JPH0515082B2 - - Google Patents

Info

Publication number
JPH0515082B2
JPH0515082B2 JP58240521A JP24052183A JPH0515082B2 JP H0515082 B2 JPH0515082 B2 JP H0515082B2 JP 58240521 A JP58240521 A JP 58240521A JP 24052183 A JP24052183 A JP 24052183A JP H0515082 B2 JPH0515082 B2 JP H0515082B2
Authority
JP
Japan
Prior art keywords
crystal resonator
temperature
self
vibration
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58240521A
Other languages
Japanese (ja)
Other versions
JPS60130904A (en
Inventor
Toshitsugu Ueda
Fusao Kosaka
Toshio Iino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP24052183A priority Critical patent/JPS60130904A/en
Publication of JPS60130904A publication Critical patent/JPS60130904A/en
Publication of JPH0515082B2 publication Critical patent/JPH0515082B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/027Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using frequency conversion means which is variable with temperature, e.g. mixer, frequency divider, pulse add/substract logic circuit

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、水晶振動子を利用して、安定な基準
周波数信号を出力する周波数信号出力装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a frequency signal output device that outputs a stable reference frequency signal using a crystal resonator.

〔従来技術〕[Prior art]

従来より水晶振動子の共振周波数を基準信号と
して利用する装置は公知である。
2. Description of the Related Art Devices that use the resonant frequency of a crystal oscillator as a reference signal are conventionally known.

水晶振動子は、共振周波数が温度によつて影響
を受けるために、従来装置においては、水晶振動
子を恒温槽に入れたり、VCOX(電圧制御型水晶
発振器)あるいは、TCXO(温度制御型水晶発振
器)を用いている。
Since the resonant frequency of a crystal resonator is affected by temperature, conventional equipment requires placing the crystal resonator in a constant temperature bath or using a VCOX (voltage controlled crystal oscillator) or TCXO (temperature controlled crystal oscillator). ) is used.

しかしながら、これらは、温度検出のための手
段が必要で構成が複雑となる欠点がある。
However, these have the disadvantage that they require means for temperature detection and are complicated in construction.

また、例えば、特開昭55−163481号公報に開示
されているように、1つの圧電振動子を用いて、
第1,第2の自励発振ループを構成し、2つの発
振ループから得られる2つの発振周波数信号の差
から温度情報を得て、一つの周波数信号を補正
し、温度に影響しない時間基準周波数信号を得る
ように構成した時間基準発生装置がある。
Also, for example, as disclosed in Japanese Patent Application Laid-open No. 55-163481, using one piezoelectric vibrator,
Constructs first and second self-oscillation loops, obtains temperature information from the difference between two oscillation frequency signals obtained from the two oscillation loops, corrects one frequency signal, and uses a time reference frequency that does not affect temperature. There is a time reference generator configured to obtain a signal.

しかしながら、ここに開示されている時間基準
発生装置は、圧電振動子を基本振動とその高調波
振動とを利用すること想定したもので、2つの発
振周波数の温度特性の相違が似たようなものとな
り、温度情報が正確に得られないという課題があ
つた。
However, the time reference generator disclosed herein assumes that the piezoelectric vibrator uses fundamental vibration and its harmonic vibration, and the two oscillation frequencies have similar temperature characteristics. Therefore, there was a problem that temperature information could not be obtained accurately.

〔発明の目的〕[Purpose of the invention]

本発明はこの様な従来技術に鑑みてなされたも
ので、温度検出手段を用いることなく、安定した
周波数信号を得ることのできる信号出力装置を実
現しようとするものである。
The present invention has been made in view of such prior art, and aims to realize a signal output device that can obtain a stable frequency signal without using a temperature detection means.

