JPH08266532A - X-ray ct system - Google Patents

X-ray ct system

Info

Publication number
JPH08266532A
JPH08266532A JP7076245A JP7624595A JPH08266532A JP H08266532 A JPH08266532 A JP H08266532A JP 7076245 A JP7076245 A JP 7076245A JP 7624595 A JP7624595 A JP 7624595A JP H08266532 A JPH08266532 A JP H08266532A
Authority
JP
Japan
Prior art keywords
detector
radiation
ray
sensitivity
storage means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7076245A
Other languages
Japanese (ja)
Inventor
Mikio Wada
幹生 和田
Ryoichi Sawada
良一 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP7076245A priority Critical patent/JPH08266532A/en
Publication of JPH08266532A publication Critical patent/JPH08266532A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE: To correct dispersion due to the reduction in sensitivity of an individual detector element without performing calibration in an X-ray CT system equipped with an array type solid-state detector in which a plural pairs each consisting of a fluorescent element and a photoelectric conversion element are arranged in parallel. CONSTITUTION: A first storage means 11 which stores a sensitivity deterioration characteristics function for the radiation integrated exposure quantity of a detector, and a second storage means 12 which stores the exposure quantity of radiation at every channel of the detector are provided, and the output of a radiation detector is corrected and calculated at every channel by utilizing data stored in the first and second storage means. The dispersion of sensitivity generated in the individual detector element is corrected by the irradiated history of the radiation, and a satisfactory X-ray CT image without a virtual image is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はX線CT装置に関し、特
にX線CT装置におけるX線の検出に使われるアレイ型
放射線検出器の各検出素子ごとの感度の劣化およびばら
つきを補正する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray CT apparatus, and more particularly to a technique for correcting deterioration and variation in sensitivity of each detecting element of an array type radiation detector used for detecting X-rays in the X-ray CT apparatus. .

【0002】[0002]

【従来の技術】医療用のX線CT装置の検出器としては
従来から放射線が入射することにより発光する蛍光素子
とその蛍光素子からの光を電気信号に変換する光電変換
素子を多数個並べたアレイ型の固体放射線検出器が用い
られている。固体検出器を利用した場合、当たった放射
線の量に応じて特に蛍光素子の発光強度が低下すること
により検出器の出力が徐々に低下することが知られてお
り、それを補正するために装置使用開始に当たってキャ
リブレーションを行い、場合によっては診断途中におい
てもしばしばキャリブレーションを行って検出器出力の
大きさを補正し、各検出素子ごとのばらつきがなくなる
ようにしていた。
2. Description of the Related Art As a detector of an X-ray CT apparatus for medical use, there have conventionally been arranged a large number of fluorescent elements which emit light when radiation enters and photoelectric conversion elements which convert light from the fluorescent elements into electric signals. Array type solid-state radiation detectors are used. It is known that when a solid-state detector is used, the output of the detector gradually decreases due to a decrease in the emission intensity of the fluorescent element in particular, depending on the amount of radiation hit, and a device for correcting it is used. Calibration is performed at the start of use, and in some cases, calibration is often performed even during diagnosis to correct the magnitude of the detector output so that there is no variation among the detection elements.

【0003】また上記した検出器の感度劣化は、検出器
に放射線が当たらないようにして検出器を休止状態にし
ておくとある程度回復することも知られているが、連続
してX線CT装置を診断に利用している場合には感度の
劣化を補償するためには診断を中断するなどしてキャリ
ブレーションを行う他はなかった。
It is also known that the above-mentioned deterioration of the sensitivity of the detector can be recovered to some extent by keeping the detector in a rest state so that the detector is not exposed to radiation. When using for diagnosis, there is no choice but to perform calibration by interrupting the diagnosis in order to compensate for the deterioration of sensitivity.

