JPH04181107A - Method and device for recognizing three-dimensional shape - Google Patents

Method and device for recognizing three-dimensional shape

Info

Publication number
JPH04181107A
JPH04181107A JP30717990A JP30717990A JPH04181107A JP H04181107 A JPH04181107 A JP H04181107A JP 30717990 A JP30717990 A JP 30717990A JP 30717990 A JP30717990 A JP 30717990A JP H04181107 A JPH04181107 A JP H04181107A
Authority
JP
Japan
Prior art keywords
image
slit light
coordinates
camera
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30717990A
Other languages
Japanese (ja)
Inventor
Kensuke Ide
健介 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30717990A priority Critical patent/JPH04181107A/en
Publication of JPH04181107A publication Critical patent/JPH04181107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enable an imaginary image to be eliminated and a real image to be extracted positively by rotating a slit light generator, comparing image coordinates of a reflection light which is taken before and after rotation, and by extracting those where both image coordinates match or have less deviation. CONSTITUTION:Although there is not great change between a real image position R of a reflection light which is taken before rotating a slit light generator 1 and a real image position R' after rotation, deviation between positions G1 and G2 of imaginary images I and II before rotating the generator 1 and those G1' and G2' after rotation becomes large. These images which are taken by a camera 4 are processed by an image taking device 5 and a coordinates operation device 6 and the coordinates of the obtained image are memorized 7. Then, both coordinates are compared by an imaginary image judging device 8 and an image with less deviation of coordinates is determined to be a real image, while that with much deviation is determined to be an imaginary image. Therefore, even if an object to be measured 9 consists of a material with a large reflection factor and a double reflection occurs due to a sharp slanted surface, the imaginary image can be eliminated positively and a three- dimensional shape can be recognized accurately.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、光切断法による三次元形状認識方法及びその
装置に関し、特に虚像を確実に検出して取り除けるよう
にしたものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a three-dimensional shape recognition method and apparatus using a light sectioning method, and particularly to a method for reliably detecting and removing virtual images.

〈従来の技術〉 工作機械の分野において、倣い加工を行うため或いは衝
突を防止するために、また、金型加工装置のために、三
次元形状を認識する必要が生じる場合がある。
<Prior Art> In the field of machine tools, it may be necessary to recognize three-dimensional shapes in order to perform copying or to prevent collisions, or for mold processing equipment.

非接触の形状認識の一手法として、光切断法がある。こ
れは、スリット光を測定対象物に照射して、その乱反射
した像により、測定対象物の座標を求めるものである。
Optical sectioning is one method of non-contact shape recognition. This method involves irradiating a measurement object with slit light and determining the coordinates of the measurement object from the diffusely reflected image.

この光切断法による従来の三次元形状認識装置を第2図
に示す。同図に示すように測定対象物9の上方にはスリ
ット光発生器lが吊り下げられ、このスリット光発生器
1から測定対象物9に対し鉛直上方からスリット光2が
照射される。スリット光発生装置lは、図示しない機構
により、このスリット光2の平行な方向に対して直交す
名刀向に移動可能である。
A conventional three-dimensional shape recognition device using this optical cutting method is shown in FIG. As shown in the figure, a slit light generator 1 is suspended above the object to be measured 9, and the slit light generator 1 irradiates the object to be measured 9 with slit light 2 from vertically above. The slit light generator 1 is movable in a direction perpendicular to the parallel direction of the slit light 2 by a mechanism not shown.

一方、カメラ4は測定対象物9の斜め上方に設置され、
スリット光2の照射により形成された光学像を撮影して
いる。このカメラ4で撮影された画像に対応した画像デ
ータは画像取り込み器5に取り込まれ、座標演算器6で
画像データが演算されて測定対象物9の形状が認識でき
るようになっている。
On the other hand, the camera 4 is installed diagonally above the measurement target 9,
An optical image formed by irradiation with the slit light 2 is photographed. Image data corresponding to the image taken by this camera 4 is captured by an image capturing device 5, and the image data is computed by a coordinate computing device 6 so that the shape of the object to be measured 9 can be recognized.

