JPH05149727A - Three-dimensional shape recognizing device - Google Patents

Three-dimensional shape recognizing device

Info

Publication number
JPH05149727A
JPH05149727A JP3314918A JP31491891A JPH05149727A JP H05149727 A JPH05149727 A JP H05149727A JP 3314918 A JP3314918 A JP 3314918A JP 31491891 A JP31491891 A JP 31491891A JP H05149727 A JPH05149727 A JP H05149727A
Authority
JP
Japan
Prior art keywords
camera
image
data
slit light
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3314918A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kadota
康弘 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3314918A priority Critical patent/JPH05149727A/en
Publication of JPH05149727A publication Critical patent/JPH05149727A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To surely recognize and detect the three-dimensional shape of an object to be measured even on the steeply inclined face of the object by providing a camera moving device, picture data discriminator, and driving command circuit and freely moving a camera around the object when the absence of shape data is automatically discriminated. CONSTITUTION:The picture data corresponding to a picture taken with a camera 5 are inputted to a coordinate computing element 7 through a picture data discriminator 9 and drive commanding device 10 after the data are fetched to a picture fetching device 6. The element 7 recognizes the shape of an object 2 to be measured by computing the coordinates of the picture data. The discriminator 9 discriminates the presence/absence of the data indicating the image of a tree-dimensional shape in the picture data of the device 6 and inputs discriminated results to the commanding device 10. When the discriminator 9 discriminates the absence of data, the device 10 gives a driving command to a camera moving device 8 to move a camera 5 in the direction in which the quantity of randomly reflected light from the object 2 increases. The camera 5 obtains shape data by catching the randomly reflected light of slit light 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光切断法による三次元
形状認識装置に関し、特に金型加工装置に適用されるも
のに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shape recognition device by a light cutting method, and more particularly to a device applied to a die machining device.

【0002】[0002]

【従来の技術】工作機械の分野において、倣い加工や衝
突を防止するために、三次元形状を認識する必要が生じ
る場合がある。非接触の形状認識の一手法として、光切
断法がある。これは、スリット光を測定対象物に照射し
て、その乱反射した像により、測定対象物の座標を求め
るものである。
2. Description of the Related Art In the field of machine tools, it is sometimes necessary to recognize a three-dimensional shape in order to prevent copying and collision. As a method of non-contact shape recognition, there is a light cutting method. This is to irradiate the measuring object with slit light and determine the coordinates of the measuring object from the image that is diffusely reflected.

【0003】この光切断法による従来の三次元形状認識
装置を図2に示す。同図に示すようにテーブル1上に載
置した測定対象物2には、スリット光発生装置3からス
リット光4が照射される。スリット光発生装置3はテー
ブル1の上方に配置され、そのスリット光4はテーブル
1に対して略垂直となっている。そして、このスリット
光4の平行な方向に対して直交する方向にスリット光発
生装置は移動できるようになっている。一方、カメラ5
はテーブル1の斜め上方に設置され、スリット光の照射
により形成された光学像を撮影している。このカメラ5
で撮影された画像に対応した画像データは画像取り込み
器6に取り込まれ、座標演算器7で画像データが演算さ
れて測定対象物2の形状が認識できるようになってい
る。
FIG. 2 shows a conventional three-dimensional shape recognition device based on this optical cutting method. As shown in the figure, the slit light generator 3 irradiates the measurement object 2 placed on the table 1 with the slit light 4. The slit light generator 3 is arranged above the table 1, and the slit light 4 is substantially perpendicular to the table 1. Then, the slit light generator can be moved in a direction orthogonal to the parallel direction of the slit light 4. On the other hand, camera 5
Is installed diagonally above the table 1 and photographs an optical image formed by irradiation of slit light. This camera 5
Image data corresponding to the image photographed in (3) is captured by the image capturing device 6, and the coordinate calculator 7 calculates the image data so that the shape of the measuring object 2 can be recognized.

【0004】座標演算器7による座標の演算方法を図4
(a)(b)(c) を参照して説明する。ただし、座標軸は図3
(a)(b)に示すように、テーブル1の上面をx−y平面と
し、その垂直上方をz軸方向とする。また、スリット光
4はx方向に平行とし、カメラ5の観察方向はy軸方向
の斜め上方(z軸よりθの角度)とする。図4(a)(b)に
示すように、スリット光4がz−x平面に一致するた
め、スリット光4は下式で示される。 y=0 ・・・(1) また、カメラ5のレンズ中心O’から距離L離れた座標
原点Oでの拡大率Mは下式で示される。 M=A/A0 =B/B0 =L/f ・・・(2) ただし、A0,B0は座標原点即ち距離Lにおけるx方
向、y方向から見た幅A,Bを撮像した画面内の幅であ
る。
FIG. 4 shows a method of calculating coordinates by the coordinate calculator 7.
Explanation will be given with reference to (a) (b) (c). However, the coordinate axes are shown in Figure 3.
As shown in (a) and (b), the upper surface of the table 1 is defined as the xy plane, and the vertically upper part thereof is defined as the z-axis direction. The slit light 4 is parallel to the x direction, and the observation direction of the camera 5 is obliquely upward in the y axis direction (angle θ from the z axis). As shown in FIGS. 4A and 4B, since the slit light 4 coincides with the zx plane, the slit light 4 is expressed by the following equation. y = 0 (1) Further, the magnification rate M at the coordinate origin O, which is a distance L from the lens center O ′ of the camera 5, is expressed by the following equation. M = A / A 0 = B / B 0 = L / f (2) where A 0 and B 0 are the origin of coordinates, that is, the widths A and B at the distance L viewed from the x direction and the y direction. The width within the screen.

【0005】ここで、図4(c) に示すように画像内の座
標がそれぞれα、βとするときに、この座標に対応する
y−x平面における撮影方向は下式で示される。 z=y(L・cosθ-M・αsinθ)/(L・sinθ+M・αcosθ) +LMα/(L・sinθ+M・αcosθ) ・・・(3) 上記(3) 式に前記(1) 式を代入すると、スリット光の切
断線のz軸座標が求まる。 z=LMα/(L・sinθ+M・αcosθ) ・・・(4) 同様に、スリット光の切断線のx座標も次のように求ま
る。 x=(L-Z・cosθ)β/f ={L-LMα・cosθ/(L・sinθ+M・αcosθ)}β/f ={1-Mα・cosθ/(L・sinθ+M・αcosθ)}M β ・・・(5) このように(4)(5)式により、z座標、x座標を演算する
とともに、この演算を測定対象物の全体に対して行うこ
とにより、三次元形状が認識できることになる。
Here, when the coordinates in the image are α and β, respectively, as shown in FIG. 4C, the shooting direction on the y-x plane corresponding to these coordinates is expressed by the following equation. z = y (L ・ cosθ-M ・ αsinθ) / (L ・ sinθ + M ・ αcosθ) + LMα / (L ・ sinθ + M ・ αcosθ) ・ ・ ・ (3) In the above equation (3) above (1) By substituting the equation, the z-axis coordinate of the slit light cutting line is obtained. z = LMα / (L · sin θ + M · α cosθ) (4) Similarly, the x coordinate of the cutting line of the slit light is also obtained as follows. x = (LZ ・ cosθ) β / f = {L-LMα ・ cosθ / (L ・ sinθ + M ・ αcosθ)} β / f = {1-Mα ・ cosθ / (L ・ sinθ + M ・ αcosθ)} M β (5) As described above, the three-dimensional shape can be recognized by calculating the z-coordinate and the x-coordinate using the equations (4) and (5) and performing this calculation for the entire measurement object become.

【0006】[0006]

【発明が解決しようとする課題】上述したように光切断
法による三次元形状認識装置では、スリット光4を測定
対象物2に照射し、その乱反射した光をカメラ5で撮像
し、その像により測定対象物の座標を求めるものである
が、測定対象物2の素材、形状によってはカメラ5に光
が届かないために、測定対象物の像が得られず、形状デ
ータ無しの点が存在する場合があるという問題点があ
る。例えば、図5(a) に示すように反射率の高い測定対
象物1の急傾斜面に、カメラ5からスリット光4が照射
されると、像がカメラ5で捉えられないため、形状デー
タ無しとなっていた。
As described above, in the three-dimensional shape recognition device by the light section method, the slit light 4 is irradiated onto the measuring object 2 and the irregularly reflected light is imaged by the camera 5 and the image is taken. The coordinates of the object to be measured are obtained, but because the light does not reach the camera 5 depending on the material and shape of the object to be measured 2, an image of the object to be measured cannot be obtained, and there are points without shape data. There is a problem that there are cases. For example, as shown in FIG. 5A, when the slit light 4 is irradiated from the camera 5 onto the steeply inclined surface of the measuring object 1 having a high reflectance, the image cannot be captured by the camera 5, so that there is no shape data. It was.

【0007】本発明は、上記従来技術に鑑みて成された
ものであり、光切断法による三次元形状認識において、
測定対象物の急傾斜面を確実に検出できる三次元形状認
識装置を提供することを目的とするものである。
The present invention has been made in view of the above prior art, and in the three-dimensional shape recognition by the optical cutting method,
An object of the present invention is to provide a three-dimensional shape recognition device that can reliably detect a steeply inclined surface of a measurement target.

【0008】[0008]

【課題を解決するための手段】斯かる目的を達成する本
発明の構成はテーブル上に載置された測定対象物に向け
てスリット光を投光するスリット光発生装置と、前記ス
リット光の照射により形成された像を撮影する形状認識
用カメラと、前記形状認識用カメラにより撮影された像
に対応した画像データを取り込む画像取り込み器と、該
画像取り込み器により取り込まれた画像データに基づい
て前記測定対象物の座標位置を演算する座標演算器と、
前記画像取り込み器に取り込まれた画像データに前記測
定対象物の三次元形状の像を示すデータがあるか否か判
定する画像データ判定器と、前記形状認識用カメラを移
動させるカメラ移動装置と、前記画像データ判定器によ
り前記測定対象物の三次元形状を示すデータが無いと判
断されたときに前記カメラ移動装置へ駆動指令を与えて
前記カメラを移動させ前記測定対象物からの乱反射光を
増やす駆動指令装置とを有することを特徴とする。
The structure of the present invention which achieves such an object is a slit light generator for projecting slit light toward an object to be measured placed on a table, and irradiation of the slit light. A shape recognition camera that captures an image formed by the image recognition device, an image capture device that captures image data corresponding to the image captured by the shape recognition camera, and the image capture device that captures the image data based on the image data captured by the image capture device. A coordinate calculator for calculating the coordinate position of the measuring object,
An image data determiner that determines whether or not the image data captured by the image capturer has data indicating a three-dimensional image of the measurement target, and a camera moving device that moves the shape recognition camera. When the image data judging device judges that there is no data indicating the three-dimensional shape of the measuring object, a drive command is given to the camera moving device to move the camera and increase diffused reflected light from the measuring object. And a drive command device.

【0009】[0009]

【実施例】以下、本発明について、図面に示す実施例を
参照して詳細に説明する。図1に本発明の第一の実施例
を示す。同図に示すようにテーブル1上に載置した測定
対象物2には、スリット光発生装置3からスリット光4
が投光される。スリット光発生装置3はテーブル1の上
方に配置され、そのスリット光4はテーブル1に対して
略垂直となっている。但し、前述したようにテーブル1
の上面をx−y平面とし、その垂直上方をz軸方向とす
る。また、スリット光4はx方向に平行とする。そし
て、このスリット光4の平行な方向xに対して直交する
方向yにスリット光発生装置3は移動できるようになっ
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings. FIG. 1 shows a first embodiment of the present invention. As shown in the figure, the measurement object 2 placed on the table 1 has slit light generator 3 to slit light 4
Is projected. The slit light generator 3 is arranged above the table 1, and the slit light 4 is substantially perpendicular to the table 1. However, as described above, Table 1
Is the xy plane, and the vertically upper side is the z-axis direction. The slit light 4 is parallel to the x direction. The slit light generator 3 can be moved in a direction y orthogonal to the parallel direction x of the slit light 4.

【0010】一方、カメラ5はテーブル1の斜め上方に
設置され、スリット光の照射により形成された光学像を
撮影している。カメラ5の観察方向はy軸方向の斜め上
方とする。更に、このカメラ5を、測定対象物2までの
距離Lを変えないように測定対象物2の回りにカメラ5
を移動させるカメラ移動装置8が設けられている。従っ
て、測定対象物2に対する角度θが角度θ’に変わるだ
けであり、前述した従来技術で説明した式(4)(5)に代え
て、次に示す式(6)(7)を使用すれば良い。 z=LMα/(L・sinθ’+M・αcosθ’) ・・・(6) x={1-Mα・cosθ’/(L・sinθ’+M・αcosθ’)}M β ・・・(7) このカメラ5で撮影された画像に対応した画像データは
画像取り込み器6に取り込まれ、画像データ判定器9、
駆動指令装置10を経て、座標演算器7へ入力され、こ
こで画像データが演算されて座標が演算される。これを
測定対象物2の全体に行うことにより、測定対象物2の
形状が認識できるようになっている。
On the other hand, the camera 5 is installed diagonally above the table 1 and photographs the optical image formed by the irradiation of slit light. The observation direction of the camera 5 is diagonally upward in the y-axis direction. Further, the camera 5 is placed around the measuring object 2 so as not to change the distance L to the measuring object 2.
A camera moving device 8 for moving the camera is provided. Therefore, only the angle θ with respect to the measurement object 2 is changed to the angle θ ′, and the following formulas (6) and (7) may be used instead of the formulas (4) and (5) described in the related art. Good. z = LMα / (L ・ sinθ '+ M ・ αcosθ') ・ ・ ・ (6) x = {1-Mα ・ cosθ '/ (L ・ sinθ' + M ・ αcosθ ')} Mβ ・ ・ ・ (7 ) Image data corresponding to the image captured by the camera 5 is captured by the image capturing device 6, and the image data determining device 9,
It is input to the coordinate calculator 7 via the drive command device 10, where the image data is calculated and the coordinates are calculated. By performing this on the entire measuring object 2, the shape of the measuring object 2 can be recognized.

【0011】ここで、画像データ判定器9は、画像取り
込み器6に取り込まれた画像データに測定対象物2の三
次元形状の像を示すデータがあるか否か判定し、その結
果を駆動指令装置10に入力する。例えば、図5(a) に
示すように、反射率の高い測定対象物1の急傾斜面に、
カメラ5からスリット光4を照射すると、測定対象物2
とカメラ5との角度が急であるため、カメラ5でスリッ
ト光4の乱反射光が捉えられず、形状データ無しと判断
する。一方、駆動指令装置10は、測定対象物2の三次
元形状の画像データがないと画像データ判定器9により
判断されると、カメラ移動装置8へ駆動指令を与えてカ
メラ5を測定対象物からの乱反射光を増やす方向へ移動
させる。これにより、図5(b) に示すようにカメラ5を
移動させて、測定対象物2とカメラ5との角度を緩くす
ることにより、カメラ5でスリット光4の乱反射光が捉
えられることとなり、形状データを得られることにな
る。この移動は、形状無しの点が存在しなくなるまで繰
り返す。
Here, the image data judging device 9 judges whether or not the image data taken in by the image taking device 6 has data showing an image of the three-dimensional shape of the measuring object 2, and the result is a driving command. Input to the device 10. For example, as shown in FIG. 5 (a), on the steeply inclined surface of the measuring object 1 having a high reflectance,
When the slit light 4 is emitted from the camera 5, the measurement object 2
Since the angle between the camera and the camera 5 is steep, the camera 5 cannot detect the irregular reflection light of the slit light 4, and it is determined that there is no shape data. On the other hand, when the image data determiner 9 determines that there is no image data of the three-dimensional shape of the measurement object 2, the drive command device 10 gives a drive command to the camera moving device 8 to move the camera 5 from the measurement object. Move the diffused reflected light in the direction of increasing. As a result, by moving the camera 5 as shown in FIG. 5 (b) to loosen the angle between the measurement object 2 and the camera 5, the diffuse reflection light of the slit light 4 is captured by the camera 5, The shape data can be obtained. This movement is repeated until there are no shapeless points.

【0012】このように、本実施例では、カメラ移動装
置8、画像データ判定器9及び駆動指令回路10を使用
することにより、測定対象物2が急傾斜面である場合で
も、自動的に形状データなし点を検出して、カメラ5を
自由に移動させて、測定対象物2とカメラ5とのなす角
度θを緩くし、これにより、カメラ5でスリット光の乱
反射光を捉えることができるので、確実に測定対象物2
の形状認識が可能となると共に作業性、測定精度が向上
するものである。
As described above, in this embodiment, by using the camera moving device 8, the image data judging device 9 and the drive command circuit 10, even if the measuring object 2 is a steeply inclined surface, the shape is automatically adjusted. A point without data is detected, the camera 5 is freely moved, and the angle θ formed between the measurement object 2 and the camera 5 is loosened, whereby the camera 5 can capture irregular reflection light of slit light. , Surely measurement object 2
The shape can be recognized and the workability and measurement accuracy are improved.

【0013】[0013]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明はカメラ移動装置、画像データ判定器
及び駆動指令回路を設けたことにより、自動的に形状デ
ータなし点を検出して、カメラを測定対象物回りに自由
に移動できるようににしたので、測定対象物に急傾斜面
がある場合でも、確実に三次元形状を認識することがで
きるものである。
As described above in detail with reference to the embodiments, the present invention automatically detects the shape data missing point by providing the camera moving device, the image data judging device and the drive command circuit. Since the camera can be freely moved around the object to be measured, the three-dimensional shape can be reliably recognized even when the object to be measured has a steep slope.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例にかかる三次元形状認識
装置の斜視図である。
FIG. 1 is a perspective view of a three-dimensional shape recognition device according to a first embodiment of the present invention.

【図2】従来の三次元形状認識装置の斜視図である。FIG. 2 is a perspective view of a conventional three-dimensional shape recognition device.

【図3】同図(a) はx−y平面の説明図、同図(b) はz
−y平面の説明図である。
FIG. 3A is an explanatory view of an xy plane, and FIG. 3B is z.
It is explanatory drawing of-y plane.

【図4】同図(a)(b)はそれぞれ従来の三次元形状認識装
置のz−y平面、z−x平面での位置関係を示す配置
図、同図(C) はカメラ内の座標の説明図である。
FIGS. 4 (a) and 4 (b) are layout diagrams showing the positional relationship on a zy plane and a zx plane of a conventional three-dimensional shape recognition device, and FIG. 4 (C) is a coordinate in a camera. FIG.

【図5】同図(a)はカメラ移動前におけるスリット光
の反射を示す説明図、同図(b)はカメラ移動後におけ
るスリット光の反射を示す説明図である。
5A is an explanatory diagram showing reflection of slit light before the camera is moved, and FIG. 5B is an explanatory diagram showing reflection of slit light after the camera is moved.

【符号の説明】[Explanation of symbols]

1 テーブル 2 測定対象物 3 スリット光発生装置 4 スリット光 5 カメラ 6 画像取り込み器 7 座標演算器 8 カメラ移動装置 9 画像データ判定器 10 駆動指令装置 1 Table 2 Object to be Measured 3 Slit Light Generation Device 4 Slit Light 5 Camera 6 Image Capture Device 7 Coordinate Calculator 8 Camera Moving Device 9 Image Data Judgment Device 10 Drive Command Device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 テーブル上に載置された測定対象物に向
けてスリット光を投光するスリット光発生装置と、前記
スリット光の照射により形成された像を撮影する形状認
識用カメラと、前記形状認識用カメラにより撮影された
像に対応した画像データを取り込む画像取り込み器と、
該画像取り込み器により取り込まれた画像データに基づ
いて前記測定対象物の座標位置を演算する座標演算器
と、前記画像取り込み器に取り込まれた画像データに前
記測定対象物の三次元形状の像を示すデータがあるか否
か判定する画像データ判定器と、前記形状認識用カメラ
を移動させるカメラ移動装置と、前記画像データ判定器
により前記測定対象物の三次元形状を示すデータが無い
と判断されたときに前記カメラ移動装置へ移動指令を与
えて前記カメラを移動させ前記測定対象物からの乱反射
光を増やす駆動指令装置とを有することを特徴とする三
次元形状認識装置。
1. A slit light generator for projecting slit light toward an object to be measured placed on a table, a shape recognition camera for photographing an image formed by the irradiation of the slit light, and An image capture device that captures image data corresponding to the image captured by the shape recognition camera,
A coordinate calculator for calculating the coordinate position of the measurement target based on the image data captured by the image capturer, and a three-dimensional image of the measurement target in the image data captured by the image capturer. Image data judging device for judging whether or not there is data shown, a camera moving device for moving the shape recognition camera, and the image data judging device judges that there is no data showing the three-dimensional shape of the measurement object. The three-dimensional shape recognition device, further comprising: a drive command device that gives a movement command to the camera moving device to move the camera to increase diffused reflected light from the measurement object.
JP3314918A 1991-11-28 1991-11-28 Three-dimensional shape recognizing device Withdrawn JPH05149727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3314918A JPH05149727A (en) 1991-11-28 1991-11-28 Three-dimensional shape recognizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3314918A JPH05149727A (en) 1991-11-28 1991-11-28 Three-dimensional shape recognizing device

Publications (1)

Publication Number Publication Date
JPH05149727A true JPH05149727A (en) 1993-06-15

Family

ID=18059215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3314918A Withdrawn JPH05149727A (en) 1991-11-28 1991-11-28 Three-dimensional shape recognizing device

Country Status (1)

Country Link
JP (1) JPH05149727A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108002A (en) * 2005-10-13 2007-04-26 Moritex Corp Three-dimensional shape measuring device using optical cutting method, and three-dimensional shape measuring method
US7310154B2 (en) 2000-08-08 2007-12-18 Ricoh Company, Ltd. Shape measurement system
WO2012176262A1 (en) * 2011-06-20 2012-12-27 株式会社安川電機 Three-dimensional shape measuring device and robot system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7310154B2 (en) 2000-08-08 2007-12-18 Ricoh Company, Ltd. Shape measurement system
JP2007108002A (en) * 2005-10-13 2007-04-26 Moritex Corp Three-dimensional shape measuring device using optical cutting method, and three-dimensional shape measuring method
WO2012176262A1 (en) * 2011-06-20 2012-12-27 株式会社安川電機 Three-dimensional shape measuring device and robot system

Similar Documents

Publication Publication Date Title
Nitzan Three-dimensional vision structure for robot applications
Saeed et al. Weld pool surface depth measurement using a calibrated camera and structured light
US20120072170A1 (en) Vision measurement probe and method of operation
JP2001521140A (en) 3D inspection system
JPS60200111A (en) Apparatus for recognizing three-dimensional object
US6061467A (en) Automated optical inspection apparatus using nearest neighbor interpolation
JP3545542B2 (en) Wafer rotation direction detection method
JPH05149727A (en) Three-dimensional shape recognizing device
JPS60200141A (en) Detecting method of surface form of specular object
JP2013063490A (en) Cutting apparatus and cutting method
JP2003067726A (en) Solid model generation system and method
JP2519445B2 (en) Work line tracking method
JP4218283B2 (en) Target projection type three-dimensional shape measuring method and apparatus
JPH04181108A (en) Method for recognizing three-dimensional shape
JPH04240508A (en) Recognizing apparatus of three-dimensional shape
JPH03257307A (en) Recognizing method and apparatus for three-dimensional shape
JPH06129820A (en) Three dimensional shape recognition device
JPH04181107A (en) Method and device for recognizing three-dimensional shape
JPH03249506A (en) Three-dimensional shape recognizer
JPH03249510A (en) Three-dimensional shape recognizer
JP2932418B2 (en) Work position measurement method
JPH058663U (en) 3D shape recognition device
JPH03186705A (en) Three-dimensional shape dimension measuring instrument
JPH08145637A (en) Method and apparatus for recognizing profile of pipe
JPH03249511A (en) Three-dimensional shape recognizer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204