JPH0515072A - Method for charging battery of self-running type carrier car - Google Patents

Method for charging battery of self-running type carrier car

Info

Publication number
JPH0515072A
JPH0515072A JP3184037A JP18403791A JPH0515072A JP H0515072 A JPH0515072 A JP H0515072A JP 3184037 A JP3184037 A JP 3184037A JP 18403791 A JP18403791 A JP 18403791A JP H0515072 A JPH0515072 A JP H0515072A
Authority
JP
Japan
Prior art keywords
charging
battery
capacity
remaining capacity
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3184037A
Other languages
Japanese (ja)
Inventor
Eiji Hosobuchi
英治 細渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP3184037A priority Critical patent/JPH0515072A/en
Publication of JPH0515072A publication Critical patent/JPH0515072A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To enable charge recovery to be performed in a short time by integrating a discharge power which is in operation and a charge power which is being charged by a control device and constantly charging power to an initial capacity of a battery when an amount of remaining capacity of the battery reaches a specified residual capacity. CONSTITUTION:When a power switch of a traveling robot is activated and a carrier car starts its operation, a discharge current Id starts to flow and an amount of remaining capacity Cn of a battery is reduced at a lapse of time as shown by a downward curve. On the other hand, an integrating wattmeter value Cs increases. A CPU 5 constantly reads the integrating wattmeter value Cs at a constant sampling time Ts and stores the amount of remaining capacity which is obtained by subtracting the integrating wattmeter value Cs from a battery capacity C'0 at a time when the power switch is turned on into a memory 6 of the CPU 5. Then, when a traveling robot performs charging while it is working at a certain point Th, the amount of remaining capacity Cn increases corresponding to an amount of charging which is performed in parallel as shown by an upward curve. On the other hand, the integrating wattmeter value Cs is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,移動ロボット等の自走
式搬送車に使用されるバッテリを充電する方法に関し,
特に稼働中に充電を行つていてもバッテリの容量不足を
来さず,かつ搬送効率の低下を防止したバッテリ充電方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging a battery used in a self-propelled carrier such as a mobile robot,
In particular, the present invention relates to a battery charging method in which the capacity of the battery does not become insufficient even if the battery is charged during operation and the deterioration of the transfer efficiency is prevented.

【0002】[0002]

【従来の技術】従来のこの種移動ロボット等(無人搬送
車を含む)においては, 稼働中の消費電力を内蔵制御
装置で積算して所定の値にまで低下した時,充電ステ−
ションまで戻り,先の消費電力分だけ充電を行うとい
う,バッテリが過放電状態となるのを,あるいは逆に過
充電を防ぐ充電方法が知られている(特開昭57−15
3536号公報)。
2. Description of the Related Art In a conventional mobile robot such as this (including an automated guided vehicle), when a power consumption during operation is accumulated by a built-in control device and the power consumption drops to a predetermined value, a charging station is charged.
There is known a charging method for preventing the battery from being over-discharged or conversely overcharging the battery by returning to the power supply and recharging only by the power consumption (Japanese Patent Laid-Open No. 57-15).
3536 publication).

【0003】[0003]

【発明が解決しようとする課題】ところで,上記のよう
な従来方法では,毎回充電時にバッテリの放電電力と同
じだけの充電電力を供給することになるため,充電ステ
−ションを作業基地に併設した移動ロボットが作業中に
充電を行う方式の場合,作業時間よりも充電に要する時
間の方が長くなってしまい,搬送効率を悪化するという
問題点があつた。本発明は従来技術の上記課題(問題
点)を解決するようにした自走式搬送車のバッテリ充電
方法を提供することを目的とする。
By the way, in the above-mentioned conventional method, since charging power as much as discharging power of the battery is supplied every time charging is performed, a charging station is provided at the work base. In the case of the method in which the mobile robot charges the battery while working, the charging time is longer than the working time, which deteriorates the transfer efficiency. SUMMARY OF THE INVENTION It is an object of the present invention to provide a battery charging method for a self-propelled guided vehicle that solves the above-mentioned problems (problems) of the prior art.

