JPH05149586A - Ceiling radiation room-cooling/heating system - Google Patents

Ceiling radiation room-cooling/heating system

Info

Publication number
JPH05149586A
JPH05149586A JP18500491A JP18500491A JPH05149586A JP H05149586 A JPH05149586 A JP H05149586A JP 18500491 A JP18500491 A JP 18500491A JP 18500491 A JP18500491 A JP 18500491A JP H05149586 A JPH05149586 A JP H05149586A
Authority
JP
Japan
Prior art keywords
ceiling
cooling
air
heat
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18500491A
Other languages
Japanese (ja)
Other versions
JP2710707B2 (en
Inventor
Katsuhiko Maruo
勝彦 丸尾
Masashi Urano
雅司 浦野
Hideto Shinpo
秀人 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP3185004A priority Critical patent/JP2710707B2/en
Publication of JPH05149586A publication Critical patent/JPH05149586A/en
Application granted granted Critical
Publication of JP2710707B2 publication Critical patent/JP2710707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain comfortable indoor conditions by circulating chilled air or warm air to a closed space which is formed behind a ceiling material having a special heat resistance and suitably heat insulated. CONSTITUTION:A heat resistant per unit area of a ceiling material 1 of a ceiling radiation room cooling/heating system is 0.01-0.4m<2>.K/W or desirably 0.01-0.2m<2>-K/W. The air cooled or overheated by a heat source 16 such as a heat pump, etc., is circulated to a space 2 behind a ceiling. In the case for the purpose of room cooling, a ceiling surface temperature is set to about 20 deg.C to perform the cooling. In the case for the purpose of room heating, the temperature is set to about 35 deg.C to perform the heating. Thus, comfortable indoor conditions can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、天井面を冷却、あるい
は、加熱して室内の冷暖房を行なう天井輻射冷暖房シス
テムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceiling radiant cooling / heating system for cooling or heating a ceiling surface to cool or heat a room.

【0002】[0002]

【従来の技術】従来用いられている天井輻射冷暖房シス
テムとして図12に示すものがある。これは、天井スラ
ブ4内に配管された銅管17にヒートポンプなどの熱源
16からの冷却水、あるいは、加熱水をポンプ15によ
り供給し、天井表面温度を冷房を目的とする場合は20
℃程度、暖房を目的とする場合は35℃程度とすること
により室内の冷暖房を行なうものである。
2. Description of the Related Art A conventional ceiling radiation cooling and heating system is shown in FIG. This is the case where the cooling water from the heat source 16 such as a heat pump or the heating water is supplied to the copper pipe 17 arranged in the ceiling slab 4 by the pump 15 and the ceiling surface temperature is set to 20 for cooling.
If the purpose is to heat the room, the temperature is set to about 35 degrees C to cool or heat the room.

【0003】他の実施例として実開平01−22918
号に示されている図13のようなシステムがある。これ
は、天井面としての格子天井材1の上方にむき出しの銅
管17を施し、この銅管17に図12のシステムと同様
に冷水あるいは温水を流し冷暖房を行なうものである。
このような天井面からの輻射による伝熱を利用した冷暖
房は、不快な気流が発生しにくいことと室内の上下温度
分布が非常に小さくなることにより快適な室内条件を得
ることができる。
As another embodiment, an actual kaihei 01-22918
There is a system such as that shown in FIG. In this system, an exposed copper pipe 17 is provided above the lattice ceiling material 1 as the ceiling surface, and cold water or hot water is supplied to the copper pipe 17 to perform cooling and heating, as in the system of FIG.
Such cooling and heating using heat transfer by radiation from the ceiling surface makes it possible to obtain comfortable indoor conditions because an unpleasant air flow is unlikely to occur and the vertical temperature distribution in the room is extremely small.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記図
12に示した従来技術による天井冷暖房システムにおい
ては、天井スラブ4内に銅管17を配管するため施工が
非常に難しく、限定された業者にしか施工できないとい
う欠点を有する。また、天井スラブの熱容量が大きいた
め、冷暖房の立ち上がりに非常に時間がかかるという欠
点を有する。
However, in the ceiling cooling and heating system according to the prior art shown in FIG. 12, since the copper pipe 17 is piped in the ceiling slab 4, the construction is very difficult, and only a limited number of contractors can do it. It has the drawback that it cannot be installed. Further, since the ceiling slab has a large heat capacity, it takes a very long time to start heating and cooling.

