JPH05150050A - Measured data correcting method - Google Patents

Measured data correcting method

Info

Publication number
JPH05150050A
JPH05150050A JP31208091A JP31208091A JPH05150050A JP H05150050 A JPH05150050 A JP H05150050A JP 31208091 A JP31208091 A JP 31208091A JP 31208091 A JP31208091 A JP 31208091A JP H05150050 A JPH05150050 A JP H05150050A
Authority
JP
Japan
Prior art keywords
measured
measurement
correction
phantom
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31208091A
Other languages
Japanese (ja)
Other versions
JP2998362B2 (en
Inventor
Tetsuo Ootsuchi
哲郎 大土
Hiroshi Tsutsui
博司 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31208091A priority Critical patent/JP2998362B2/en
Publication of JPH05150050A publication Critical patent/JPH05150050A/en
Application granted granted Critical
Publication of JP2998362B2 publication Critical patent/JP2998362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To correct the ununiformity of a measured image by measuring a correcting phantom once before measuring a measured object so as to obtain a correction factor for correcting sensitivity dispersion among detecting elements and the time change of the detecting elements, and using this correction factor. CONSTITUTION:Prior to the measurement of a photographed body 26, a correcting phantom 1 (acrylic) close to the soft tissue of a human body is measured. The CdTe semiconductor detector 22 of an image receiving device is provided with 128 detecting elements disposed linearly, and scanned synchronously with an X-ray generator 21 to photograph the X-ray image of the photographed body 26. During the scanning period, the data of 150 lines is sampled, and the images of 128X150 picture elements can be obtained. In this case, the average value LAVm of all the detecting elements of the phantom 1 is obtained by an arithmetic unit 23, and also the average value AV of the whole data resulted from corrective measurement is obtained by the arithmetic unit 23. The correction factor LM of each line is then obtained by Lm=AV/ LAVm. The measured data of each detecting element having measured the photographed body 26 is multiplied by this factor Lm to correct a change with the elapse of time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、医療用X線診断装置、
骨塩定量装置、非破壊検査装置、X線分析装置等に使用
される測定データの補正法に関するものである。
The present invention relates to a medical X-ray diagnostic apparatus,
The present invention relates to a correction method of measurement data used in a bone mineral quantification device, a nondestructive inspection device, an X-ray analysis device, and the like.

【0002】[0002]

【従来の技術】近年、放射線計測機器、特にγ線やX線
の2次元受像装置には、複数の検出素子で構成された放
射線検出器が用いられるようになった。
2. Description of the Related Art In recent years, a radiation detector composed of a plurality of detecting elements has come to be used in a radiation measuring device, particularly in a two-dimensional image receiving device for γ rays or X rays.

【0003】複数の放射線検出素子を用いた放射線計測
機器、特に複数の放射線検出素子を走査してX線やγ線
の2次元画像を受像する装置においては、検出器の感度
の素子間のばらつきや時間変化にともなう画像の不均一
性が問題となる。また、測定結果をもとに物質の定量を
行う装置においては、測定面内の精度にばらつきが生じ
る。
In a radiation measuring instrument using a plurality of radiation detecting elements, particularly in an apparatus for scanning a plurality of radiation detecting elements to receive a two-dimensional image of X-rays or γ-rays, variations in the sensitivity of the detectors between the elements. And non-uniformity of the image due to the change with time become a problem. Further, in a device that quantifies a substance based on the measurement result, the accuracy in the measurement plane varies.

【0004】このため、一般に計測開始前に、素子間の
感度ばらつきを知るために、一度、実際の測定対象にち
かい校正用ファントムの計測を行い、その各検出素子素
子の放射線強度を示す値から、演算装置により素子間の
補正係数を得る。これにより、素子間における検出素子
の感度ばらつきは補正され、素子間のばらつきによる画
像の不均一性は解消される。
For this reason, in general, before the measurement is started, in order to know the sensitivity variation between the elements, the calibration phantom, which is close to the actual measurement target, is measured once, and the radiation intensity of each detection element is measured from the measured value. , The correction coefficient between the elements is obtained by the arithmetic unit. As a result, variations in the sensitivity of the detection elements among the elements are corrected, and image non-uniformity due to variations in the elements is eliminated.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の従
来の方法では、放射線の2次元画像を短時間に計測する
場合、検出素子を駆動する電圧の過渡変化などにより、
検出素子の感度が変動する。SiやCdTeなどの半導
体検出器の場合、半導体表面に設けた電極に電圧を印加
して電界を発生させ、放射線より半導体内部に生じた電
荷を取り出し、放射線を検出する。電圧印加直後は、電
界が安定しないため、検出される誘導電流の大きさが変
化する。これにより、同じ強度の放射線を測定しても時
間的に測定値が変わる。このため、検出器の各素子の走
査方向に画像のむらが生じるという問題点を有してい
た。
However, in the above-mentioned conventional method, when a two-dimensional image of radiation is measured in a short time, due to a transient change of the voltage driving the detection element,
The sensitivity of the detection element changes. In the case of a semiconductor detector such as Si or CdTe, a voltage is applied to an electrode provided on the semiconductor surface to generate an electric field, and electric charges generated inside the semiconductor are extracted from the radiation to detect the radiation. Immediately after the voltage is applied, the electric field is not stable, so that the magnitude of the induced current detected changes. As a result, even if radiation of the same intensity is measured, the measured value changes with time. Therefore, there is a problem that image unevenness occurs in the scanning direction of each element of the detector.