【0004】[0004]

【課題を解決するための手段】本発明は搭載したバッテ
リを駆動源として移動する自走式搬送車において,稼働
中の放電電力と充電中の充電電力を前記自走式搬送車内
部に設けた制御装置で積算し,バッテリの残容量Cnが
所定の残容量Cn’に達したときは,必ずバッテリの初
期容量C0 まで充電するようにした自走式搬送車のバッ
テリ充電方法に関する。この場合,充電電流ISに対応
する充電効率γの関係を予めメモリに記憶しておき,前
記自走式搬送車内部の充電電力積算装置または充電電流
を計測する装置によって充電電流IS を計測し,その充
電電流IS から求めた充電効率γを考慮して前記残容量
Cnを検知するようにすることが望ましい。
According to the present invention, in a self-propelled carrier that moves by using a battery mounted as a drive source, discharge power during operation and charging power during charging are provided inside the self-propelled carrier. The present invention relates to a battery charging method for a self-propelled carrier vehicle in which the battery is charged up to the initial battery capacity C 0 when the battery remaining capacity Cn reaches a predetermined battery capacity Cn ′ after being accumulated by the control device. In this case, the relationship of the charging efficiency γ corresponding to the charging current I S is stored in the memory in advance, and the charging current I S is measured by the charging power integrating device inside the self-propelled vehicle or the device for measuring the charging current. However, it is desirable to detect the remaining capacity Cn in consideration of the charging efficiency γ obtained from the charging current I S.

【0005】[0005]

【実施例】以下,図1から図4までを参照して本発明の
一実施例を詳細に述べる。本発明の一実施例方法を示す
図1において,1は,バッテリ2にとって電力的負荷と
なる電気部品であつて,搬送車を駆動するための搬送車
駆動電気装置3,伝送装置4,マイクロコンピュータC
PU5及び該CPUの動作に必要なRAM,ROM等の
メモリ6等で構成される。メモリ6は,図示しない電池
によつてバックアップされている。商用電源から充電器
7を経て供給される電流Ichは受電装置8及び積算電力
計9を経てバッテリ2を充電するのに供給されると共
に,負荷電気部品1に対し負荷電流IL を供給する。ま
た,バッテリ2は充電がなされていないときに負荷電気
部品1に対して放電電流Idを積算電力計9を介して供
給する。このようにバッテリ充・放電のどちらもが積算
電力計9を介して行われるので,充電電力と放電電力の
どちらも電力積算され得るし,充電器7の出力電流Ich
は充電電流Isと負荷電流IL の加算されたものとな
る。搬送車が作業を行ないながら充電を行う場合は,充
電器7から受電装置8を介して充電器出力電流がバッテ
リ2と負荷電気部品1の両方に供給される。積算電力計
9で計数される電力は,例えば放電時に加算(積算)さ
れ,充電時に減算される。この計測値はディジタル化さ
れてCPU5に読み込まれる。また,バッテリ2の端子
電圧VT の情報も制御のためCPU5に読み込まれる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to FIGS. In FIG. 1 showing a method of an embodiment of the present invention, reference numeral 1 is an electric component which becomes an electric load on a battery 2, and is a vehicle drive electric device 3, a transmission device 4, and a microcomputer for driving a vehicle. C
It comprises a PU 5 and a memory 6 such as a RAM and a ROM required for the operation of the CPU. The memory 6 is backed up by a battery (not shown). The current I ch supplied from the commercial power source via the charger 7 is supplied to charge the battery 2 via the power receiving device 8 and the integrating wattmeter 9, and also supplies the load current I L to the load electrical component 1. . Further, the battery 2 supplies the discharge current Id to the load electric component 1 through the integrating wattmeter 9 when it is not charged. As described above, since both charging and discharging of the battery are performed via the integrated wattmeter 9, both charging power and discharging power can be integrated and the output current I ch of the charger 7 can be obtained.
Is to have been added to the charging current Is the load current I L. When the transport vehicle charges while performing work, the charger output current is supplied from the charger 7 to both the battery 2 and the load electrical component 1 via the power receiving device 8. The electric power counted by the integrated wattmeter 9 is added (integrated) at the time of discharging, and subtracted at the time of charging. This measured value is digitized and read by the CPU 5. Information on the terminal voltage V T of the battery 2 is also read by the CPU 5 for control.

【0006】図2はバッテリの充電効率γを示すグラフ
で縦軸は充電効率を横軸は放電率Cを示す。この放電率
Cとは,バッテリ公称容量を今10Ah(アンペア・ア
ワー)として,充電電流10アンペアで充電を行つたと
き1Cと表わすものであり,充電電流に対応するもので
ある。同様に20アンペア,30アンペア,40アンペ
ア及び50アンペアで充電を行つたとき放電率2C,3
C,4C及び5Cと表す。充電容量(充電電流X時間)
が100%バッテリ容量に変換した時を充電効率1とす
ると,図2から明らかなように1C充電では充電効率
0.99であり放電率が大きくなるほど効率は低下し,
5C充電では0.90の充電効率となる。これは,充電
効率が大きくなるほど急速な化学変化が促進される結
果,水素や酸素等のガス化のためにエネルギが消費され
効率が低下するためである。但し,この充電効率が保証
されるのは,急激にガスが発生し始めるバッテリ端子電
圧(ガッシング電圧と称する)に達するまでである。こ
の放電率Cと充電効率γとの間の特性(図2)は,本発
明方法を実施するためにCPU5に記憶しておく。図3
は定電流充電及び定電圧充電の特性曲線を示すもので,
定電流充電から定電圧充電に切り替える時点はバッテリ
端子電圧が前述したガッシング電圧に達した時である。
FIG. 2 is a graph showing the charging efficiency γ of the battery. The vertical axis shows the charging efficiency and the horizontal axis shows the discharge rate C. The discharge rate C is 1C when the battery is charged at 10 amperes with the nominal battery capacity of 10 Ah (ampere hour), and corresponds to the charge current. Similarly, when charged at 20, 30, 40 and 50 amps, the discharge rate is 2C, 3
Represented as C, 4C and 5C. Charging capacity (charging current X hours)
Assuming that the charging efficiency is 1 when is converted to 100% battery capacity, the charging efficiency is 0.99 in 1C charging as shown in FIG. 2, and the efficiency decreases as the discharging rate increases,
With 5C charging, the charging efficiency is 0.90. This is because as the charging efficiency increases, rapid chemical changes are promoted, resulting in energy consumption due to gasification of hydrogen, oxygen, etc., resulting in reduced efficiency. However, the charging efficiency is guaranteed only until the battery terminal voltage (referred to as a gassing voltage) at which gas is suddenly generated. The characteristic between the discharge rate C and the charging efficiency γ (FIG. 2) is stored in the CPU 5 for carrying out the method of the present invention. Figure 3
Shows the characteristic curves of constant current charging and constant voltage charging.
The time to switch from constant current charging to constant voltage charging is when the battery terminal voltage reaches the above-mentioned gassing voltage.

【0007】図4は本発明実施例の動作を説明するため
のグラフで,横軸の時間に対して縦軸はバッテリの残容
量Cn(アンペア・アワー)である。バッテリの初期容
量はC0 で表され,これは容量の減少したバッテリを再
充電してバッテリ容量を復帰させるときの目標値でもあ
る。尚,C0'は電源スイッチ投入時のバッテリ容量であ
る。移動ロボットの電源スィツチ(図示しない)が作動
されて搬送車が稼働し始めると,放電電流Idが流れ始
め,時間と共にバッテリの残容量Cnは図に示めされる
下降線のように減少するが,逆に積算電力計値Csは増
加する。CPU5は一定のサンプリング時間Tsで常に
積算電力計値Csを読み込み,電源スィツチを投入した
時点のバッテリ容量C0'から積算電力計値Csを減算し
た残容量(Cn=C0'−Cs)をCPU5のメモリ6に
格納する。次に,或る時点Tkで移動ロボットが作業し
ながら充電を併せて行つた場合には,併行充電分に対応
して図示の上昇線のように残容量Cnが増加し,逆に積
算電力計値Csは減少する。
FIG. 4 is a graph for explaining the operation of the embodiment of the present invention, in which the horizontal axis represents time and the vertical axis represents the remaining battery charge Cn (ampere hour). The initial capacity of the battery is represented by C 0 , which is also a target value for recharging the battery having a decreased capacity to restore the battery capacity. C 0 'is the battery capacity when the power switch is turned on. When the power switch (not shown) of the mobile robot is activated to start the operation of the carrier vehicle, the discharge current Id starts to flow, and the remaining capacity Cn of the battery decreases with time as shown by the descending line in the figure. On the contrary, the integrated power meter value Cs increases. The CPU 5 always reads the integrated power meter value Cs at a constant sampling time Ts, and subtracts the integrated power meter value Cs from the battery capacity C 0 'at the time of turning on the power switch to obtain the remaining capacity (Cn = C 0 ' -Cs). It is stored in the memory 6 of the CPU 5. Next, when the mobile robot performs charging at the same time while working at a certain time Tk, the remaining capacity Cn increases as shown by the rising line in the figure corresponding to the parallel charging, and conversely the integrating wattmeter The value Cs decreases.

【0008】ここで,CPU5は前述したように一定サ
ンプリング時間Tsで積算電力計値Csを読み込むが,
CPU5は前述した充電効率γを考慮して以下に述べる
動作を行う。充電方式が図3に示した定電流−定電圧充
電であつたとしても,移動ロボットが作業している時に
流れる放電電流は稼働負荷に対応して変化するので実際
の充電電流も変化する。そこで,前回サンプリングした
積算電力計値Cs-1と最新のサンプリング値Csとの差
からバッテリに流れている充電電流IsがCPU5の処
理により次式(1)で求められる。 Is=(Cs-1−Cs)/Ts ・・・・・・・・・・・・・・・・・・・(1) このようにして,充電電流Isが求められるとそれに
対応する放電率Cが求められ,予めメモリ6に格納して
ある図2の充電効率特性から充電効率γが得られる。そ
して,この充電効率γを用いて次式(2)によつて得ら
れる残容量Cnをメモリ6に格納する。 Cn=C0'−Cs×γ ・・・・・・・・・・・・・・・・・・・・・・・・(2) 以上述べた充電・放電が繰り返されて移動ロボットは稼
働され得る。充電を停止するのは,CPU5からの停止
指令でいつでも停止可能である。例えば,CPU5から
伝送装置4を介して充電器7に充電停止信号を発した
り,またはバッテリ2と受電装置8の間にCPU5によ
つて制御可能な接点を設けることが可能である。時点T
kにおいて作業に併せて充電を始め,時点Tk+1で作業
を終了したとすると,その時点Tk+1での残容量Cn
(k+1) は電源投入時容量C0'よりも低くなる場合が多
い。しかし,もしその残容量が電源時投入時容量と等し
くなつた時にまだ作業が続行されていれば,充電だけを
終了する。更に,時点Tk+1 から充電を伴わない放電の
みとなれば前述のようにまた図示のように残容量は減少
し積算電力計数値は増加することになり,この繰り返し
が続行することになる。その繰り返しが続くとやがては
残容量Cnがゼロとなつて不都合な事態となつてしまう
ので,その事態となる前に所定残容量Cn’に達した時
点Tmで充電を開始し残容量Cnが電源投入時容量C0'
となるまでCPU5の制御の下で充電のみを残容量Cn
が電源投入時容量C0'と等しくなるまでの時点Tnまで
行う。この充電時間(Tn−Tm)は充電のみが行われ
るので,残容量は図示のように急上昇カーブで初期値ま
で回復することができる。
Here, the CPU 5 reads the integrated power meter value Cs at the constant sampling time Ts as described above.
The CPU 5 performs the following operation in consideration of the charging efficiency γ mentioned above. Even if the charging method is the constant current-constant voltage charging shown in FIG. 3, since the discharge current flowing when the mobile robot is working changes according to the operating load, the actual charging current also changes. Therefore, the charging current Is flowing in the battery is calculated by the following equation (1) by the processing of the CPU 5 from the difference between the previously sampled integrated power meter value Cs −1 and the latest sampled value Cs. Is = (Cs −1 −Cs) / Ts (1) When the charging current Is is obtained in this way, the discharge rate corresponding to it is obtained. C is obtained, and the charging efficiency γ is obtained from the charging efficiency characteristic of FIG. 2 stored in the memory 6 in advance. Then, using this charging efficiency γ, the remaining capacity Cn obtained by the following equation (2) is stored in the memory 6. Cn = C 0 '-Cs × γ (2) The mobile robot operates by repeating the charging and discharging described above. Can be done. The charging can be stopped at any time by a stop command from the CPU 5. For example, it is possible to issue a charge stop signal from the CPU 5 to the charger 7 via the transmission device 4, or to provide a contact between the battery 2 and the power receiving device 8 which can be controlled by the CPU 5. Time point T
in conjunction with the work, including the charge in k, and to have ended the work at the time Tk +1, the remaining capacity Cn at that point in time Tk +1
(k + 1) is often lower than the power-on capacity C 0 ′. However, if the remaining capacity becomes equal to the capacity at power-on, and if the work is still continuing, only charging is terminated. Further, if only discharging without charging is started from the time point T k + 1 , the remaining capacity decreases and the integrated power count value increases as described above, and the repetition is continued. . If the repetition continues, the remaining capacity Cn eventually becomes zero, which causes an inconvenient situation. Therefore, before the situation occurs, charging is started at the time Tm when the predetermined remaining capacity Cn ′ is reached and the remaining capacity Cn is the power source. Input capacity C 0 '
Under the control of the CPU 5, only charge is performed until the remaining capacity Cn
Is performed up to the time point Tn until the value becomes equal to the power-on capacity C 0 '. Since only the charging is performed during this charging time (Tn-Tm), the remaining capacity can be restored to the initial value with a sharp increase curve as shown in the figure.

【0009】[0009]

【発明の効果】以上述べたごとく,本発明方法によれば
積算電力計及びCPUを搭載し充電効率を考慮しなが
ら,放電のみによる作業及び充電と放電併用による作業
が繰り返されるので,バッテリ残容量が急速に減少しな
いばかりか,バッテリ残容量が所定値に達した時点での
充電回復を極めて短時間で行うことが可能となる。従っ
て,作業に要する時間よりも充電に要する時間の方が長
くなり,その結果,搬送効率の低下を来すという従来の
問題点が解消される。
As described above, according to the method of the present invention, the work by discharging alone and the work by using both charging and discharging are repeated while the charging efficiency is taken into consideration by mounting the integrating wattmeter and the CPU. Not only decreases rapidly, but it also becomes possible to recover the charge when the remaining battery capacity reaches a predetermined value in an extremely short time. Therefore, the conventional problem that the time required for charging becomes longer than the time required for work, and as a result, the transfer efficiency is lowered, is solved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するための一実施例を示すブ
ロック回路図である。
FIG. 1 is a block circuit diagram showing an embodiment for carrying out the method of the present invention.

【図2】この実施例における放電率と充電効率の特性を
示すグラフである。
FIG. 2 is a graph showing characteristics of discharge rate and charging efficiency in this example.

【図3】この実施例における定電流充電と定電圧充電と
の特性を示すグラフである。
FIG. 3 is a graph showing the characteristics of constant current charging and constant voltage charging in this example.

【図4】この実施例におけるバッテリ残容量の変化を示
すグラフである。
FIG. 4 is a graph showing changes in the remaining battery charge in this example.

【符号の説明】[Explanation of symbols]

1:負荷電気部品 2:バッテリ 3:搬送車駆動電気装置 4:伝送装置 5:CPU 6:メモリ 7:充電器 8:受電装置 9:積算電力計 1: Load electrical parts 2: Battery 3: Electric vehicle drive device 4: Transmission device 5: CPU 6: Memory 7: Charger 8: Power receiving device 9: Integrated wattmeter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 搭載したバッテリを駆動源として移動す
る自走式搬送車において,稼働中の放電電力と充電中の
充電電力を前記自走式搬送車内部に設けた制御装置で積
算し,バッテリの残容量Cnが所定の残容量Cn’に達
したときは,必ずバッテリの初期容量C0 まで充電する
ようにしたことを特徴とする自走式搬送車のバッテリ充
電方法。
1. In a self-propelled carrier that moves by using a battery as a drive source, the discharging power during operation and the charging power during charging are integrated by a control device provided inside the self-propelled carrier, and the battery is integrated. The battery charging method for a self-propelled guided vehicle, wherein the battery is charged to the initial battery capacity C 0 when the remaining capacity Cn of the battery reaches a predetermined remaining capacity Cn ′.
【請求項2】 充電電流ISに対応する充電効率γの関
係を予めメモリに記憶しておき,前記自走式搬送車内部
の充電電力積算装置または充電電流を計測する装置によ
って充電電流IS を計測し,その充電電流IS から求め
た充電効率γを考慮して前記残容量Cnを検知するよう
にした請求項1記載の自走式搬送車のバッテリ充電方
法。
2. The relationship of the charging efficiency γ corresponding to the charging current I S is stored in advance in a memory, and the charging current I S is measured by a charging power accumulator or a device for measuring the charging current inside the self-propelled carrier. The battery charging method for a self-propelled guided vehicle according to claim 1, wherein the remaining capacity Cn is detected in consideration of the charging efficiency γ obtained from the charging current I S.
JP3184037A 1991-06-28 1991-06-28 Method for charging battery of self-running type carrier car Pending JPH0515072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3184037A JPH0515072A (en) 1991-06-28 1991-06-28 Method for charging battery of self-running type carrier car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3184037A JPH0515072A (en) 1991-06-28 1991-06-28 Method for charging battery of self-running type carrier car

Publications (1)

Publication Number Publication Date
JPH0515072A true JPH0515072A (en) 1993-01-22

Family

ID=16146259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3184037A Pending JPH0515072A (en) 1991-06-28 1991-06-28 Method for charging battery of self-running type carrier car

Country Status (1)

Country Link
JP (1) JPH0515072A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100807532B1 (en) * 2007-06-29 2008-02-28 (주)다사로봇 Method of detecting remaining amount of battery of mobile robot using power consumption pattern
JP2015173517A (en) * 2014-03-11 2015-10-01 大阪瓦斯株式会社 power supply system
CN109070760A (en) * 2016-04-20 2018-12-21 英诺吉能源公司 Charging system and its operation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158013A (en) * 1974-06-10 1975-12-20
JPS60106302A (en) * 1983-11-11 1985-06-11 Toshiba Corp Power supply system for working self-traveling vehicle
JPS6156582B2 (en) * 1980-04-11 1986-12-03 Hitachi Ltd

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158013A (en) * 1974-06-10 1975-12-20
JPS6156582B2 (en) * 1980-04-11 1986-12-03 Hitachi Ltd
JPS60106302A (en) * 1983-11-11 1985-06-11 Toshiba Corp Power supply system for working self-traveling vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100807532B1 (en) * 2007-06-29 2008-02-28 (주)다사로봇 Method of detecting remaining amount of battery of mobile robot using power consumption pattern
JP2015173517A (en) * 2014-03-11 2015-10-01 大阪瓦斯株式会社 power supply system
CN109070760A (en) * 2016-04-20 2018-12-21 英诺吉能源公司 Charging system and its operation method

Similar Documents

Publication Publication Date Title
EP0847123B1 (en) Pulse charging method and a charger
US5994875A (en) Battery charging apparatus and method with charging mode convertible function
JP4275078B2 (en) Battery current limit control method
JP3216133B2 (en) Non-aqueous electrolyte secondary battery charging method
JP3823503B2 (en) Secondary battery charging control method and charging device therefor
WO2009104348A1 (en) Charge control circuit, and charging device equipped with charge control circuit, battery pack
US5747970A (en) Battery charger charging time control
US20100219795A1 (en) Pulse charge method for nonaqueous electrolyte secondary battery and pulse charge control device
CN110311430B (en) Charging system for vehicle and charging control method
JPS59502170A (en) How to charge rechargeable storage batteries
JPH077866A (en) Circuit for charging secondary battery
JPH10248175A (en) Method and apparatus for charging secondary battery
JPH0515072A (en) Method for charging battery of self-running type carrier car
EP0545633A1 (en) Improvements in battery charging
JP2000253596A (en) Equipment and method for charging secondary battery
JP2005027435A (en) Charging equipment
JP3347808B2 (en) Rechargeable battery charging method
JP3182283B2 (en) Charger and method of charging battery to be charged
US5804945A (en) DC power supply system with automatic recharging for storage battery
JP3238938B2 (en) Battery charger
JPH08182215A (en) Charging method and charging apparatus for secondary battery
JP3767112B2 (en) Secondary battery charging control method and charging device therefor
JPH0898421A (en) Boosting charging system
KR19980020456A (en) Charging end voltage control method according to temperature change in electric vehicle storage
JPH0898427A (en) Charger