【0004】[0004]

【発明が解決しようとする課題】検出器感度の劣化は各
検出素子に対する放射線の被曝量に応じて起こるので、
また各チャンネルの放射線の被曝量は被写体による吸収
量によって変わるので、検出器の感度は検出器素子の各
チャンネルによってばらつきが生じ、それがひどくなる
と得られたX線CT画像に虚像が現れるという問題があ
った。一般的には従来技術のようにキャリブレーション
によって各チャンネルの感度のばらつきを補正できる
が、キャリブレーションを行うためには診断を中断する
ことになり、非常に非効率的であった。
Since the deterioration of the sensitivity of the detector occurs according to the radiation exposure amount to each detecting element,
Further, since the radiation exposure amount of each channel changes depending on the absorption amount by the subject, the sensitivity of the detector varies depending on each channel of the detector element, and when it becomes severe, a virtual image appears in the obtained X-ray CT image. was there. Generally, as in the prior art, it is possible to correct the variation in the sensitivity of each channel by calibration, but the diagnosis is interrupted in order to perform the calibration, which is very inefficient.

【0005】本発明は上記した従来技術の問題点に鑑み
て発明されたもので、本発明が解決しようとする課題
は、各検出器素子の放射線の被曝量に応じた劣化を克服
し、診察途中での余分なキャリブレーションを行わなく
ても常に良好な画像が得られるX線CT装置を提供する
ことにある。
The present invention has been invented in view of the above-mentioned problems of the prior art. The problem to be solved by the present invention is to overcome the deterioration of each detector element depending on the radiation exposure dose, and to perform a medical examination. An object of the present invention is to provide an X-ray CT apparatus that can always obtain a good image without performing extra calibration on the way.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、放射線が入射することにより発光する
蛍光素子とその蛍光素子からの光を電気信号に変換する
光電変換素子を多数チャンネル並べたアレイ型放射線検
出器を備えたX線CT装置において、前記検出器の放射
線積算被曝量に対する感度劣化特性関数を記憶した第1
の記憶手段と、前記検出器の各チャンネル毎の放射線の
被曝量を積算して記憶する第2の記憶手段とを設け、こ
の第1と第2の記憶手段に記憶されたデータを利用して
前記放射線検出器の出力を各チャンネル毎に補正演算す
るようにした。
In order to solve the above-mentioned problems, in the present invention, a large number of channels are provided for a fluorescent element that emits light when radiation enters and a photoelectric conversion element that converts light from the fluorescent element into an electric signal. In an X-ray CT apparatus equipped with arrayed array type radiation detectors, a first sensitivity storing characteristic function with respect to an integrated radiation dose of the detectors is stored.
Storage means and second storage means for accumulating and storing the radiation exposure amount for each channel of the detector, and using the data stored in the first and second storage means. The output of the radiation detector is corrected and calculated for each channel.

【0007】ここで検出器の被曝量とは、検出器出力は
照射された放射線の強度に比例するものなので、例えば
検出器出力で置き換えることができ、第2の記憶手段に
は検出器出力の大きさを積算した値を記憶する。第1の
記憶手段に記憶するデータも検出器出力の積算量に対す
る同じ強さの放射線を受けたときの検出器出力という形
で記憶することができる。
Here, the exposure dose of the detector means that the detector output is proportional to the intensity of the irradiated radiation, so that it can be replaced by the detector output, and the detector output can be stored in the second storage means. The value obtained by integrating the sizes is stored. The data stored in the first storage means can also be stored in the form of the detector output when receiving the radiation of the same intensity with respect to the integrated amount of the detector output.