【0006】また、測定データを用いて計算処理を行い
物質の定量等を行う場合においても、測定面内での精度
にばらつきが生じるという問題を有していた。
Further, there is a problem in that the precision in the measurement plane varies even when the substance is quantified by performing a calculation process using the measurement data.

【0007】本発明は上記従来の問題点を解決するもの
で、放射線計測に感度ばらつきのない、すなわち画像に
むらのない計測方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a measurement method in which there is no sensitivity variation in radiation measurement, that is, there is no unevenness in the image.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明のデータ校正法では、検出素子間の感度ばらつ
きを補正するための補正測定をする際、同時に検出器の
時間変化を補正する補正係数を、補正測定により求めた
全データの平均値をある時間におけるすべての検出素子
の測定結果の平均値で除算して求める。この補正係数を
測定した放射線強度に乗算する。
In order to achieve this object, in the data calibration method of the present invention, the time change of the detector is simultaneously corrected when performing the correction measurement for correcting the sensitivity variation between the detection elements. The correction coefficient is obtained by dividing the average value of all data obtained by the correction measurement by the average value of the measurement results of all the detection elements at a certain time. This correction factor is multiplied by the measured radiation intensity.

【0009】[0009]

【作用】これにより、測定対象を測定する前に一度、校
正用ファントムを測定することにより、検出素子間の感
度ばらつきと、検出素子の時間変化を補正する補正係数
を得ることができる。この補正係数を用いることによ
り、素子間および各素子の経時変化による測定画像の不
均一性を校正することができ、精度の高い画像計測を行
なうことができる。また、測定データを用いて計算処理
を行い物質の定量等を行う場合においても、測定面内で
の精度が向上する。
Thus, by measuring the calibration phantom once before measuring the object to be measured, it is possible to obtain the correction coefficient for correcting the sensitivity variation between the detection elements and the time change of the detection elements. By using this correction coefficient, it is possible to calibrate the non-uniformity of the measurement image between elements and due to changes over time of each element, and it is possible to perform highly accurate image measurement. In addition, the accuracy in the measurement plane is improved even when the substance is quantified by performing the calculation process using the measurement data.

【0010】[0010]

【実施例】以下本発明の一実施例について図面を参照し
ながら説明する。図1にCdTe半導体検出器を用いた
X線受像装置の構成を示す。このX線受像装置は、X線
発生器21、CdTe半導体検出器22、測定データを
演算する演算装置23と、データを記憶する記憶装置2
4と画像を表示する表示装置25により構成される。C
dTe半導体検出器22は図2に示すように、128個
の検出素子が直線上に配列されて構成されている。Cd
Te半導体検出器22は、X線発生器21と同期して走
査され、被写体26のX線の2次元透過画像を撮影する
ことができる。走査の期間に150ラインのデータのサ
ンプリングが行なわれ、128x150画素の2次元透
過画像が得られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of an X-ray image receiving device using a CdTe semiconductor detector. This X-ray image receiving device includes an X-ray generator 21, a CdTe semiconductor detector 22, a calculation device 23 for calculating measurement data, and a storage device 2 for storing data.
4 and a display device 25 that displays an image. C
As shown in FIG. 2, the dTe semiconductor detector 22 is composed of 128 detection elements arranged in a straight line. Cd
The Te semiconductor detector 22 is scanned in synchronization with the X-ray generator 21 and can capture a two-dimensional X-ray transmission image of the subject 26. Data of 150 lines is sampled during the scanning period to obtain a two-dimensional transmission image of 128 × 150 pixels.