〔本発明の概要〕[Summary of the invention]

本発明に係る装置は、音叉形水晶振動子、この
水晶振動子を屈曲振動させる第1の自励発振ルー
プと、水晶振動子をねじり振動させる第2の自励
発振ループと、第1,第2の各自励発振ループか
ら得られる共振周波数信号12を入力し(1
2)に関連して水晶振動子の負荷容量又は水晶振
動子の温度を制御する制御ループとで構成される
点に特徴がある。
The device according to the present invention includes a tuning fork-shaped crystal resonator, a first self-excited oscillation loop that causes the crystal resonator to vibrate in a bending manner, a second self-excited oscillation loop that causes the crystal resonator to vibrate in a torsional manner, and Input the resonance frequency signals 1 and 2 obtained from the two self-excited oscillation loops ( 1
Regarding 2 ), it is characterized in that it is composed of a control loop that controls the load capacity of the crystal resonator or the temperature of the crystal resonator.

〔実施例の説明〕[Explanation of Examples]

第1図は本発明に係る装置の一例を示す構成ブ
ロツク図である。図において、1は腕1a,1b
を有する音叉状の水晶振動子で、これには図示し
てないが水晶振動子を励振させる励振電極と、振
動を検出する検出電極とが設けられている。この
水晶振動子1は、例えば、厚さtが0.025〜0.2mm
程度、両腕1a,1bの長さlが2.5〜20mm
(100.t)程度、両腕1a,1bの幅wが0.05〜0.5
mm程度の大きさであつて、形状の製作及び各電極
の形成は、ホトリソグラフイーとエツチングの技
術を利用して行なわれる。21,22は振動検出
電極に結合するフイルタ回路で、一方のフイルタ
回路21は、水晶振動子1の屈曲振動周波数1
通過する低域フイルタであり、他方のフイルタ回
路22は、水晶振動子1のねじり振動周波数2
通過する帯域フイルタとなつている。31,32
は各フイルタ回路21,22からの周波数信号を
増幅するアンプ、4は各アンプ31,32からの
信号を加算し、この加算信号を励振用の電極に出
力する加算回路である。
FIG. 1 is a block diagram showing an example of a device according to the present invention. In the figure, 1 indicates arms 1a and 1b.
This is a tuning fork-shaped crystal resonator having an excitation electrode that excites the crystal resonator and a detection electrode that detects vibrations (not shown). This crystal resonator 1 has a thickness t of, for example, 0.025 to 0.2 mm.
The length l of both arms 1a and 1b is 2.5 to 20 mm.
(100.t), the width w of both arms 1a and 1b is 0.05 to 0.5
The size is about mm, and the manufacturing of the shape and the formation of each electrode are performed using photolithography and etching techniques. 21 and 22 are filter circuits coupled to the vibration detection electrodes; one filter circuit 21 is a low-pass filter through which the bending vibration frequency 1 of the crystal resonator 1 passes; It is a band filter that allows the torsional vibration frequency 2 to pass through. 31, 32
4 is an amplifier that amplifies the frequency signal from each filter circuit 21, 22, and 4 is an adder circuit that adds the signals from each amplifier 31, 32 and outputs this added signal to an excitation electrode.

低域フイルタ回路21、アンプ31、加算回路
4を含んで形成されるループは、水晶振動子1を
屈曲振動させる自励発振ループOSC1を構成し、
低域フイルタ回路22、アンプ32、加算回路4
を含んで形成されるループは、水晶振動子1をね
じり振動させる自励発振ループOSC2を構成し
ている。
A loop formed including the low-pass filter circuit 21, the amplifier 31, and the adder circuit 4 constitutes a self-oscillation loop OSC1 that bends the crystal resonator 1,
Low-pass filter circuit 22, amplifier 32, addition circuit 4
The loop formed including the above constitutes a self-oscillation loop OSC2 that causes the crystal resonator 1 to torsionally vibrate.

5は2つの自励発振ループOSC1,OSC2か
ら得られる周波数信号12を入力し、水晶振動
子1の負荷容量を周波数信号の差(12)に応
じて制御する制御ループで、12の差信号を演
算する演算回路51と、水晶振動子1に接続され
た負荷容量52と、この負荷容量を演算回路51
からの信号によつて変化させる駆動回路53とで
構成されている。
5 is a control loop that inputs frequency signals 1 and 2 obtained from the two self-oscillation loops OSC1 and OSC2 and controls the load capacity of the crystal resonator 1 according to the difference ( 1 - 2 ) between the frequency signals; and 2 , a load capacitance 52 connected to the crystal resonator 1, and a calculation circuit 51 that calculates the difference signal between
The drive circuit 53 is configured to be changed by a signal from the drive circuit 53.