【0008】[0008]

【作用】蛍光素子の発光量低下を主な原因とする検出器
の感度低下の様子は、あらかじめ放射線の積算被曝量と
検出器の出力低下の関係を測定して感度劣化を表す特性
関数として第1の記憶手段に記憶しておく。アレイ型検
出器の中の個々の検出素子の被曝量は毎日の使用始めに
行われるキャリブレーションの実行直後から第2の記憶
手段に積算して記憶しておく。その2つの記憶手段に記
憶されたデータから、現在測定している検出器出力を補
正計算するので、その計算された値は測定している放射
線量を正しく表している。したがって放射線の被照射履
歴によって個々の検出器素子の生じた感度のばらつきは
正しく補正され、虚像などのない良好なCT画像を得る
ことができる。
The decrease in the sensitivity of the detector, which is mainly caused by the decrease in the amount of light emitted from the fluorescent element, is measured by measuring the relationship between the cumulative dose of radiation and the decrease in the output of the detector in advance as a characteristic function indicating the decrease in sensitivity. It is stored in the first storage means. The exposure dose of each detection element in the array-type detector is accumulated and stored in the second storage means immediately after execution of calibration performed at the beginning of daily use. Since the detector output currently being measured is corrected and calculated from the data stored in the two storage means, the calculated value correctly represents the measured radiation dose. Therefore, the variations in sensitivity caused by the individual detector elements due to the radiation exposure history are correctly corrected, and a good CT image without a virtual image or the like can be obtained.

【0009】[0009]

【実施例】図1に本発明のX線CT装置の一実施例を示
す。X線管1から扇状に放射されたX線ビーム2は被写
体3によって吸収などされたのちコリメータ7を通り、
扇状に放射された範囲全体にわたってアレイ型固体検出
器4によって同時に検出される。アレイ型固体検出器4
はCdWO4 やCsI(Tl)などでできた蛍光素子5
とシリコンフォトダイオードなどで作られた光電変換素
子5を例えば1mmピッチで1000個ほど円弧状に並
べた構造になっている。
1 shows an embodiment of the X-ray CT apparatus of the present invention. The X-ray beam 2 radiated in a fan shape from the X-ray tube 1 passes through the collimator 7 after being absorbed by the subject 3.
The entire area radiated in a fan shape is simultaneously detected by the array type solid-state detector 4. Array type solid state detector 4
Is a fluorescent element 5 made of CdWO 4 or CsI (Tl)
The photoelectric conversion elements 5 made of silicon photodiodes and the like are arranged in an arc shape at a pitch of 1 mm, for example.

【0010】被写体3がないときには、アレイ型検出器
4の各素子(チャンネル)の出力は各素子間で同じでな
ければならないので、通常X線CT装置では毎日装置を
立ち上げたときにキャリブレーションと呼ばれる操作を
行い各素子の出力を同じレベルに合わせるようにしてお
く。これは各素子の放射線に対する感度を合わせる操作
であるといってもよい。このようにして毎朝各素子の感
度は合わせられるが、当たった放射線の量に応じて特に
蛍光素子の発光強度が低下することにより検出器の出力
は徐々に低下する。すなわち測定の進行に応じて各素子
の感度は徐々に劣化し、さらには放射線の被曝量は各素
子によって一定ではないので感度の劣化の程度は各素子
ごとに違ってくる。
When the subject 3 is not present, the output of each element (channel) of the array type detector 4 must be the same among the elements, so in an ordinary X-ray CT apparatus, calibration is performed every day when the apparatus is started up. Is performed so that the output of each element is adjusted to the same level. It can be said that this is an operation for adjusting the sensitivity of each element to radiation. In this way, the sensitivity of each element is adjusted every morning, but the output of the detector gradually decreases due to the decrease in the emission intensity of the fluorescent element in particular, depending on the amount of radiation hit. That is, the sensitivity of each element gradually deteriorates as the measurement progresses, and the radiation dose is not constant for each element, so the degree of sensitivity deterioration varies from element to element.