【0011】X線透過強度は、光子計数法により計測さ
れる。各々の検出素子において、X線との相互作用によ
り発生した電流パルスは、増幅器27により増幅され、
カウンタ28により計数される。この計数値を濃淡とし
て表示装置25に表示することにより、2次元X線透過
画像が得られる。
The X-ray transmission intensity is measured by the photon counting method. In each detection element, the current pulse generated by the interaction with the X-ray is amplified by the amplifier 27,
It is counted by the counter 28. A two-dimensional X-ray transmission image can be obtained by displaying the count value as a shade on the display device 25.

【0012】被写体を測定する前に、まず図3に示すよ
うな補正用のファントムを測定する。この構成用ファン
トムは、測定対象とほぼ同じX線透過強度が得られるよ
うな材料で構成するのが望ましい。本実施例では、被写
体を人体である場合を想定し、減弱係数が人体の軟組織
に近い厚さ15cmのアクリルにより構成した。
Before measuring the object, first, a correction phantom as shown in FIG. 3 is measured. It is desirable that the constituent phantom is made of a material that can obtain an X-ray transmission intensity almost the same as that of the measurement target. In the present embodiment, assuming that the subject is a human body, it is made of acryl having a thickness of 15 cm, which has an attenuation coefficient close to that of human soft tissue.

【0013】20番目の検出素子の測定結果を図4に示
す。図4より、一定の厚さのアクリルファントムを測定
したにもかかわらず、このカウント数は増加しており、
この検出素子の感度が変化していることがわかる。
The measurement result of the 20th detecting element is shown in FIG. From FIG. 4, the count number is increasing despite measuring the acrylic phantom with a certain thickness.
It can be seen that the sensitivity of this detection element has changed.

【0014】この補正用ファントムの全測定データの平
均値AVを演算装置により求めた。平均値AVは106
30カウントであった。
An average value AV of all measurement data of this correction phantom was obtained by a computing device. The average value AV is 106
It was 30 counts.

【0015】次に従来行なっていた素子間の感度ばらつ
きを補正するための補正係数を求める。各検出素子の補
正係数Cn(n=1〜128)は(数1)で求められ
る。
Next, a correction coefficient for correcting the sensitivity variation between elements, which has been conventionally performed, is obtained. The correction coefficient C n (n = 1 to 128) of each detection element is obtained by (Equation 1).

【0016】[0016]

【数1】 [Equation 1]

【0017】ただし、CAVnは各検出素子の1から1
50サンプリングの150個のデータの平均値である。
However, CAV n is 1 to 1 of each detecting element.
It is the average value of 150 data of 50 samplings.

【0018】さらに、各検出素子固有の感度の経時変化
を補正するための係数Lm(m=1〜150)を求め
る。Lmは、全データAVを各ラインにおける128個
の検出素子の平均LAVmで割った値とし(数2)で表
わされる。
Further, a coefficient L m (m = 1 to 150) for correcting a change with time of the sensitivity peculiar to each detecting element is obtained. L m is a value obtained by dividing all data AV by the average LAV m of 128 detection elements in each line, and is represented by (Equation 2).

【0019】[0019]

【数2】 [Equation 2]

【0020】図5に各ラインにおける128個の検出素
子の平均LAVmを、図6に(数2)にもとづき求めた
補正係数Lmを示す。
FIG. 5 shows the average LAV m of 128 detection elements in each line, and FIG. 6 shows the correction coefficient L m obtained based on (Equation 2).

【0021】これらの補正係数Cn、Lmは演算装置で求
められ、記憶装置に記憶される。こののちに、被写体の
測定を行なった。測定した結果のn番目の検出素子のm
ラインのX線強度をImnとする。この測定結果にn補正
係数Cn、Lmを乗算して、経時変化と検出素子間のばら
つきを補正したデータI’mnを得る。各画素のデータは
(数3)のようになる。
The correction coefficients C n and L m are calculated by the arithmetic unit and stored in the storage unit. After this, the subject was measured. M of the n-th detection element of the measurement result
Let the X-ray intensity of the line be I mn . This measurement result is multiplied by n correction coefficients C n and L m to obtain data I ′ mn in which the temporal change and the variation between the detection elements are corrected. The data of each pixel is as shown in (Equation 3).

【0022】[0022]

【数3】 [Equation 3]

【0023】この計算の結果、検出素子間の感度ばらつ
きや各検出素子の経時変化がほぼ一定であれば、各画素
の測定における感度の差はなくなる。
As a result of this calculation, if the variation in sensitivity among the detection elements and the change with time of each detection element are substantially constant, there is no difference in sensitivity in the measurement of each pixel.