座標演算器6による座標の演算方法を第3図(a) (
b) (C) (dlを参照して説明する。ただし、座
標軸は第3図(a) (b)に示すように、水平面をx
−X平面とし、その垂直上方を2軸方向とする。また、
スリット光2の照射方向は2方向とし、カメラ4の観察
方向はy軸方向の斜め上方(Z軸よりθの角度)とする
。つまり、スリット光2の照射方向とカメラ4の光軸と
のなす角度がθとなるのである。
The method of calculating coordinates by the coordinate calculator 6 is shown in Fig. 3(a) (
b) (C) (Explain with reference to dl. However, as shown in Figure 3 (a) and (b), the coordinate axes are horizontal plane x
−X plane, and the vertical direction is the two axis direction. Also,
The slit light 2 is irradiated in two directions, and the camera 4 is observed in an obliquely upward direction in the y-axis direction (an angle of θ from the Z-axis). In other words, the angle between the irradiation direction of the slit light 2 and the optical axis of the camera 4 is θ.

第3図(C) (d)に示すように、スリット光2がZ
−X平面に一致するため、スリット光2は下式%式% また、カメラ4のレンズ中心0゛から距離り離れた座標
原点Oでの拡大率Mは下式で示される。
As shown in FIG. 3(C)(d), the slit light 2
Since it coincides with the −X plane, the slit light 2 is expressed by the following formula %. Furthermore, the magnification M at the coordinate origin O, which is a distance from the lens center 0° of the camera 4, is expressed by the following formula.

ただし、A @ B oは座標原点即ち距離りにおける
X方向、X方向から見た輻A、Bを撮像した画面内の輻
である。
However, A@B o is the coordinate origin, that is, the X direction in the distance, and the radiation in the screen where the radiation A and B viewed from the X direction are imaged.

ここで、第4図に示すように画像内の座標がそれぞれα
、βとするときに、この座標に対応するy−X平面にお
ける撮影方向は下式で示される。
Here, as shown in Figure 4, the coordinates in the image are α
, β, the photographing direction on the y-X plane corresponding to these coordinates is expressed by the following formula.

上記(3)式に前記(1)式を代入すると、スリット光
の切断線の2軸座標が求まる。
By substituting the above equation (1) into the above equation (3), the two-axis coordinates of the cutting line of the slit light can be found.

同様に、スリット光の切断線のX座標も次のように求ま
る。
Similarly, the X coordinate of the cutting line of the slit light is determined as follows.

このように+41 (51式により、2座標、X座標を
演算するとともに、この演算を測定対象物の全体に対し
て行うことにより、三次元形状が認識できることになる
In this way, by calculating the two coordinates and the X coordinate using the formula +41 (51), and performing this calculation on the entire object to be measured, the three-dimensional shape can be recognized.

〈発明が解決しようとする課題〉 上述したように光切断法による三次元形状認識方法では
、スリット光2を測定対象物9に照射し、その乱反射し
た光をカメラ4で撮像し、その像により測定対象物の座
標を求めるものであるが、測定対象物9の素材、形状に
よっては正反射光が観察されるため、実像以外に虚像が
観察されることがあったり、実像よりも虚像の方が強く
観察されることがある。
<Problems to be Solved by the Invention> As described above, in the three-dimensional shape recognition method using the light cutting method, the slit light 2 is irradiated onto the measurement object 9, the diffusely reflected light is imaged by the camera 4, and the image is This is to find the coordinates of the object to be measured, but depending on the material and shape of the object to be measured 9, specularly reflected light may be observed, so a virtual image may be observed in addition to the real image, or the virtual image may be more visible than the real image. may be strongly observed.

例えば、第5図(a) (b)に示すように測定対象物
9が反射率の高い素材で急斜面を有する場合、この急斜
面でスリット光が正反射し、その光が他の面で乱反射し
、このこの乱反射による虚像15を実像11としてカメ
ラ4で撮像し、座標を誤って算出する場合がある。
For example, if the measurement object 9 is made of a material with high reflectance and has a steep slope as shown in FIGS. 5(a) and 5(b), the slit light will be specularly reflected on this steep slope, and the light will be diffusely reflected on other surfaces. , the virtual image 15 due to this diffused reflection may be captured by the camera 4 as the real image 11, and the coordinates may be calculated incorrectly.