【0005】また、図13に示したシステムも同様、施
工が難しい。そして、両従来例とも水を循環させ冷暖房
を行なうため室内への漏水の危険があった。本発明は上
記問題点を解決しようとするものであり、その目的とす
るところは、天井表面の温度分布を小さくして、空気を
熱媒として使用しながら快適な空調を行なうことができ
る天井輻射冷暖房システムを提供するにある。
The system shown in FIG. 13 is also difficult to construct. In both of the conventional examples, water is circulated for cooling and heating, and there is a risk of water leakage into the room. The present invention is intended to solve the above-mentioned problems, and an object of the present invention is to reduce the temperature distribution on the ceiling surface and to perform a comfortable air conditioning while using air as a heat medium. To provide air conditioning system.

【0006】[0006]

【課題を解決するための手段】本発明の天井輻射冷暖房
システムは、単位面積あたり熱抵抗が0. 01m2 ・K
/W以上0. 4m2 ・K/W以下である天井材で構成さ
れる天井面と、前記天井材の裏面に形成され適切に断熱
された閉空間と、前記閉空間内に冷気あるいは暖気を循
環させる熱源および送風機から成ることを特徴とするも
のである。
The ceiling radiant cooling and heating system of the present invention has a thermal resistance of 0.01 m 2 · K per unit area.
/ W or more and 0.4 m 2 · K / W or less, a ceiling surface composed of a ceiling material, a closed space that is formed on the back surface of the ceiling material and is appropriately insulated, and cool air or warm air in the closed space. It is characterized by comprising a heat source for circulation and a blower.

【0007】また、単位面積あたり熱抵抗が0. 01m
2 ・K/W以上0. 2m2 ・K/W以下である天井材を
用い、その天井材裏面に適切に断熱された閉空間を形成
し、その閉空間内をヒートポンプなどの熱源により冷却
あるいは加熱された空気を循環させることにより天井表
面温度を冷房を目的とする場合は20℃程度、暖房を目
的とする場合は35℃程度とすることにより冷暖房を行
なうものである。
The thermal resistance per unit area is 0.01 m.
Using 2 · K / W or 0. 2m 2 · K / W or less is ceiling material, to form a closed space A properly insulated to the ceiling material back surface, cool the inside of the closed space by a heat source such as a pump or Cooling and heating are performed by circulating the heated air so that the ceiling surface temperature is about 20 ° C. for the purpose of cooling and about 35 ° C. for the purpose of heating.

【0008】[0008]

【作用】本発明の天井輻射冷暖房システムは、空気を熱
媒として用いている。従来例に示した水を熱媒として天
井輻射冷暖房を行なう場合と比較して、空気は比熱が水
に比べて小さいため、天井表面温度分布を大きくさせな
いためには、天井裏面に流す流量を非常に多くするか、
室温と天井表面温度との温度差を小さい環境とする必要
がある。そのため、一般に、空気熱媒は天井冷房に適さ
ないとされている。そこで、本発明における天井輻射冷
暖房システムでは、天井材の単位面積あたり熱抵抗が
0. 01m2 ・K/W以上0. 4m2 ・K/W以下で、
好ましくは熱抵抗が01m2 ・K/W以上0. 2m2
K/W以下とし、その天井材裏面をヒートポンプ等の熱
源により冷却あるいは加熱された空気を循環させること
で解決した。以下のその原理を簡単に説明する。
The ceiling radiant cooling and heating system of the present invention uses air as a heat medium. Compared to the case of performing ceiling radiant cooling and heating using water as a heat medium shown in the conventional example, since the specific heat of air is smaller than that of water, in order to prevent the ceiling surface temperature distribution from increasing, the flow rate to the back of the ceiling must be extremely high. More or
It is necessary to make the temperature difference between the room temperature and the ceiling surface temperature small. Therefore, it is generally said that the air heating medium is not suitable for ceiling cooling. Therefore, in a unit area per heat resistance of the ceiling material is 0. 01m 2 · K / W or 0. 4m 2 · K / W or less Ceiling radiant heating and cooling system of the present invention,
Preferably 0. 2m 2 · 01m 2 · K / W or higher thermal resistance
It was set to K / W or less, and the problem was solved by circulating air cooled or heated on the back surface of the ceiling material by a heat source such as a heat pump. The principle will be briefly described below.