【0024】図7に、20番目の検出素子における補正
結果を示す。図4とくらべて、カウント数のライン方向
での変化が小さくなっており、補正の効果が見られる。
FIG. 7 shows the correction result of the 20th detector element. Compared to FIG. 4, the change in the count number in the line direction is smaller, and the correction effect can be seen.

【0025】以上のように、画素間の不均一性は解消さ
れ、均一な被写体を撮影した場合、むらの無い画像が得
られた。
As described above, the non-uniformity between pixels is eliminated, and when a uniform subject is photographed, a uniform image is obtained.

【0026】なお、パルス波高を識別するディスクリミ
ネータを複数設け、パルス波高により、入射した放射線
のエネルギー帯ごとに計数する場合には、それぞれのエ
ネルギー帯毎に補正計数Lmを設けることにより、おの
おののエネルギー帯毎のカウント数の経時変化を補正す
ることができる。この2つのエネルギー帯のカウント数
を用いて、物質の定量を行う場合、測定面内の精度が向
上する。
When a plurality of discriminators for discriminating pulse wave heights are provided and counting is performed for each energy band of incident radiation based on the pulse wave heights, a correction count Lm is provided for each energy band. It is possible to correct the change with time in the count number for each energy band. When the substance is quantified by using the count numbers of these two energy bands, the accuracy in the measurement plane is improved.

【0027】また、放射線検出器の走査速度がことなる
場合、すなわち1ラインあたりの測定時間がことなる場
合でも補正測定を行うことにより、容易に補正できる。
Further, even when the scanning speed of the radiation detector is different, that is, when the measurement time per line is different, correction can be easily performed by performing correction measurement.

【0028】本実施例では、放射線検出器をCdTe半
導体放射線検出器としたが、Si、Ge、HgI2、G
aAsなどを用いた半導体検出器やシンチレータを用い
た検出器や電離箱などの放射線検出器の補正方法として
も同様の効果が実現できるのは言うまでもない。
In this embodiment, the radiation detector is a CdTe semiconductor radiation detector, but Si, Ge, HgI 2 , G
Needless to say, the same effect can be realized as a correction method for a semiconductor detector using aAs or the like, a detector using a scintillator, or a radiation detector such as an ionization chamber.

【0029】[0029]

【発明の効果】以上のように本発明は、補正測定におけ
るデータから、各検出素子の経時変化を補正する補正係
数をもとめ、この係数により測定データを補正すること
により、検出素子間の感度ばらつきを補正するのと同時
に、かつきわめて容易に検出素子の経時変化を補正し画
素間のばらつきのない画像を実現できるものである。
As described above, according to the present invention, the correction coefficient for correcting the change with time of each detection element is obtained from the data in the correction measurement, and the measurement data is corrected by this coefficient, whereby the sensitivity variation between the detection elements is increased. It is possible to realize an image without variation between pixels by correcting the change with time of the detection element very easily at the same time as correcting

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるX線受像装置を示す図FIG. 1 is a diagram showing an X-ray image receiving apparatus according to an embodiment of the present invention.

【図2】本発明の実施例におけるCdTe半導体検出器
を示す図
FIG. 2 is a diagram showing a CdTe semiconductor detector according to an embodiment of the present invention.

【図3】本発明の実施例における補正用ファントムを示
す図
FIG. 3 is a diagram showing a correction phantom according to an embodiment of the present invention.

【図4】本発明の実施例における補正計測結果を示す図FIG. 4 is a diagram showing a correction measurement result in an example of the present invention.

【図5】本発明の実施例における補正測定結果のライン
方向変化の平均値を示す図
FIG. 5 is a diagram showing an average value of changes in the line direction of the correction measurement results in the example of the present invention.

【図6】本発明の実施例において求められた補正係数を
示す図
FIG. 6 is a diagram showing a correction coefficient obtained in the embodiment of the present invention.

【図7】本発明の実施例における補正結果を示す図FIG. 7 is a diagram showing a correction result in the example of the present invention.