このような不具合を解消するため、従来では、第6図に
示すように、二重のカメラ4.10を設けて、それらの
カメラ4,10で撮影された像の座標を求めて比較する
ようにしていた。このように比較すると、実像11から
求めた座標R,,Rbは、互いに一致するが、虚像15
から求めた座標G、、G、は座標は互いに異なる値とな
る。これを利用して実像と虚像とを判別することにして
いた。
In order to solve this problem, conventionally, as shown in Fig. 6, dual cameras 4 and 10 are provided, and the coordinates of images taken by these cameras 4 and 10 are determined and compared. I was doing it. When compared in this way, the coordinates R, , Rb obtained from the real image 11 match each other, but
The coordinates G, , G, obtained from the coordinates G, , G, have different values. It was decided to use this to distinguish between real images and virtual images.

しかし、この方法は、第6図に示すように実像11はス
リット光平面内に存在するが、虚像15はスリット光平
面内に存在しない事に着目し、虚像15から求めた座標
G、、Gbはカメラ4、IOの視点により異なることを
利用している為、多重反射した場合には虚像を完全に取
り除くことができない問題があった。
However, this method focuses on the fact that the real image 11 exists within the slit light plane, but the virtual image 15 does not exist within the slit light plane, as shown in FIG. Since this method uses different viewpoints of the camera 4 and IO, there is a problem that the virtual image cannot be completely removed in the case of multiple reflections.

例えば、第7図に示すように面ABCDで正反射したス
リット光2が面CDEFで乱反射して虚像■となり、面
ABCDが鏡とる為、この虚像Iが面ABCDに虚像■
として写る場合がある。
For example, as shown in FIG. 7, the slit light 2 specularly reflected by the surface ABCD is diffusely reflected by the surface CDEF and becomes a virtual image ■.Since the surface ABCD is a mirror, this virtual image I becomes the virtual image ■ by the surface ABCD.
It may appear as.

この場合、虚像■は、鏡像の原理により、次のようにス
リット光平面内に観察される。
In this case, the virtual image (2) is observed within the slit light plane as follows due to the mirror image principle.

即ち、スリット光2は第8図に示すように、鉛直上方の
T方向から投光されて面ABCDの点Rで正反射し、面
CDEFの点G1で乱反射して虚像■を形成する為、次
式が成り立つ。
That is, as shown in FIG. 8, the slit light 2 is projected from the T direction vertically above, is specularly reflected at a point R on the surface ABCD, and is diffusely reflected at a point G1 on the surface CDEF to form a virtual image (2). The following formula holds.

、<TRA=ZG、RC・・・(6) ここで、面ABCDは鏡となるので、虚像■は面ABC
D上に虚像■として写り、その位置をG、とすると、虚
像■の位置G1と虚像■の位置G2とは、線分ACに対
して対象となる。
, <TRA=ZG, RC...(6) Here, since the plane ABCD becomes a mirror, the virtual image ■ is the plane ABC
If a virtual image ■ appears on D and its position is G, then the position G1 of the virtual image ■ and the position G2 of the virtual image ■ are symmetrical with respect to the line segment AC.

また、虚像Iの位置G、と虚像■の位置G、とを結ぶ線
分と線分ACの延長線との交点をPとすると、ΔRG、
PとΔRG、Pは何方も直角三角形である。
Also, if P is the intersection of the line segment connecting the position G of virtual image I and the position G of virtual image ■ and the extension line of line segment AC, then ΔRG,
P, ΔRG, and P are all right triangles.

従って、 /G、PA=/GIPA また、GtP=/GIP。Therefore, /G,PA=/GIPA Also, GtP=/GIP.

PR=PR(共通)であるから、 ΔRG、PミΔRG、P・・費η 即ち /GtRC=/CzRC 、’、 l T RA = l G t RCとなり、
/TRAとl G t RCとは互いに対頂角の関係と
なる。
Since PR=PR (common), ΔRG, Pmi ΔRG, P...cost η, that is, /GtRC=/CzRC,', l T RA = l G t RC,
/TRA and l G t RC are in a diagonal relationship with each other.

言い換えれば、点G、はTR上の点となり、スリット光
平面内に存在する。
In other words, point G becomes a point on TR and exists within the slit light plane.

しかし、従来の虚像判定方法では、虚像がスリット光平
面内に存在しない場合だけしか判別できず、点G、よう
に二重反射による虚像■のを取り除くことはできなかっ
た。
However, the conventional virtual image determination method can only determine when the virtual image does not exist within the slit light plane, and cannot eliminate the virtual image (2) caused by double reflection, such as at point G.

本発明は、上記従来技術に鑑みて成されたも11あり、
光切断法による三次元形状認識において、虚像を確実に
検出して取り除くことができる三次元形状認識方法及び
その装置を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned prior art.
It is an object of the present invention to provide a three-dimensional shape recognition method and apparatus that can reliably detect and remove virtual images in three-dimensional shape recognition using a light cutting method.

〈課題を解決するための手段〉 斯かる目的を達成する本発明の三次元形状認識方法の構
成はスリット光発生器から測定対象物に向けてスリット
光を照射すると共に前記測定対象物からのスリット光の
反射光をカメラで撮影し、前記カメラで撮影した反射光
を画像処理して画像座標を求め、各画像座標、スリット
光の位置の座標、スリット光とカメラの光軸との成す角
、カメラのレンズの緒元に基づいて測定対象物の三次元
形状を認識する方法において、前記スリット光発生器を
回転させることによりスリット光の前記測定対象物に対
する照射角を変化させ、前記スリット光発生器の回転前
後において前記カメラで撮影した反射光の画像座標を夫
々求めて両者を比較し、両画像座標が一致するもの或い
はずれの少ないものを抽出することを特徴とする。
<Means for Solving the Problems> The configuration of the three-dimensional shape recognition method of the present invention that achieves the above object is to irradiate a slit light from a slit light generator toward an object to be measured, and to emit slit light from the object to be measured. The reflected light of the light is photographed with a camera, the reflected light photographed with the camera is image-processed to obtain image coordinates, and each image coordinate, the coordinate of the position of the slit light, the angle formed by the slit light and the optical axis of the camera, In a method for recognizing the three-dimensional shape of a measurement target based on the specifications of a camera lens, the illumination angle of the slit light with respect to the measurement target is changed by rotating the slit light generator, and the slit light is generated. The present invention is characterized in that the image coordinates of the reflected light photographed by the camera before and after the rotation of the vessel are obtained, the two are compared, and an image whose coordinates match or whose deviation is small is extracted.

また、上記目的を達成する本発明の三次元形状認識装置
の構成は測定対象物に向けてスリット光を照射するスリ
ット光発生器と、前記測定対象物からのスリット光の反
射光を撮影するカメラと、前記カメラで撮影した各反射
光を画像処理して各画像座標を求め、各画像座標、スリ
ット光の位置の座標、スリット光とカメラの光軸の成す
角度、カメラのレンズの緒元に基づいて測定対象物の形
状を検出する画像処理手段とを有する三次元形状認識装
置において、前記スリット光発生器を回転させるスリッ
ト光会転記と、前記スリット光発生器の回転前に前記カ
メラで撮影し前記画像処理手段により処理して得る画像
座標を記憶する座標記憶器と、前記スリット光発生器の
回転後に前記カメラで撮影して前記画像処理手段により
処理して得る画像座標と前記座標記憶器に記憶している
画像座標とを比較し、両画像座標が一致するもの或いは
ずれの少ないものを実像と判定する座標判別器とを有す
ることを特徴とする。
The three-dimensional shape recognition device of the present invention that achieves the above object includes a slit light generator that irradiates a slit light toward an object to be measured, and a camera that photographs the reflected light of the slit light from the object to be measured. Then, each reflected light photographed by the camera is image-processed to obtain each image coordinate, and each image coordinate, the coordinate of the position of the slit light, the angle formed by the slit light and the optical axis of the camera, and the specifications of the camera lens are calculated. A three-dimensional shape recognition device having an image processing means for detecting the shape of an object to be measured based on the slit light generator; a coordinate memory for storing image coordinates obtained by processing by the image processing means; and image coordinates obtained by photographing with the camera after rotation of the slit light generator and processing by the image processing means and the coordinate memory. The present invention is characterized by having a coordinate discriminator that compares the image coordinates stored in the image coordinates and determines that the coordinates of both images match or have a small difference as a real image.

〈作用〉 反射率が高い測定対象物に対し、スリット光をある角度
から照射すると、その正反射光が虚像を形成し、その虚
像が他の面に鏡写しとなって更に虚像を形成する場合が
ある。
<Operation> When a slit light beam is irradiated from a certain angle onto a measuring object with high reflectance, the specularly reflected light forms a virtual image, and that virtual image is mirrored on another surface to form another virtual image. There is.

このように多重反射が生じる場合に、スリット光発生器
を回転させると、実像の座標は殆ど変化しないのに対し
、虚像はスリット光面内に有る場合でも大きくずれる。
When multiple reflections occur in this way, when the slit light generator is rotated, the coordinates of the real image hardly change, whereas the virtual image shifts significantly even if it is within the slit light plane.

そこで、スリット光発生器を回転して測定解消物に対す
る照射角を変化させる前後の画像座標を演算して比較し
、両画面座標の一致するもの或いはずれの少ないものを
実像と判定して抽出する一方、一致しないもの或いはず
れの大きなものを虚像と判定して取り除くのである。
Therefore, the image coordinates before and after rotating the slit light generator to change the irradiation angle with respect to the measurement object are calculated and compared, and the image where the coordinates of both screens match or whose deviation is small is determined to be a real image and extracted. On the other hand, those that do not match or have a large difference are determined to be virtual images and are removed.

〈実施例〉 以下、本発明について、図面に示す実施例を参照して詳
細に説明する。
<Examples> The present invention will be described in detail below with reference to examples shown in the drawings.

第1図に本発明の一実施例を示す。同図に示すように測
定対象物9の上方ではスリット光発生器1がスリット光
回転器3に支持されている。
FIG. 1 shows an embodiment of the present invention. As shown in the figure, a slit light generator 1 is supported by a slit light rotator 3 above the object to be measured 9 .

スリット光発生器lは、略鉛直上方から測定対象物9に
対してスリット光2を照射するものであり、その測定対
象物9に対する照射角は、スリット光回転器3によりス
リット光発生器1を回転することで変化するようになっ
ている。−方、測定対象物9の斜め上方には、その反射
光を観察するカメラ4が設置されている。
The slit light generator 1 irradiates the slit light 2 onto the measurement target 9 from approximately vertically above, and the irradiation angle to the measurement target 9 is determined by the slit light generator 1 using the slit light rotator 3. It changes by rotating. - On the other hand, a camera 4 is installed obliquely above the measurement target 9 to observe the reflected light.

このカメラ4で撮影された画像に対応した画像データは
画像取り込み器5に取り込まれ、座標演算器6で画像デ
ータが演算されて測定対象物9の形状が認識できるよう
になっている。
Image data corresponding to the image taken by this camera 4 is captured by an image capturing device 5, and the image data is computed by a coordinate computing device 6 so that the shape of the object to be measured 9 can be recognized.

従って、スリット光発生器1をスリット光回転器3で回
転した前後では、カメラ4で撮影され、画像取り込み器
5、座S演算器6で画像処理して得た像の座標が異なる
事になる。
Therefore, before and after the slit light generator 1 is rotated by the slit light rotator 3, the coordinates of the image taken by the camera 4 and obtained by image processing by the image capture device 5 and the seat S calculator 6 will be different. .

例えば、第9図(a)に誇張して示すように、スリット
光発生器Iを回転する前の実像の位置をR1虚像■の位
置をG7、虚像■の位置をG!とし、同図(b)に示す
ように、スリット光発生器1を回転した後における実像
の位置R′、虚像■の位置を01′、虚像■の位置をG
、′とすると、スリット光発生器の課員点の前後におい
て実像の位置RとR′の位置はあまり変化がないのに対
し、虚像■、■の位置G3、G + ’ 、G t、 
G t′のずれの方がどうしても太き(なる。
For example, as shown in an exaggerated manner in FIG. 9(a), the position of the real image before rotating the slit light generator I is R1, the position of virtual image ■ is G7, and the position of virtual image ■ is G! As shown in the same figure (b), after rotating the slit light generator 1, the position of the real image is R', the position of the virtual image ■ is 01', and the position of the virtual image ■ is G.
, ', the positions of the real images R and R' do not change much before and after the point of the slit light generator, whereas the positions of the virtual images ■, ■ are G3, G + ', G t,
The deviation of G t' is inevitably larger.

座標演算器6で演算された結果は、座標記憶器7に入力
される。
The result calculated by the coordinate calculator 6 is input to the coordinate memory 7.

座標演算器6では、スリット光発生器1の回転前におい
て、前記カメラ4で撮像され、画像取り込み器5及び座
標演算器6で画像処理して得た画像の座標を記憶するも
のである。
The coordinate calculator 6 stores the coordinates of an image taken by the camera 4 before the rotation of the slit light generator 1 and processed by the image capture device 5 and the coordinate calculator 6.

更に、虚像判別器8には、画像記憶器7に記憶された画
像の座標が入力されると共に、スリット光発生器1の回
転後において前記カメラ4で撮像され、画像取り込み器
5及び座標演算器6で画像処理して得た画像の座標が入
力される。
Furthermore, the coordinates of the image stored in the image storage 7 are input to the virtual image discriminator 8, and the coordinates of the image captured by the camera 4 after the rotation of the slit light generator 1 are input to the virtual image discriminator 8, and the coordinates of the image are input to the virtual image discriminator 8. The coordinates of the image obtained by image processing in step 6 are input.

この虚像判別器8では、両者の座標を比較し、両者の座
標において、ズレの少ない像を実像とし、ズレの大きい
像を虚像と判別する。
The virtual image discriminator 8 compares the coordinates of both images, and determines that an image with a small deviation in both coordinates is a real image, and an image with a large deviation as a virtual image.

例えば、第9図(a) (blに示すように、スリット
光発生器lの回転の前後において、実像の座標位置R,
R’は殆ど変わらないのに対し、虚像■、■の座標位置
G3、G+’、G−1G2’はそれに比較し大きくずれ
ている。
For example, as shown in FIG. 9(a) (bl), before and after the rotation of the slit light generator l, the coordinate positions R,
While R' is almost unchanged, the coordinate positions G3, G+', and G-1G2' of the virtual images (2) and (2) are significantly shifted compared to that.

従って、座標を比較することにより、虚像■、■が虚像
であることが判別され、実像のみを抽出して三次元形状
認識に使用することができる。
Therefore, by comparing the coordinates, it is determined that the virtual images (1) and (4) are virtual images, and only the real images can be extracted and used for three-dimensional shape recognition.

このように、本発明では、スリット光発生器lを回転さ
せて測定対象物9に対する照射角を変化させ、変化の前
後において実像の座標位置は殆ど変化しないのに対し、
虚像の座標位置は大きく変化することを利用して、実像
と虚像を判別し、実像のみを抽出することができる。
In this way, in the present invention, the slit light generator l is rotated to change the irradiation angle with respect to the measurement object 9, and the coordinate position of the real image hardly changes before and after the change.
Taking advantage of the fact that the coordinate position of a virtual image changes greatly, it is possible to distinguish between a real image and a virtual image, and extract only the real image.

従って、測定対象物9が反射率の大きな材質であり、急
斜面を有する場合のように、二重反射が起こった場合で
も、確実に虚像を取り除いて正確な三次元形状認識が可
能となる。
Therefore, even if double reflection occurs, such as when the measurement object 9 is made of a material with a high reflectance and has a steep slope, the virtual image can be reliably removed and accurate three-dimensional shape recognition can be performed.

尚、上記実施例では、スリット光発生器lを回転するこ
とにより、実像の位置が多少ずれていたが、演算処理の
結果、実像の位置の変化が測定されない程度にスリット
光発生器lの回転角度を微少にするようにしてもよい。
In the above embodiment, the position of the real image was slightly shifted by rotating the slit light generator l, but as a result of calculation processing, the rotation of the slit light generator l was determined to such an extent that no change in the position of the real image was measured. The angle may be made very small.

〈発明の効果〉 以上、実施例に基づいて具体的に説明したように、本発
明はスリット光発生器を回転させることにより測定対象
物に対する照射角を変化させて、実像と虚像を判別する
ので、測定対象物で多重反射が生じた場合でも、確実に
虚像を取り除いて実像を抽出することができるので、正
確な三次元形状認識が可能となる。
<Effects of the Invention> As specifically explained above based on the embodiments, the present invention distinguishes between a real image and a virtual image by changing the irradiation angle with respect to the object to be measured by rotating the slit light generator. Even if multiple reflections occur on the object to be measured, the virtual image can be reliably removed and the real image extracted, allowing accurate three-dimensional shape recognition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかる三次元形状認識方法
に使用される装置の斜視図、第2図は従来の三次元形状
認識装置の斜視図、第3図(a) (b)はそれぞれx
−y平面、z−y平面の説明図、第3図(C) (d)
はそれぞれ従来の三次元形状認識方法のz−y平面、z
−x平面での位置関係を示す配置図、第4図はカメラ内
の座標の説明図、第5図(a)はスリット光の正反射に
よる虚像発生の説明図、第5図(b)は同図(alの側
面図、第6図は二重のカメラを使用した虚像判定方法の
説明図、第7図はスリット光の二重反射の説明図、第8
図は第7図の側面図、第9図(a)ら)はそれぞれスリ
ット光発生器の回転の前後における虚像、実像の座標を
示す説明図である。 図面中、 ■はスリット光発生装置、 2はスリット光、 3はスリット光回転器、 4.10はカメラ、 5は画像取り込み器、 6は座標演算器、 7は座標記憶器、 8は虚像判別器、 9は測定対象物、 11は実像、 15は虚像である。
FIG. 1 is a perspective view of a device used in a three-dimensional shape recognition method according to an embodiment of the present invention, FIG. 2 is a perspective view of a conventional three-dimensional shape recognition device, and FIGS. 3(a) (b) are each x
-y plane, zy plane explanatory diagram, Figure 3 (C) (d)
are the z-y plane and z of the conventional three-dimensional shape recognition method, respectively.
-A layout diagram showing the positional relationship on the x plane, Figure 4 is an explanatory diagram of the coordinates within the camera, Figure 5 (a) is an explanatory diagram of the generation of a virtual image due to specular reflection of slit light, and Figure 5 (b) is an illustration of the generation of a virtual image by specular reflection of slit light. The same figure (side view of al, Figure 6 is an explanatory diagram of the virtual image determination method using double cameras, Figure 7 is an explanatory diagram of double reflection of slit light, Figure 8
The figure is a side view of FIG. 7, and FIGS. 9(a) and 9(a) are explanatory views showing the coordinates of the virtual image and real image before and after rotation of the slit light generator, respectively. In the drawing, ■ is a slit light generator, 2 is a slit light, 3 is a slit light rotator, 4.10 is a camera, 5 is an image capture device, 6 is a coordinate calculator, 7 is a coordinate storage device, 8 is a virtual image discriminator 9 is an object to be measured, 11 is a real image, and 15 is a virtual image.

Claims (2)

【特許請求の範囲】[Claims] (1)スリット光発生器から測定対象物に向けてスリッ
ト光を照射すると共に前記測定対象物からのスリット光
の反射光をカメラで撮影し、前記カメラで撮影した反射
光を画像処理して画像座標を求め、各画像座標、スリッ
ト光の位置の座標、スリット光とカメラの光軸との成す
角、カメラのレンズの緒元に基づいて測定対象物の三次
元形状を認識する方法において、前記スリット光発生器
を回転させることによりスリット光の前記測定対象物に
対する照射角を変化させ、前記スリット光発生器の回転
前後において前記カメラで撮影した反射光の画像座標を
夫々求めて両者を比較し、両画像座標の一致するもの或
いはずれの小さいものを抽出することを特徴とする三次
元形状認識方法。
(1) A slit light is emitted from a slit light generator toward an object to be measured, and the reflected light of the slit light from the object to be measured is photographed by a camera, and the reflected light photographed by the camera is image-processed to create an image. In the method for determining the coordinates and recognizing the three-dimensional shape of the object to be measured based on each image coordinate, the coordinates of the position of the slit light, the angle formed by the slit light and the optical axis of the camera, and the specifications of the camera lens, By rotating the slit light generator, the irradiation angle of the slit light with respect to the object to be measured is changed, and the image coordinates of the reflected light taken by the camera are obtained before and after the rotation of the slit light generator, respectively, and the two are compared. , a three-dimensional shape recognition method characterized by extracting those whose coordinates of both images match or whose coordinates are small.
(2)測定対象物に向けてスリット光を照射するスリッ
ト光発生器と、前記測定対象物からのスリット光の反射
光を撮影するカメラと、前記カメラで撮影した各反射光
を画像処理して各画像座標を求め、各画像座標、スリッ
ト光の位置の座標、スリット光とカメラの光軸の成す角
度、カメラのレンズの緒元に基づいて測定対象物の形状
を検出する画像処理手段とを有する三次元形状認識装置
において、前記スリット光発生器を回転させるスリット
光会転記と、前記スリット光発生器の回転前に前記カメ
ラで撮影し前記画像処理手段により処理して得る画像座
標を記憶する座標記憶器と、前記スリット光発生器の回
転後に前記カメラで撮影して前記画像処理手段により処
理して得る画像座標と前記座標記憶器に記憶している画
像座標とを比較し、両画像座標の一致するもの或いはず
れの小さいものを実像と判定する座標判別器とを有する
ことを特徴とする三次元形状認識装置。
(2) A slit light generator that emits slit light toward the measurement target, a camera that photographs the reflected light of the slit light from the measurement target, and image processing of each reflected light photographed by the camera. An image processing means that calculates each image coordinate and detects the shape of the object to be measured based on each image coordinate, the coordinate of the position of the slit light, the angle formed by the slit light and the optical axis of the camera, and the specifications of the camera lens. In the three-dimensional shape recognition device, the slit light generator is rotated, and image coordinates obtained by photographing with the camera and processing by the image processing means are stored before the rotation of the slit light generator. A coordinate storage device compares the image coordinates obtained by photographing with the camera and processing by the image processing means after the rotation of the slit light generator and the image coordinates stored in the coordinate storage device, and determines the coordinates of both images. A three-dimensional shape recognition device comprising: a coordinate discriminator that determines a match or a small difference as a real image.
JP30717990A 1990-11-15 1990-11-15 Method and device for recognizing three-dimensional shape Pending JPH04181107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30717990A JPH04181107A (en) 1990-11-15 1990-11-15 Method and device for recognizing three-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30717990A JPH04181107A (en) 1990-11-15 1990-11-15 Method and device for recognizing three-dimensional shape

Publications (1)

Publication Number Publication Date
JPH04181107A true JPH04181107A (en) 1992-06-29

Family

ID=17965989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30717990A Pending JPH04181107A (en) 1990-11-15 1990-11-15 Method and device for recognizing three-dimensional shape

Country Status (1)

Country Link
JP (1) JPH04181107A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150862A (en) * 2007-11-30 2009-07-09 Nissan Motor Co Ltd Distance measuring device, process for measuring distance and vehicle
JP2010048629A (en) * 2008-08-20 2010-03-04 Pulstec Industrial Co Ltd Three-dimensional shape measuring device and three-dimensional shape measuring method
JP2014181912A (en) * 2013-03-18 2014-09-29 Mitsutoyo Corp Shape measuring apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150862A (en) * 2007-11-30 2009-07-09 Nissan Motor Co Ltd Distance measuring device, process for measuring distance and vehicle
JP2010048629A (en) * 2008-08-20 2010-03-04 Pulstec Industrial Co Ltd Three-dimensional shape measuring device and three-dimensional shape measuring method
JP2014181912A (en) * 2013-03-18 2014-09-29 Mitsutoyo Corp Shape measuring apparatus
US9702688B2 (en) 2013-03-18 2017-07-11 Mitutoyo Corporation Shape measuring apparatus

Similar Documents

Publication Publication Date Title
JP5480914B2 (en) Point cloud data processing device, point cloud data processing method, and point cloud data processing program
US20110019243A1 (en) Stereoscopic form reader
CN103562934B (en) Face location detection
Yang et al. Practical and precise projector-camera calibration
JP7353757B2 (en) Methods for measuring artifacts
JP2013130508A (en) Three-dimension measurement method, three-dimension measurement program, and robot device
JP2008139194A (en) End position measuring method and size measuring method
JPH04181107A (en) Method and device for recognizing three-dimensional shape
Pachidis et al. Pseudo-stereo vision system: a detailed study
JPH09329440A (en) Coordinating method for measuring points on plural images
JPH03257307A (en) Recognizing method and apparatus for three-dimensional shape
JP7502343B2 (en) Image Processing System
JPH04181108A (en) Method for recognizing three-dimensional shape
JPH05149727A (en) Three-dimensional shape recognizing device
KR100395773B1 (en) Apparatus for measuring coordinate based on optical triangulation using the images
JPH03249506A (en) Three-dimensional shape recognizer
JP2004191198A (en) Apparatus and method for measuring three-dimensional geometry
JPH058663U (en) 3D shape recognition device
Zhang et al. Registered depth and intensity data from an integrated vision sensor
JPH06129820A (en) Three dimensional shape recognition device
JPH03249511A (en) Three-dimensional shape recognizer
JPH03249505A (en) Three-dimensional shape recognizer
JPH03249510A (en) Three-dimensional shape recognizer
JPH04131707A (en) Three-dimensional form recognizing device
Kim et al. 3D sensor system using multistripe laser and stereo camera for environment recognition of mobile robots