【0009】図7のごとき天井輻射冷暖房システムを施
工したとして(施工面積8. 5m2 )、簡単なシュミレ
ーションをしてみた。いま冷暖房を考えて、28℃の室
温で天井裏面の空間に400m3 /hの冷気を循環させ
天井平均温度を22℃に設定したとする。1mm厚のア
ルミ板を天井材として使用した場合と12mm厚のロッ
クウール天井材を使用した場合を比較すると第1表のご
とくなる。
Assuming that the ceiling radiant cooling and heating system as shown in FIG. 7 was constructed (construction area 8.5 m 2 ), a simple simulation was tried. Now, considering cooling and heating, it is assumed that the average temperature of the ceiling is set to 22 ° C. by circulating 400 m 3 / h of cool air in the space on the back side of the ceiling at room temperature of 28 ° C. Table 1 shows a comparison between the case where a 1 mm thick aluminum plate is used as a ceiling material and the case where a 12 mm thick rock wool ceiling material is used.

【0010】 第1表 天井材 単位面積当たりの熱抵抗 表面温度分布 A点空気温 B 点空気温熱 伝導率 厚さ アルミ 164W/mk 6.1×10-6m2k/w 2.6℃ 16.1℃ 20.3℃ 1mm厚 ロックウール 0.08w/mk 0.15m2k/w 1.4 ℃ 7.7℃ 11.9℃ 12mm 厚 熱伝導のよいアルミ天井材を使った場合は、天井表面の
温度分布が2. 6℃であるのに対して熱伝導率の悪いロ
ックウール天井材を使った場合は、1.4℃と非常に温
度分布が小さくなっている。反面、天井裏面を流す冷気
の温度を低くする必要があるが次の方法により解決し
た。
Table 1 Ceiling material Thermal resistance per unit area Surface temperature distribution A point Air temperature B point Air temperature Heat conductivity Thickness Aluminum 164W / mk 6.1 × 10 -6 m 2 k / w 2.6 ℃ 16.1 ℃ 20.3 the ° C. when using a 1mm thick rockwool 0.08w / mk 0.15m 2 k / w 1.4 ℃ 7.7 ℃ 11.9 ℃ 12mm thickness thermal conductivity good aluminum ceiling material, the temperature distribution of the ceiling surface 2. a 6 ° C. On the other hand, when rockwool ceiling material with poor thermal conductivity is used, the temperature distribution is extremely small at 1.4 ° C. On the other hand, it is necessary to lower the temperature of the cold air flowing on the back of the ceiling, but this was solved by the following method.

【0011】いま一般に用いられるエアコンによる室内
冷房を考えると、エアコンは室内の空気を取り込み冷却
して室内に放出する。この場合室内に吹き込まれる冷気
の温度は15℃前後であるのが一般的である。これに対
して図7のように適度に断熱を施した空間にヒートポン
プ等の熱源をいれクローズドで冷気を循環させることに
より容易に第1表のロックウール天井材を用いての冷房
に必要な低温冷気を得ることができる。
Considering indoor cooling by a commonly used air conditioner, the air conditioner takes in indoor air, cools it, and discharges it indoors. In this case, the temperature of the cold air blown into the room is generally around 15 ° C. On the other hand, as shown in Fig. 7, a heat source such as a heat pump is placed in a space that is appropriately insulated to circulate cold air in a closed state, so that the low temperature required for cooling using the rock wool ceiling material in Table 1 can be easily achieved. You can get cold air.

【0012】また、本発明は空気を熱媒として用いるの
で水を冷媒とする場合に比べて構造を非常に簡単にする
ことができる。そのうえ、熱容量を大きくする躯体が天
井材だけなので、熱容量が小さく、冷房あるいは暖房の
立ち上がりが早い。
Further, according to the present invention, since air is used as the heat medium, the structure can be made very simple as compared with the case where water is used as the refrigerant. In addition, since only the ceiling material is used to increase the heat capacity, the heat capacity is small and cooling or heating starts up quickly.

【0013】[0013]

【実施例】本発明の実施例を図1および図2に示す。以
下にこれらの実施例の具体的な内容を記述するが本発明
は、以下の記述に限定されない。 ー実施例1− 本実施例は図1に示すように、8畳間の天井部分にアル
ミラミネートが貼られたロックウール製天井材1(単位
面積あたり熱抵抗が0. 17m2 ・K/W,厚さ12m
m)からなる天井を張り、その裏側に、断熱材5により
適切な断熱を施した閉空間である天井裏空間2に、熱源
としてのエアコン6を設置して天井裏空間2内に循環冷
気あるいは暖気8を流したものである。7は室外機であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention is shown in FIGS. The specific contents of these examples will be described below, but the present invention is not limited to the following description. -Example 1-In this example, as shown in FIG. 1, a ceiling material 1 made of rockwool having an aluminum laminate attached to the ceiling portion between 8 tatami mats (heat resistance per unit area is 0.17 m 2 · K / W). , Thickness 12m
m), a ceiling is installed, and on the back side thereof, an air conditioner 6 as a heat source is installed in a ceiling space 2 which is a closed space that is appropriately insulated by a heat insulating material 5 to circulate cold air in the ceiling space 2. Warm air 8 is passed. 7 is an outdoor unit.

【0014】冷房時には天井裏空気2を8℃程度とする
ことで室温28℃において平均天井表面温度22℃を得
ることができた。また冷房時の除湿は、室内3に除湿器
を持ち込んで行なった。暖房時には天井裏空間2を55
℃程度とすることで室温20℃において平均天井面温度
33℃を得ることができた。
During cooling, the average ceiling surface temperature of 22 ° C. could be obtained at room temperature of 28 ° C. by keeping the air 2 behind the ceiling at about 8 ° C. Dehumidification during cooling was performed by bringing a dehumidifier into the room 3. At the time of heating, the ceiling space 2 is 55
By setting the temperature to about 0 ° C, the average ceiling surface temperature of 33 ° C could be obtained at room temperature of 20 ° C.