【符号の説明】[Explanation of symbols]

1 補正用ファントム 21 X線発生器 22 CdTe半導体検出器 23 演算装置 24 記憶装置 25 表示装置 26 被写体 27 ファンビームX線 28 増幅器 29 カウンタ 30 CdTe 1 Correction Phantom 21 X-ray Generator 22 CdTe Semiconductor Detector 23 Computing Device 24 Storage Device 25 Display Device 26 Subject 27 Fan Beam X-ray 28 Amplifier 29 Counter 30 CdTe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】単一もしくは複数の検出素子からなる放射
線検出器を走査して放射線を計測する装置において、補
正用ファントムを測定し、その測定データの全データの
平均値を各測定ラインにおける前記検出素子の測定デー
タの平均値で除算した値を補正係数とし、前記補正係数
を測定結果に乗算することにより、検出器の経時変化に
よる測定データを補正することを特徴とする測定データ
補正法。
1. An apparatus for measuring radiation by scanning a radiation detector including a single or a plurality of detection elements, measuring a correction phantom, and calculating an average value of all data of the measurement data in each measurement line. A measurement data correction method, wherein a value obtained by dividing an average value of measurement data of a detection element is used as a correction coefficient, and the measurement result is multiplied by the correction coefficient to correct the measurement data due to a change with time of the detector.
【請求項2】放射線検出器が、CdTe半導体検出器で
あることを特徴とする請求項1記載の測定データ補正
法。
2. The measurement data correction method according to claim 1, wherein the radiation detector is a CdTe semiconductor detector.
JP31208091A 1991-11-27 1991-11-27 Measurement data correction method Expired - Fee Related JP2998362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31208091A JP2998362B2 (en) 1991-11-27 1991-11-27 Measurement data correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31208091A JP2998362B2 (en) 1991-11-27 1991-11-27 Measurement data correction method

Publications (2)

Publication Number Publication Date
JPH05150050A true JPH05150050A (en) 1993-06-18
JP2998362B2 JP2998362B2 (en) 2000-01-11

Family

ID=18024998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31208091A Expired - Fee Related JP2998362B2 (en) 1991-11-27 1991-11-27 Measurement data correction method

Country Status (1)

Country Link
JP (1) JP2998362B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005328966A (en) * 2004-05-19 2005-12-02 Shimadzu Corp Radiographic apparatus
JP2007020925A (en) * 2005-07-19 2007-02-01 Shimadzu Corp X-ray diagnostic apparatus
JP2013534316A (en) * 2010-07-30 2013-09-02 ケーエルエー−テンカー コーポレイション Reading method for multichannel acquisition of spatially dispersed signals

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005328966A (en) * 2004-05-19 2005-12-02 Shimadzu Corp Radiographic apparatus
JP4649874B2 (en) * 2004-05-19 2011-03-16 株式会社島津製作所 Radiation imaging device
JP2007020925A (en) * 2005-07-19 2007-02-01 Shimadzu Corp X-ray diagnostic apparatus
JP4701890B2 (en) * 2005-07-19 2011-06-15 株式会社島津製作所 X-ray diagnostic equipment
JP2013534316A (en) * 2010-07-30 2013-09-02 ケーエルエー−テンカー コーポレイション Reading method for multichannel acquisition of spatially dispersed signals

Also Published As

Publication number Publication date
JP2998362B2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
EP1420618B1 (en) X-Ray imaging apparatus
US20140077086A1 (en) System and method for linearization of multi-camera flat panel x-ray detectors
JPS62161348A (en) X-ray photographing method and apparatus
US6329651B1 (en) Process and device for real time sorting of detection events from a gamma ray detector and correction of the uniformity of detection elements from the detector
JP3527381B2 (en) X-ray CT system
JP4159701B2 (en) Evaluation method and apparatus for digital radiographic image
US5402463A (en) Apparatus and method for radiation imaging
JPH04274791A (en) Detecting method and apparatus wherein base potential is corrected
US7006599B2 (en) Radiographic apparatus
JPH05217689A (en) Method and device for x-ray photographing
US6400798B1 (en) Simple means for measuring the offset induced by photo-conductive FETs in a solid state X-ray detector
CN1331022C (en) Method for operating a radiation examination device
JP2002034961A (en) Radiographing apparatus and radiographing method
JP2998362B2 (en) Measurement data correction method
US7073941B2 (en) Radiographic apparatus and radiation detection signal processing method
JPH0866388A (en) Radiation image pick-up device
JPH0910191A (en) Radiation camera apparatus
JP3446327B2 (en) Radiation imaging device
JP3030950B2 (en) Calibration phantom and data calibration method
JPH08266532A (en) X-ray ct system
JP2002333481A (en) Method and device for correcting off-set induced by photoconductive effect in field effect transistor of solid x-ray detector
JPH10206350A (en) X-ray inspection device
Colbeth et al. Flat panel CT detectors for sub-second volumetric scanning
JP2604736B2 (en) X-ray transmission image measurement method
JPH07148143A (en) Method of measuring bone size and device for the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees