化合物の割合
は、酸化物換算で、酸化ジルコニウム:酸化ホウ素=
1:2から5:1までであることが好ましい。酸化ジル
コニウムがこの割合より少ないと、良好な耐薬品性を具
備させることができず、またこれより多いと、膜の硬度
が低下するので好ましくない。
The ratio of the zirconium compound and the boron compound is, in terms of oxide, zirconium oxide: boron oxide =
It is preferably from 1: 2 to 5: 1. If the amount of zirconium oxide is less than this ratio, good chemical resistance cannot be provided, and if it is more than this ratio, the hardness of the film decreases, which is not preferable.

【0012】また、これらのジルコニウム化合物やホウ
素化合物は、バインダとして働くばかりでなく、コーテ
ィング液中で酸化物超微粒子表面の水酸基と結合して酸
化物粒子のまわりを覆うために、液中での酸化物超微粒
子の分散性を高めるために有効に働く。
Further, these zirconium compounds and boron compounds not only act as binders, but also bond with hydroxyl groups on the surface of the ultrafine oxide particles in the coating solution to coat the oxide particles, so Effectively works to enhance the dispersibility of ultrafine oxide particles.

【0013】導電性酸化物超微粒子としてアンチモン含
有酸化錫を用いる場合、高い透明性を具備しながら導電
性を有する膜を形成するための好ましい膜組成比として
は、酸化物換算(重量%)で、アンチモン含有酸化錫:
MOx=30:70〜90:10(MOx はZrO2
23 の合計を示す。)である。導電性粒子がこの組
成比より少ないと有効な導電性能を具備することができ
ず、また多いと膜強度が低下するので好ましくない。
When antimony-containing tin oxide is used as the conductive oxide ultrafine particles, a preferable film composition ratio for forming a conductive film while having high transparency is in terms of oxide (% by weight). , Tin oxide containing antimony:
MO x = 30: 70 to 90:10 (MO x is ZrO 2 ,
The total of B 2 O 3 is shown. ). When the conductive particles are less than this composition ratio, effective conductive performance cannot be provided, and when the conductive particles are more than this composition ratio, the film strength decreases, which is not preferable.

【0014】また、透明導電膜形成用のコーティング液
は、総固形分量が溶媒に対して0.3〜15重量%であ
ることが好ましい。固形分量がこれより多いと、コーテ
ィング液の保存安定性が悪化するために好ましくなく、
これより少ないと1回の塗布で得られる被膜の膜厚が薄
くなり、所望の導電性を得るために塗布操作を繰り返さ
なくてはならなくなるため、実用的でなくなるためであ
る。
The coating solution for forming the transparent conductive film preferably has a total solid content of 0.3 to 15% by weight based on the solvent. If the solid content is more than this, the storage stability of the coating liquid deteriorates, which is not preferable,
If it is less than this range, the thickness of the coating film obtained by one-time coating becomes thin, and the coating operation must be repeated to obtain the desired conductivity, which is not practical.

【0015】本発明における基体ガラスとしては、自動
車用、建築用ガラスとして通常使用されているソーダラ
イムシリケートガラスからなる普通板ガラス、フロート
板ガラスなどが使用でき、またブラウン管用のパネルガ
ラスなどに塗布して帯電防止性能を具備させることもで
きる。
As the base glass in the present invention, it is possible to use ordinary plate glass made of soda lime silicate glass, float plate glass, etc., which are usually used as glass for automobiles and construction, and to be applied to panel glass for cathode ray tubes. It can also have antistatic performance.

【0016】また、本発明において、導電性酸化物とし
て、プラズマ波長を近赤外領域に持つアンチモン含有酸
化錫、フッ素含有酸化錫、錫含有酸化インジウムなどの
超微粒子を用いれば、該透明導電膜は熱線反射膜として
の性能をも具備させることができる。
In the present invention, if ultrafine particles of antimony-containing tin oxide, fluorine-containing tin oxide, tin-containing indium oxide having a plasma wavelength in the near infrared region are used as the conductive oxide, the transparent conductive film can be obtained. Can also have the performance as a heat ray reflective film.

【0017】本発明においては、上述の導電性酸化物の
超微粒子の分散液に、バインダ成分であるジルコニウム
化合物およびホウ素化合物を添加したコーティング液を
塗布した後、加熱することによって高耐久性、高硬度を
有する透明導電膜を形成する。
In the present invention, a coating solution containing a zirconium compound and a boron compound, which are binder components, is applied to the above-mentioned dispersion of ultrafine particles of a conductive oxide, and then heated to obtain high durability and high durability. A transparent conductive film having hardness is formed.

【0018】基体への塗布法は特に限定される物ではな
く、スプレー法、ディップ法、ロールコート法、メニス
カスコート法、スピンコート法、スクリーン印刷法、フ
レキソ印刷法等が利用できる。
The method of coating the substrate is not particularly limited, and a spray method, a dip method, a roll coating method, a meniscus coating method, a spin coating method, a screen printing method, a flexographic printing method and the like can be used.

【0019】また、透明導電膜の膜厚は 500Åから1μ
mが好ましく、それ以下では導電性能が劣り、それ以上
では被膜の可視光線透過率が減少し、透明性が損なわれ
るので好ましくない。
The thickness of the transparent conductive film is from 500Å to 1μ.
m is preferable, and if it is less than m, the electroconductivity is inferior, and if it is more than m, the visible light transmittance of the coating decreases and the transparency is impaired, which is not preferable.

【0020】[0020]

【実施例】以下に実施例により本発明を具体的に説明す
るが本発明はこれらの実施例に限定されるものではな
い。以下の実施例および比較例において、得られた膜の
評価方法は次の通りである。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. In the following examples and comparative examples, the evaluation methods of the obtained films are as follows.

【0021】1)表面抵抗値 ハイレスタ抵抗測定器(三菱油化製)により膜表面の表
面抵抗値を測定。 2)可視光線透過率 分光光度計(日立製作所製)により380 〜780nm の透過
率を測定し、JIS−R3106に従って可視光線透過
率を算出した。
1) Surface resistance value The surface resistance value of the film surface was measured with a Hiresta resistance measuring instrument (manufactured by Mitsubishi Yuka). 2) Visible light transmittance The transmittance at 380 to 780 nm was measured with a spectrophotometer (manufactured by Hitachi Ltd.), and the visible light transmittance was calculated according to JIS-R3106.

【0022】3)ヘーズ(曇り値) ヘーズコンピューター(スガ試験機製)により測定し
た。 4)密着性 JIS−K5400に従って碁盤目剥離試験によって評
価を行った。
3) Haze (cloudiness value) It was measured by a haze computer (manufactured by Suga Test Instruments Co., Ltd.). 4) Adhesion Adhesion was evaluated by a cross-cut peeling test according to JIS-K5400.

【0023】5)鉛筆硬度 JIS−K5400に従って鉛筆硬度試験によって評価
を行った。 6)耐薬品性 5%硫酸、または5%苛性ソーダ液に12時間浸漬した
後、試験前後の外観、表面抵抗値を調べた。外観につい
ては、全く変化がなかったものを○、部分的に剥離した
ものを△、完全に剥離したものを×とした。
5) Pencil Hardness Pencil hardness was evaluated according to JIS-K5400. 6) Chemical resistance After dipping in 5% sulfuric acid or 5% caustic soda solution for 12 hours, the appearance and surface resistance before and after the test were examined. Regarding the external appearance, the one that did not change at all was rated as ◯, the one that was partially peeled was designated as Δ, and the one that was completely peeled was designated as x.

【0024】[0024]

【実施例】【Example】

[実施例1]Sbを9mol %含有する酸化錫超微粒子
(平均粒径10nm)を水中にサンドミルで4時間撹拌分散
させた後90℃で1時間加熱解膠し、固形分20重量%
まで濃縮した。(A液)
[Example 1] Ultrafine tin oxide particles (average particle size 10 nm) containing 9 mol% of Sb were dispersed in water by stirring for 4 hours in a sand mill, and then peptized by heating at 90 ° C for 1 hour to give a solid content of 20% by weight.
Concentrated to. (Liquid A)

【0025】ジルコニウムアセチルアセトンブトキシド
Zr(OC492 (C5822 210gをエタ
ノール( 358g)に溶解させ、塩酸水溶液( 121g)で
加水分解し、さらにホウ酸トリエチルB(OC25
3 を70g加えてB液とした。
Zirconium acetylacetone butoxide Zr (OC 4 H 9 ) 2 (C 5 H 8 O 2 ) 2 210 g was dissolved in ethanol (358 g), hydrolyzed with an aqueous hydrochloric acid solution (121 g), and further triethyl borate B (OC). 2 H 5 )
70 g of 3 was added to prepare a solution B.

【0026】A液 200gにエタノールを 200g加えた後
B液を 200g加え、コーティング液とした。このコーテ
ィング液を100mm ×100mm のフロートガラス板に750 回
転でスピンコートし、その後380 ℃で10分間焼付け処理
を行って透明導電膜を得た。この透明導電膜の特性を表
1および表2に示す。
After 200 g of ethanol was added to 200 g of solution A, 200 g of solution B was added to obtain a coating solution. A 100 mm × 100 mm float glass plate was spin-coated with this coating solution at 750 rpm, and then baked at 380 ° C. for 10 minutes to obtain a transparent conductive film. The characteristics of this transparent conductive film are shown in Tables 1 and 2.

【0027】[実施例2]実施例1に示されるA液 200
gをヘキシレングリコール 200gで希釈し、その後B液
200gを加えて粘性コーティング液としてフレキソ印刷
により150mm ×150mm のフロートガラス板に塗布した
後、500 ℃で10分間焼付け処理を行って透明導電膜を得
た。この透明導電膜の特性を表1および表2に示す。
Example 2 Solution A shown in Example 1 200
diluted with 200 g of hexylene glycol, and then liquid B
After adding 200 g, a viscous coating liquid was applied by flexographic printing to a 150 mm × 150 mm float glass plate, and then baked at 500 ° C. for 10 minutes to obtain a transparent conductive film. The characteristics of this transparent conductive film are shown in Tables 1 and 2.

【0028】[実施例3]実施例2で用いた粘性コーテ
ィング液 200gに、増粘剤としてエチルセルロースを2
g添加してさらに高粘性のコーティング液とし、これを
200mm ×200 mmのフロートガラス板に 325メッシュのス
クリーンを用いてスクリーン印刷により塗布した後600
℃で5分間焼付け処理を行って透明導電膜を得た。この
透明導電膜の特性を表1および表2に示す。
Example 3 200 g of the viscous coating liquid used in Example 2 was mixed with 2 parts of ethyl cellulose as a thickener.
g to make a highly viscous coating liquid.
600 by applying by screen printing to a 200 mm × 200 mm float glass plate using a 325 mesh screen
A transparent conductive film was obtained by baking at 5 ° C. for 5 minutes. The characteristics of this transparent conductive film are shown in Tables 1 and 2.

【0029】[実施例4]ジルコニウムブトキシドZr
(OC494 38gをエタノール( 372g)とアセ
ト酢酸メチル(12g)の混合溶媒に溶解させ、塩酸水
溶液(18g)で加水分解し、さらにホウ酸トリエチル
B(OC253 を28g加えてC液とした。
[Example 4] Zirconium butoxide Zr
38 g of (OC 4 H 9 ) 4 was dissolved in a mixed solvent of ethanol (372 g) and methyl acetoacetate (12 g), hydrolyzed with an aqueous hydrochloric acid solution (18 g), and further triethyl borate B (OC 2 H 5 ) 3 was added. 28 g was added to prepare a liquid C.

【0030】A液30gにエタノールを 170g加えた後
C液を 200g加え、コーティング液とした。このコーテ
ィング液を100mm ×100mm のフロートガラス板に750 回
転でスピンコートし、その後200 ℃で30分間焼付け処理
を行って透明導電膜を得た。この透明導電膜の特性を表
1および表2に示す。
170 g of ethanol was added to 30 g of solution A, and then 200 g of solution C was added to obtain a coating solution. A 100 mm × 100 mm float glass plate was spin-coated with this coating solution at 750 rpm, and then baked at 200 ° C. for 30 minutes to obtain a transparent conductive film. The characteristics of this transparent conductive film are shown in Tables 1 and 2.

【0031】[実施例5]実施例4において、ホウ酸ト
リエチル28gのかわりにホウ酸トリブチル44gとし
た他は実施例4と同様に行って透明導電膜を得た。この
透明導電膜の特性を表1および表2に示す。
[Embodiment 5] A transparent conductive film was obtained in the same manner as in Embodiment 4, except that the amount of tributyl borate was changed to 44 g instead of 28 g of triethyl borate. The characteristics of this transparent conductive film are shown in Tables 1 and 2.

【0032】[実施例6]Snを5mol %含有する酸化
インジウム超微粒子(平均粒径20nm)をイオン交換水中
に添加してサンドミルで4時間撹拌分散させた後、水を
添加して固形分8重量%まで希釈した。(D液) 実施例4に示されるC液 100gをD液37.5gに加え、コ
ーティング液とした。
[Example 6] Ultrafine indium oxide particles (average particle size 20 nm) containing 5 mol% of Sn were added to ion-exchanged water, and the mixture was stirred and dispersed in a sand mill for 4 hours. Diluted to wt%. (Solution D) 100 g of the solution C shown in Example 4 was added to 37.5 g of the solution D to prepare a coating solution.

【0033】このコーティング液を100mm ×100mm のフ
ロートガラス板に750 回転でスピンコートし、その後45
0 ℃で10分間焼付け処理を行って透明導電膜を得た。こ
の透明導電膜の特性を表1および表2に示す。
A 100 mm × 100 mm float glass plate was spin-coated with this coating solution at 750 rpm and then 45
A transparent conductive film was obtained by performing a baking treatment at 0 ° C. for 10 minutes. The characteristics of this transparent conductive film are shown in Tables 1 and 2.

【0034】[比較例1]けい酸エチル重合物(コルコ
ート(株)製:エチルシリケート40) 100gにエタノ
ール 600g、塩酸水溶液90gを加え、E液とした。実
施例1に示されるA液1重量部に対して、E液と水との
1:1混合物(重量比)を3重量部添加してコーティン
グ液とした。
[Comparative Example 1] To 100 g of an ethyl silicate polymer (Ethyl silicate 40 manufactured by Colcoat Co., Ltd.), 600 g of ethanol and 90 g of an aqueous hydrochloric acid solution were added to prepare a solution E. A coating solution was prepared by adding 3 parts by weight of a 1: 1 mixture (weight ratio) of solution E and water to 1 part by weight of solution A shown in Example 1.

【0035】このコーティング液を100mm ×100mm のフ
ロートガラス板に750 回転でスピンコートし、その後45
0 ℃で10分間焼付け処理を行って透明導電膜を得た。こ
の透明導電膜の特性を表1および表2に示す。
This coating solution was spin-coated on a 100 mm × 100 mm float glass plate at 750 rotations, and then 45
A transparent conductive film was obtained by performing a baking treatment at 0 ° C. for 10 minutes. The characteristics of this transparent conductive film are shown in Tables 1 and 2.

【0036】[比較例2]ジルコニウムアセチルアセト
ンブトキシドZr(OC492 (C5822
110 gをエタノール(88g)に溶解させ、塩酸水溶液
(23g)で加水分解し、F液とした。A液 200gにエ
タノールを 200g加えた後F液を 200g加え、コーティ
ング液とした。
Comparative Example 2 Zirconium acetylacetone butoxide Zr (OC 4 H 9 ) 2 (C 5 H 8 O 2 ) 2
110 g was dissolved in ethanol (88 g) and hydrolyzed with an aqueous hydrochloric acid solution (23 g) to give a liquid F. After 200 g of ethanol was added to 200 g of solution A, 200 g of solution F was added to obtain a coating solution.

【0037】このコーティング液を100mm ×100mm のフ
ロートガラス板に750 回転でスピンコートし、その後45
0 ℃で10分間焼付け処理を行って透明導電膜を得た。こ
の透明導電膜の特性を表1および表2に示す。
This coating solution was spin-coated on a 100 mm × 100 mm float glass plate at 750 rpm, and then 45
A transparent conductive film was obtained by performing a baking treatment at 0 ° C. for 10 minutes. The characteristics of this transparent conductive film are shown in Tables 1 and 2.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】上記試験結果からも明らかなように、本発
明の透明導電膜によれば、透明性を下げることなく導電
性を比較的低温の熱処理で具備させることができる。ま
た、耐薬品性、硬度といった点でも優れた特性を有する
導電膜が得られる。
As is clear from the above test results, according to the transparent conductive film of the present invention, conductivity can be provided by heat treatment at a relatively low temperature without lowering transparency. Further, a conductive film having excellent properties in terms of chemical resistance and hardness can be obtained.

【0041】[0041]

【発明の効果】以上述べたように本発明によれば、真空
を必要とするような複雑な装置を使わず、高い透明性、
耐久性を有する透明導電膜を形成させることができる。
As described above, according to the present invention, high transparency, without using a complicated device requiring a vacuum,
A transparent conductive film having durability can be formed.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】導電性酸化物の超微粒子と、ジルコニウム
化合物と、ホウ素化合物とを含むコーティング液を塗布
した後、加熱することによって透明導電膜を製造するこ
とを特徴とする透明導電膜の製造方法。
1. A transparent conductive film is produced by applying a coating liquid containing ultrafine particles of a conductive oxide, a zirconium compound, and a boron compound, and heating the coating liquid. Method.
【請求項2】コーティング液中の固形分のうち、酸化物
換算で、導電性酸化物の超微粒子を30重量%以上、酸
化ジルコニウムと酸化ホウ素の合計を10重量%以上含
み、また酸化ジルコニウムと酸化ホウ素の重量比が1:
2以上5:1以下であることを特徴とする請求項1の透
明導電膜の製造方法。
2. The coating liquid contains 30% by weight or more of ultrafine particles of a conductive oxide, 10% by weight or more of the total amount of zirconium oxide and boron oxide, and zirconium oxide, in terms of oxide, of the solid content in the coating liquid. The weight ratio of boron oxide is 1:
The method for producing a transparent conductive film according to claim 1, wherein the ratio is 2 or more and 5: 1 or less.
【請求項3】コーティング液が、Zr(OR)mn
(ただし、m+n=4、m=1〜4、n=0〜3、R=
1 〜C4のアルキル基、L=キレート配位子)、その
加水分解物または重合体のうち少なくとも1種と、B
(OR’)3 (ただし、R’=アルキル基)、その加水
分解物または重合体のうち少なくとも1種とを含むこと
を特徴とする請求項1の透明導電膜の製造方法。
3. The coating liquid is Zr (OR) m L n
(However, m + n = 4, m = 1 to 4, n = 0 to 3, R =
At least one of a C 1 -C 4 alkyl group, L = chelate ligand), a hydrolyzate or a polymer thereof, and B
(OR ') 3 (however, R' = alkyl group) and its hydrolyzate or at least 1 sort (s) of a polymer are contained, The manufacturing method of the transparent conductive film of Claim 1 characterized by the above-mentioned.
【請求項4】請求項1〜3いずれか1項の製造方法によ
って作成された透明導電膜。
4. A transparent conductive film produced by the method according to claim 1.
【請求項5】表面に請求項1〜3いずれか1項の製造方
法によって透明導電膜が施されたガラス物品。
5. A glass article whose surface is coated with a transparent conductive film by the method according to claim 1.
【請求項6】導電性酸化物の超微粒子として、アンチモ
ン含有酸化錫、フッ素含有酸化錫、錫含有酸化インジウ
ムのうち少なくとも1種を用いて、請求項1〜3いずれ
か1項の製造方法によって作成された熱線反射膜。
6. The method according to claim 1, wherein at least one kind of antimony-containing tin oxide, fluorine-containing tin oxide, and tin-containing indium oxide is used as the ultrafine particles of the conductive oxide. Created heat ray reflection film.
JP33758791A 1991-11-27 1991-11-27 Transparent conductive film and manufacture thereof Withdrawn JPH05151826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33758791A JPH05151826A (en) 1991-11-27 1991-11-27 Transparent conductive film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33758791A JPH05151826A (en) 1991-11-27 1991-11-27 Transparent conductive film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05151826A true JPH05151826A (en) 1993-06-18

Family

ID=18310055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33758791A Withdrawn JPH05151826A (en) 1991-11-27 1991-11-27 Transparent conductive film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05151826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106782891A (en) * 2016-12-31 2017-05-31 浙江大学 The preparation method of metal oxide compound silver nanometer line transparent conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106782891A (en) * 2016-12-31 2017-05-31 浙江大学 The preparation method of metal oxide compound silver nanometer line transparent conductive film

Similar Documents

Publication Publication Date Title
US7135223B2 (en) Transparent conductive layered structure and method of producing the same, and transparent coat layer forming coating liquid used in the method of producing the same, and display device to which transparent conductive layered structure is applied
US5376308A (en) Coating solution for forming transparent conductive coating and process for preparing same
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
JPH1145619A (en) Conductive composition, transparent conductive film formed by using this, and its manufacture
CN102119198A (en) Coating compositions and articles with formed coating films
EP1079413B1 (en) Transparent conductive layered structure and method of producing the same, coating liquid useful therefor, and display that uses transparent conductive layered structure
JP4343520B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and display device
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
JPH09263716A (en) Overcoat composition for transparent electrically conductive film excellent in electical conductivity
KR101171878B1 (en) Applying fluid for forming transparent coating film and base material with transparent coating film, and display device
JP2001187864A (en) Transparent coating film-forming coating fluid, substrate with transparent coating film and display
JPH05107403A (en) High refractivity conductive film or low reflective anti-static film and manufacture thereof
JPH05151826A (en) Transparent conductive film and manufacture thereof
JP3338970B2 (en) Coating solution for forming transparent conductive film and low-reflection transparent conductive film
KR100996052B1 (en) Coating agent for forming transparent film, transparent film coated substrate and display
JP3288417B2 (en) CRT panel having low reflection conductive film formed thereon and method of manufacturing the same
US20030048067A1 (en) Composition for forming coating layer and flat monitor panel for display device having coating layer prepared from the same
JPH0789720A (en) Coating liquid for colored film forming, colored film, colored antistatic film and colored low reflective antistatic film
JP4902048B2 (en) Substrate with transparent conductive film and display device
JPH06299090A (en) Antistatic coating composition for plastics
JPH0534507A (en) Antistatic film and production thereof
JPH05120921A (en) Transparent conductive film and its manufacture
JPH03167739A (en) Antistatic film
JPH07157693A (en) Antistatic coating composition for plastic
JP3308511B2 (en) Method of forming CRT panel with conductive film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204