【0011】図2は放射線の被曝量に応じて検出器素子
の出力の変化の様子を示した感度劣化特性の例である。
検出器各素子の大きさや素材はどの素子も同じなのでひ
とつの感度劣化特性関数ですべての素子の特性を代表さ
せることができる。放射線の被曝量をx、検出器出力を
yとし、キャリブレーション直後の検出器出力を1とし
てグラフを描くとキャリブレーションの後放射線の照射
された量に応じて検出器出力は単調に低下してくる。そ
の関数を仮にy=f(x)とする。
FIG. 2 is an example of the sensitivity deterioration characteristic showing the state of the change in the output of the detector element according to the radiation exposure amount.
Since the size and material of each element of the detector are the same for all elements, one sensitivity deterioration characteristic function can represent the characteristics of all elements. When the radiation dose is x, the detector output is y, and the detector output immediately after calibration is 1 and a graph is drawn, the detector output monotonically decreases in accordance with the amount of irradiation of radiation after calibration. come. The function is assumed to be y = f (x).

【0012】図1で、アレイ型検出器4からの信号はA
/D変換器を含んだ信号処理回路13によって各素子ご
との出力がデジタル信号として得られ、のちに説明する
補正演算器14を経て断層像データ処理器15によって
X線CT画像に構成され、CRTなどの表示器16に表
示される。11は図2を用いて説明した検出器の感度劣
化特性関数を記憶している第1のメモリであり、12は
検出器の各チャンネルごとの放射線積算被曝量を記憶し
ている第2のメモリである。あるひとつのチャンネルの
出力を補正するために、第2のメモリ12に記憶されて
いる積算被曝量データを第1のメモリ11に記憶されて
いる特性関数に当てはめることによりそのチャンネルの
劣化の程度すなわちf(x)を知ることができ、補正演
算器14において信号処理回路13で得られたそのチャ
ンネルの出力にf(x)の逆数をかけることによって補
正された検出器出力を得ることができる。
In FIG. 1, the signal from the array type detector 4 is A
An output for each element is obtained as a digital signal by a signal processing circuit 13 including a / D converter, and an X-ray CT image is formed by a tomographic image data processor 15 via a correction calculator 14 which will be described later. Is displayed on the display device 16. Reference numeral 11 is a first memory that stores the sensitivity deterioration characteristic function of the detector described with reference to FIG. 2, and reference numeral 12 is a second memory that stores the integrated radiation exposure dose for each channel of the detector. Is. In order to correct the output of one channel, by applying the integrated exposure dose data stored in the second memory 12 to the characteristic function stored in the first memory 11, It is possible to know f (x), and it is possible to obtain a corrected detector output by multiplying the output of the channel obtained by the signal processing circuit 13 in the correction calculator 14 by the reciprocal of f (x).

【0013】各検出器素子の出力は照射されたX線の強
さに比例しているから、12に記憶されている積算被曝
量は信号処理回路13によって得られた各チャンネルの
出力をそのチャンネルごとに積算することで得ることが
できる。より正しくは補正演算器14で補正された各チ
ャンネルの出力を積算して積算被曝量としてもよい。こ
のときはX線CT画像をとるときのみならずX線を検出
器で受けている間は常に補正演算器14をはたらかせて
積算被曝量を更新するようにしなければならない。11
に記憶している感度劣化特性関数はあらかじめ実験によ
って求めておき式や表の形などで記憶しておいたもので
ある。そのときの横軸としては上記で説明した信号処理
回路13または補正演算回路14の出力を積算したもの
とし、縦軸はそのときの生の検出器出力とする。
Since the output of each detector element is proportional to the intensity of the irradiated X-ray, the accumulated exposure dose stored in 12 is the output of each channel obtained by the signal processing circuit 13. It can be obtained by adding up for each. More accurately, the outputs of the respective channels corrected by the correction calculator 14 may be integrated to obtain the integrated exposure dose. At this time, not only when an X-ray CT image is taken, but also while the X-ray is being received by the detector, the correction calculator 14 must be operated to update the integrated exposure dose. 11
The sensitivity deterioration characteristic function stored in is obtained by an experiment in advance and stored in the form of an equation or a table. The horizontal axis at that time is the integrated output of the signal processing circuit 13 or the correction arithmetic circuit 14 described above, and the vertical axis is the raw detector output at that time.

【0014】[0014]

【発明の効果】検出器素子の感度劣化は積算被曝量のデ
ータと劣化特性関数のデータにより個別に補正されるの
で、放射線の被照射履歴によって個々の検出器素子の生
じた感度のばらつきは正しく補正され、虚像などのない
良好なX線CT画像を得ることができる。したがって、
診断途中のキャリブレーションをしなくても、例えば毎
日の装置の立ち上げ時のキャリブレーションのみで、そ
の日1日のあいだ良好なX線CT像をとり続けることが
できる。
EFFECTS OF THE INVENTION Since the sensitivity deterioration of the detector elements is individually corrected by the data of the integrated exposure dose and the data of the deterioration characteristic function, the variations in the sensitivity generated by the individual detector elements due to the radiation exposure history are correct. Corrected, it is possible to obtain a good X-ray CT image without a virtual image. Therefore,
Even if the calibration is not performed during the diagnosis, a good X-ray CT image can be continuously taken during the day and day by only performing the calibration at the time of starting the apparatus every day.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のX線CT装置の一実施例を示す。FIG. 1 shows an embodiment of an X-ray CT apparatus of the present invention.

【図2】検出器の感度劣化特性の一例である。FIG. 2 is an example of a sensitivity deterioration characteristic of a detector.

【符号の説明】[Explanation of symbols]

1…X線管 2…X線ビーム 3…被写体 4…アレイ型検出器 5…蛍光素子 6…光電変換素子 11…第1のメモリ 12…第2のメモリ 13…信号処理回路 14…補正演算器 15…断層像データ処理器 16…表示器 DESCRIPTION OF SYMBOLS 1 ... X-ray tube 2 ... X-ray beam 3 ... Subject 4 ... Array type detector 5 ... Fluorescent element 6 ... Photoelectric conversion element 11 ... First memory 12 ... Second memory 13 ... Signal processing circuit 14 ... Correction calculator 15 ... Tomographic image data processor 16 ... Display device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 放射線が入射することにより発光する蛍
光素子とその蛍光素子からの光を電気信号に変換する光
電変換素子を多数チャンネル並べたアレイ型放射線検出
器を備えたX線CT装置において、前記検出器の放射線
積算被曝量に対する感度劣化特性関数を記憶した第1の
記憶手段と、前記検出器の各チャンネル毎の放射線の被
曝量を積算して記憶する第2の記憶手段とを設け、この
第1と第2の記憶手段に記憶されたデータを利用して前
記放射線検出器の出力を各チャンネル毎に補正演算する
ことを特徴とするX線CT装置。
1. An X-ray CT apparatus provided with an array type radiation detector in which a plurality of channels are arranged with a fluorescent element that emits light when radiation enters and a photoelectric conversion element that converts light from the fluorescent element into an electrical signal. First storage means for storing a sensitivity deterioration characteristic function with respect to the cumulative radiation exposure dose of the detector, and second storage means for accumulating and storing the radiation exposure dose for each channel of the detector are provided. An X-ray CT apparatus characterized in that the output of the radiation detector is corrected and calculated for each channel by utilizing the data stored in the first and second storage means.
JP7076245A 1995-03-31 1995-03-31 X-ray ct system Pending JPH08266532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7076245A JPH08266532A (en) 1995-03-31 1995-03-31 X-ray ct system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7076245A JPH08266532A (en) 1995-03-31 1995-03-31 X-ray ct system

Publications (1)

Publication Number Publication Date
JPH08266532A true JPH08266532A (en) 1996-10-15

Family

ID=13599808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7076245A Pending JPH08266532A (en) 1995-03-31 1995-03-31 X-ray ct system

Country Status (1)

Country Link
JP (1) JPH08266532A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855678A2 (en) * 1997-01-27 1998-07-29 Canon Kabushiki Kaisha Method and apparatus for sensing an image
JP2005308600A (en) * 2004-04-23 2005-11-04 Shimadzu Corp Radiographic foreign matter inspection device
JP2007101256A (en) * 2005-09-30 2007-04-19 Fujifilm Corp X-ray imaging apparatus and x-ray ct apparatus
JP2012045333A (en) * 2010-08-30 2012-03-08 Fujifilm Corp Management device, radiation imaging system, management program, and method for managing radiation detecting means
WO2012096266A1 (en) * 2011-01-11 2012-07-19 株式会社東芝 X-ray diagnostic device
JP2013513814A (en) * 2009-12-15 2013-04-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Compensation of imaging detector tile parameters based on radiation dose

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855678A2 (en) * 1997-01-27 1998-07-29 Canon Kabushiki Kaisha Method and apparatus for sensing an image
EP0855678A3 (en) * 1997-01-27 1999-06-30 Canon Kabushiki Kaisha Method and apparatus for sensing an image
US6219405B1 (en) 1997-01-27 2001-04-17 Canon Kabushiki Kaisha Method and apparatus for sensing an image
JP2005308600A (en) * 2004-04-23 2005-11-04 Shimadzu Corp Radiographic foreign matter inspection device
JP4590915B2 (en) * 2004-04-23 2010-12-01 株式会社島津製作所 Radiation foreign matter inspection equipment
JP2007101256A (en) * 2005-09-30 2007-04-19 Fujifilm Corp X-ray imaging apparatus and x-ray ct apparatus
JP2013513814A (en) * 2009-12-15 2013-04-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Compensation of imaging detector tile parameters based on radiation dose
JP2012045333A (en) * 2010-08-30 2012-03-08 Fujifilm Corp Management device, radiation imaging system, management program, and method for managing radiation detecting means
WO2012096266A1 (en) * 2011-01-11 2012-07-19 株式会社東芝 X-ray diagnostic device
US8905636B2 (en) 2011-01-11 2014-12-09 Kabushiki Kaisha Toshiba X-ray diagnostic apparatus

Similar Documents

Publication Publication Date Title
EP1420618B1 (en) X-Ray imaging apparatus
JP5283718B2 (en) Radiation image detection apparatus and gain setting method used for radiation image detection apparatus
JP2525162B2 (en) X-ray equipment
US20010048080A1 (en) FDXD detector with dose sensing
JP2008523872A (en) Pulsed X-ray for continuous detector correction
WO2014175458A1 (en) Photon counting ct device, optical detection device, radiation detection device and radiation analyzer
JP6195495B2 (en) Method for reducing 3D ghost artifacts in X-ray detectors
EP0089096B1 (en) Computed tomography apparatus with detector sensitivity correction
JP5497897B2 (en) X-ray inspection apparatus and method
US11045153B2 (en) Device for acquiring pulse height spectrum, method for acquiring pulse height spectrum, program for acquiring pulse height spectrum, and radiation imaging apparatus
US8395126B2 (en) X-ray imaging apparatus, X-ray imaging method, and computer storage medium
JP4150906B2 (en) Method for monitoring changes in quantum detection efficiency of an X-ray detector
WO2002034135A1 (en) X-ray image diagnosis apparatus
JPH10234724A (en) X-ray computed tomograph
JPH08266532A (en) X-ray ct system
JPH05217689A (en) Method and device for x-ray photographing
JPH08266531A (en) X-ray ct system
JP3446327B2 (en) Radiation imaging device
JP2598037B2 (en) Tomographic imaging device
JPH08271633A (en) Radiation detection apparatus
JPH0866388A (en) Radiation image pick-up device
JP2998362B2 (en) Measurement data correction method
US20230329665A1 (en) Iterative method for material decomposition calibration in a full size photon counting computed tomography system
JPH0910191A (en) Radiation camera apparatus
JP2813984B2 (en) X-ray CT X-ray detection system