第2図は、水晶振動子1の屈曲振動の説明図で
ある。音叉状の水晶振動子1の両腕1a,1bが
矢印に示すように振動(振動モードは対称振
動)するのが屈曲振動であつて、その共振周波数
1は、振動子1の各寸法を図示するようにとれ
ば、(1)式で表わすことができる。
FIG. 2 is an explanatory diagram of the bending vibration of the crystal resonator 1. The vibration of both arms 1a and 1b of the tuning fork-shaped crystal oscillator 1 as shown by the arrows (the vibration mode is symmetrical vibration) is bending vibration, and its resonance frequency is
1 can be expressed by equation (1) if each dimension of the vibrator 1 is taken as shown.

ただし、 α:固有値 k:補正係数 ρ:水晶振動子の密度 S22′:水晶振動子のヤング率に関連した値 S44′:水晶振動子のねじり剛性に関連した値 第3図は、水晶振動子1のねじり振動の説明図
である。音叉状振動子1の両腕1a,1bが矢印
に示すように振動(振動モードは対称でも非対
称でもよい)するのがねじり振動であつて、その
共振周波数2は、(2)式で表わすことができる。
However, α: Eigenvalue k: Correction coefficient ρ: Density of the crystal resonator S 22 ′: Value related to the Young's modulus of the crystal resonator S 44 ′: Value related to the torsional rigidity of the crystal resonator FIG. 2 is an explanatory diagram of torsional vibration of the vibrator 1. FIG. Torsional vibration is when the arms 1a and 1b of the tuning fork-shaped vibrator 1 vibrate as shown by the arrows (the vibration mode may be symmetrical or asymmetrical), and its resonance frequency 2 can be expressed by equation (2). I can do it.

ただし、 β:固有値 λ=w/t S′44/S′66 S′66:水晶振動子のねじり剛性に関連した値 n:振動モードの次数 第4図は、水晶振動子1を作る水晶基板とし
て、Z板(Zカツト板)を基準として、1回目の
回転がX軸に対して±10°Y軸に対して±10°の範
囲のものを使用し、これを屈曲振動させた場合の
共振周波数1の温度特性を示す線図である。
However, β: Eigenvalue λ=w/t S' 44 /S' 66 S' 66 : Value related to torsional rigidity of the crystal resonator n: Order of vibration mode Figure 4 shows the crystal substrate for making the crystal resonator 1. Using the Z plate (Z cut plate) as a reference, we use a plate whose first rotation is within ±10° with respect to the X axis and ±10° with respect to the Y axis, and when this is subjected to flexural vibration. 3 is a diagram showing temperature characteristics at resonance frequency 1. FIG.

この線図において、屈曲振動の共振周波数1
温度に対する変化は全体として小さく、特に20℃
〜30℃の常温付近での温度係数α1は非常に小さく
なり、例えばα1=0.04ppm/℃2程度となる。
In this diagram, the change in resonant frequency 1 of bending vibration with respect to temperature is small overall, especially at 20°C.
The temperature coefficient α 1 near normal temperature of ~30°C becomes very small, for example, α 1 =0.04 ppm/°C 2 or so.

ここで、2次以後の温度係数を無視すれば、屈
曲振動の共振周波数1と、屈曲振動の1次温度係
数α1とは、温度Tに対して(3)式に示す関係があ
る。
Here, if temperature coefficients after the second order are ignored, the resonance frequency 1 of the bending vibration and the first order temperature coefficient α 1 of the bending vibration have a relationship with respect to the temperature T as shown in equation (3).

101{1+α1(T−T0)} (3) ただし、01:温度0の時の屈曲振動の周波数 また、1は(1)式から明らかなように、形状寸法
w/l等によつても変わるもので、これらを特定
な値に選定することにより、1を温度T0におい
て、2nに相当する例えば32.768kHzとすることが
できる。
1 = 01 {1+α 1 (T-T 0 )} (3) However, 01 : Frequency of bending vibration at temperature 0 Also, as is clear from equation (1), 1 is the shape and dimension w/l, etc. By choosing these to specific values, it is possible to make 1 correspond to 2 n , for example 32.768 kHz, at temperature T 0 .

第5図は、前記の水晶振動子1をねじり振動さ
せた場合の共振周波数2の温度特性を示す線図で
ある。
FIG. 5 is a diagram showing the temperature characteristics of the resonance frequency 2 when the crystal resonator 1 is subjected to torsional vibration.

この線図において、ねじり振動の共振周波数2
の温度に対する変化は、直線的に変化し、その温
度係数α2は、水晶振動子の寸法形状を例えばt/
w≒0.4、l=2.5mmとした場合、α2=40ppm/℃
程度となる。
In this diagram, the resonance frequency of torsional vibration 2
The change with respect to temperature changes linearly, and the temperature coefficient α 2 changes the size and shape of the crystal resonator, for example, t/
When w≒0.4 and l=2.5mm, α 2 =40ppm/℃
It will be about.

第1図において、水晶振動子1は、2つの自励
発振ループOSC1,OSC2によつて、屈曲振動
と、ねじり振動とを同時に行ない、各自励発振ル
ープOSC1,OSC2から周波数信号1と、2とを
出力する。通常、ねじり振動の共振周波数2は、
屈曲振動の共振周波数1よりも高く(21)、
これらの周波数信号は低域フイルタ回路21と、
帯域フイルタ回路22とによつて分離され、各自
励発振ループは互いに非同期で自励発振を持続す
る。
In FIG. 1, a crystal oscillator 1 simultaneously performs bending vibration and torsional vibration through two self-excited oscillation loops OSC1 and OSC2, and receives frequency signals 1 and 2 from each self-excited oscillation loop OSC1 and OSC2. Output. Usually, the resonance frequency 2 of torsional vibration is
higher than the resonance frequency of bending vibration 1 ( 2 > 1 ),
These frequency signals are passed through a low-pass filter circuit 21,
The self-oscillation loops are separated by a bandpass filter circuit 22, and the self-oscillation loops maintain self-oscillation asynchronously with each other.

制御回路5は、各自励発振ループOSC1,
OSC2からの周波数信号12を入力し、12
なる演算を行なうことによつて、温度依存性のあ
る差信号tを得る。この差信号tは駆動回路53
に印加され、駆動回路53は温度による共振周波
12のドリフト分を補償するように負荷容量
52の容量を連続的に変化させる。
The control circuit 5 includes self-excited oscillation loops OSC1,
Input frequency signals 1 and 2 from OSC2, 1 - 2
By performing the following calculation, a temperature-dependent difference signal t is obtained. This difference signal t is the drive circuit 53
is applied, and the drive circuit 53 continuously changes the capacitance of the load capacitor 52 so as to compensate for the drift of the resonance frequencies 1 and 2 due to temperature.

この様な動作によつて、自励発振ループOSC
1の共振周波数1は、温度の影響を受けない安定
な基準周波数信号となる。
Through this kind of operation, the self-oscillation loop OSC
The resonance frequency 1 of 1 becomes a stable reference frequency signal that is not affected by temperature.

第6図は本発明に係る装置の他の例を示す構成
ブロツク図である。この実施例においては、水晶
振動子1を容器10内に設置するとともに、水晶
振動子1を駆動回路53の出力で加熱するための
ヒータ54を設けたものである。このヒータ54
によつて、水晶振動子1は周囲温度の変化に対応
して加熱され、共振周波数1は、温度の影響を受
けない安定な基準周波数信号となる。
FIG. 6 is a block diagram showing another example of the apparatus according to the present invention. In this embodiment, the crystal resonator 1 is placed in a container 10, and a heater 54 for heating the crystal resonator 1 with the output of a drive circuit 53 is provided. This heater 54
As a result, the crystal resonator 1 is heated in response to changes in the ambient temperature, and the resonant frequency 1 becomes a stable reference frequency signal that is not affected by temperature.

第7図及び第8図は水晶振動子1に設ける電極
の形成例を示したもので、いずれもaは斜視図、
bはa図におけるX−X断面図である。
FIGS. 7 and 8 show examples of forming electrodes provided on the crystal resonator 1, and in each case, a is a perspective view;
b is a sectional view taken along line X-X in figure a.

いずれのものも、水晶振動子1の両腕の両表面
に、互いに平行して並ぶ対向電極15,16及び
17,18を形成させたものである。周知のよう
に水晶は弾性体であり、しかも圧電体であること
から、例えば電極15,16間に加算回路4から
の励振信号を与えることによつて屈曲振動及びね
じり振動をし、また、電極17,18間には水晶
振動子1の振動に応じた電圧信号が発生する。
In each case, opposing electrodes 15, 16 and 17, 18 are formed on both surfaces of both arms of the crystal resonator 1, and are arranged in parallel with each other. As is well known, since crystal is an elastic body and also a piezoelectric body, for example, by applying an excitation signal from the adding circuit 4 between the electrodes 15 and 16, it causes bending vibration and torsional vibration. A voltage signal corresponding to the vibration of the crystal resonator 1 is generated between 17 and 18.

なお、電極は各腕1a,1bの側面に設けても
よい。
Note that the electrodes may be provided on the side surfaces of each arm 1a, 1b.

〔本発明の効果〕[Effects of the present invention]

以上説明したように、本発明によれば、温度検
出手段を用いることなく、周囲温度に影響されな
いで安定した基準周波数信号を得ることのできる
装置が実現できる。
As described above, according to the present invention, it is possible to realize a device that can obtain a stable reference frequency signal without being affected by ambient temperature without using a temperature detection means.

また、本発明に於いては、音叉形の水晶振動子
を、屈曲振動とねじり振動の互いに異なる振動モ
ードで振動させる点に特徴がある。これにより、
屈曲振動によつて得られる周波数信号と、ねじり
振動によつて得られる周波数信号とのそれぞれの
温度係数が著しく相違して、温度情報が正確に得
られるという格別の効果がでてくる。
Further, the present invention is characterized in that the tuning fork-shaped crystal resonator is vibrated in different vibration modes of bending vibration and torsional vibration. This results in
The temperature coefficients of the frequency signals obtained by bending vibration and the frequency signals obtained by torsional vibration are significantly different, resulting in a special effect in that temperature information can be obtained accurately.

従つて、正確な温度情報に基づいて、水晶振動
子の負荷容量または水晶振動子の温度を制御する
ことが可能となり、水晶振動子を含む発振ループ
から、直接、温度の影響を受けない正確な基準周
波数信号を得ることができる。
Therefore, it is possible to control the load capacitance of the crystal resonator or the temperature of the crystal resonator based on accurate temperature information, and the oscillation loop including the crystal resonator can be directly controlled with accurate temperature information. A reference frequency signal can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る装置の一例を示す構成ブ
ロツク図、第2図は水晶振動子の屈曲振動の説明
図、第3図は水晶振動子のねじり振動の説明図、
第4図は本発明において用いられている水晶振動
子の屈曲振動の共振周波数1と温度との関係を示
す線図、第5はねじり振動の共振周波数2と温度
との関係を示す線図、第6図は本発明に係る装置
の他の実施例の構成ブロツク図、第7図及び第8
図は水晶振動子に設ける電極の形成例を示す説明
図である。 1……水晶振動子、OSC1,OSC2……自励
発振ループ、4……加算回路、5……制御ルー
プ、52……負荷容量、54……ヒータ。
FIG. 1 is a configuration block diagram showing an example of a device according to the present invention, FIG. 2 is an explanatory diagram of bending vibration of a crystal resonator, and FIG. 3 is an explanatory diagram of torsional vibration of a crystal resonator.
FIG. 4 is a diagram showing the relationship between the resonant frequency 1 of the bending vibration of the crystal oscillator used in the present invention and temperature, and the fifth is a diagram showing the relationship between the resonant frequency 2 of the torsional vibration and temperature. FIG. 6 is a block diagram of another embodiment of the device according to the present invention, and FIGS.
The figure is an explanatory diagram showing an example of forming electrodes provided on a crystal resonator. 1...Crystal resonator, OSC1, OSC2...Self-excited oscillation loop, 4...Addition circuit, 5...Control loop, 52...Load capacity, 54...Heater.

Claims (1)

【特許請求の範囲】 1 音叉形水晶振動子、この水晶振動子を屈曲振
動させる第1の自励発振ループ、前記水晶振動子
をねじり振動させる第2の自励発振ループ、前記
第1,第2の自励発振ループから得られる共振周
波数信号f1,f2を入力し両周波数信号の差に関連
して前記水晶振動子の負荷容量又は水晶振動子の
温度を制御する制御ループを備え、 前記第1の自励発振ループから得られる共振周
波数信号f1を基準周波数信号として出力するよう
にした周波数信号出力装置。
[Scope of Claims] 1. A tuning fork-shaped crystal resonator, a first self-excited oscillation loop that causes the crystal resonator to vibrate in a bending manner, a second self-excited oscillation loop that causes the crystal resonator to vibrate in a torsional manner, and a control loop that inputs resonant frequency signals f 1 and f 2 obtained from two self-excited oscillation loops and controls the load capacity of the crystal oscillator or the temperature of the crystal oscillator in relation to the difference between the two frequency signals, A frequency signal output device configured to output a resonant frequency signal f 1 obtained from the first self-oscillation loop as a reference frequency signal.
JP24052183A 1983-12-20 1983-12-20 Frequency signal output device Granted JPS60130904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24052183A JPS60130904A (en) 1983-12-20 1983-12-20 Frequency signal output device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24052183A JPS60130904A (en) 1983-12-20 1983-12-20 Frequency signal output device

Publications (2)

Publication Number Publication Date
JPS60130904A JPS60130904A (en) 1985-07-12
JPH0515082B2 true JPH0515082B2 (en) 1993-02-26

Family

ID=17060759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24052183A Granted JPS60130904A (en) 1983-12-20 1983-12-20 Frequency signal output device

Country Status (1)

Country Link
JP (1) JPS60130904A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371636A (en) * 2001-06-18 2002-12-26 Sanyo Showa Panel System Co Ltd Connection of panels and joint section cover device
JP6003453B2 (en) 2012-09-21 2016-10-05 富士通株式会社 Temperature sensor and temperature compensated oscillator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163481A (en) * 1979-06-07 1980-12-19 Seiko Instr & Electronics Ltd Time standard generator
JPS6316169U (en) * 1986-07-18 1988-02-02

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163481A (en) * 1979-06-07 1980-12-19 Seiko Instr & Electronics Ltd Time standard generator
JPS6316169U (en) * 1986-07-18 1988-02-02

Also Published As

Publication number Publication date
JPS60130904A (en) 1985-07-12

Similar Documents

Publication Publication Date Title
JPS60239638A (en) Resonator temperature transducer and resonator temperature measuring device
JPH0150129B2 (en)
EP0463735A2 (en) Piezo electric resonator temperature sensor
JPH0232807B2 (en)
JPH09298446A (en) Surface acoustic wave device and its design method
JPH09178492A (en) Piezoelectric vibrator
JPH0515082B2 (en)
JP3248630B2 (en) Direct bonding method of crystal blank and crystal resonator, crystal oscillator and crystal filter using the method
JP2004328701A (en) Manufacturing method of crystal oscillator
JPH0124368B2 (en)
US20140210566A1 (en) Crystal resonator, crystal resonator package, and crystal oscillator
JPS58190115A (en) Piezoelectric oscillator
JPH0156564B2 (en)
JPS60192206A (en) Vibration type angular velocity meter
JPS596370B2 (en) force conversion mechanism
US4525646A (en) Flexural mode vibrator formed of lithium tantalate
JPS6217405B2 (en)
JP2000091878A (en) Piezoelectric vibrator and piezoelectric oscillator
JPS625366B2 (en)
JPH0544612B2 (en)
JPS5862917A (en) Tuning fork type crystal oscillator
JPS63280507A (en) Coupling crystal resonator
JPS583411A (en) Piezoelectric oscillator
JPS5856405B2 (en) crystal transducer
JPH07294261A (en) Piezoelectric oscillator