【0015】−実施例2− 本実施例は8畳間の天井に図2に示すようなシステムを
施工したものである。天井材1として実施例1と同様の
ものを用いた。本システムは捨て貼り合板18と天井材
1で高さ2cmの流路を形成させており、幅4cm、高
さ2cmの野縁9を流れと平行に取り付け各流路10と
の仕切りおよび捨て貼り合板18と天井材1とのスペイ
サーとして使っている。前記流路10の入口部および出
口部にはそれぞれヘッダー11が設けられている。前記
流路10と熱源16(エアコン6)との接続の詳細を図
3に示す。流路は2つの同様なものを並列としてそれぞ
れの流路の入口13、出口14をダクト12により熱源
16(エアコン6)と接続している。前記ヘッダー11
の断面積は十分に大きいので、ヘッダー11部分の圧損
は、流路部分の圧損に比べて十分小さい。そのため各流
路10の冷気あるいは暖気の流速はほぼ均一である。こ
の実験装置を使って天井冷房を行なったデータを図4に
示す。本実験における除湿は、室内に除湿機を持ち込ん
で行なった。また、天井暖房を行なったデータを図5に
示す。
Example 2 In this example, a system as shown in FIG. 2 is installed on the ceiling of an 8-mat room. The same ceiling material as in Example 1 was used. In this system, a flow path having a height of 2 cm is formed by a discarding and bonding plywood 18 and a ceiling material 1, and a field edge 9 having a width of 4 cm and a height of 2 cm is installed in parallel with the flow to partition with each flow channel 10 and discard and bond. It is used as a spacer between the plywood 18 and the ceiling material 1. Headers 11 are provided at the inlet and outlet of the flow channel 10, respectively. Details of the connection between the flow path 10 and the heat source 16 (air conditioner 6) are shown in FIG. Two similar channels are arranged in parallel, and an inlet 13 and an outlet 14 of each channel are connected to a heat source 16 (air conditioner 6) by a duct 12. The header 11
Since the cross-sectional area of is sufficiently large, the pressure loss of the header 11 portion is sufficiently smaller than the pressure loss of the flow path portion. Therefore, the flow velocity of cold air or warm air in each flow path 10 is substantially uniform. FIG. 4 shows data obtained by performing ceiling cooling using this experimental apparatus. Dehumidification in this experiment was performed by bringing a dehumidifier into the room. Further, FIG. 5 shows data obtained by performing ceiling heating.

【0016】ー実施例3− 実施例2に用いた実験装置と同様な装置で、天井材とし
て透湿性を有し単位面積あたり熱抵抗が0. 17m2
K/W,厚さ12mmのロックウール製天井材を天井と
して同様な実験を行なった。この天井材の透湿率は、
8. 5 /m3 h・mmHgであった。この実験装置を
使って天井冷房を行なったデータを図6に示す。また本
実験においては除湿機を使用しなかった。図6からもわ
かるように快適な冷房空間を得ることができた。さらに
特筆すべき点として除湿機を使用していないのにかかわ
らず、天井材1に結露が起こらず、エアコン6のドレイ
ン水として600g/h程度の排水があった。このこと
は透湿性を有する天井材を用いた本装置は、除湿機能を
有することを示している。
Example 3 An apparatus similar to the experimental apparatus used in Example 2, having moisture permeability as a ceiling material and a thermal resistance per unit area of 0.17 m 2 ·
The same experiment was conducted using a rock wool ceiling material having K / W and a thickness of 12 mm as the ceiling. The moisture permeability of this ceiling material is
It was 8.5 / m 3 h · mmHg. FIG. 6 shows data obtained by performing ceiling cooling using this experimental apparatus. No dehumidifier was used in this experiment. As can be seen from FIG. 6, a comfortable cooling space could be obtained. Furthermore, it should be noted that, although the dehumidifier was not used, dew condensation did not occur on the ceiling material 1 and the drainage water of the air conditioner 6 was about 600 g / h. This indicates that the present apparatus using the moisture-permeable ceiling material has a dehumidifying function.

【0017】ー実施例4ー 図8乃至図11は実施例4を示していて、空気循環式天
井冷房システムの構成を表す断面の略図を図8に示す。
図9は天井面を形成する流路を表し、上面をグラスウー
ル5aにより断熱した合板18aと天井材1との野縁9
(野縁の間隔30cm)をスペーサーとして高さ2cm
の空気流路10を形成している。本実験に用いた天板材
1はロックウールを主成分とする15mm厚の多孔質材
料で、熱伝導率は0.04W/m・k(単位面積あたり
の熱抵抗0.38m2 ・k/wで、透湿率は5.5g/
2 ・h・mmHgである。図8のごとく流路10の両
端部にはそれぞれ断面が30cm×10cmのへッダー
を設け一つのモジュールとしている。一つのモジュール
の輻射面の大きさは1.5m×2.7mである。へッダ
ー部分の圧損は流路部分の圧損に比べ充分小さいので、
各流路の空気抵抗は略均一となる。モジュールの入口部
分にはシロッコファンを取付け各流路を約2.5m/s
で空気が流れるようにしている。実験においては、図1
0のように同一モジュールを2つ並列させて室内の天井
部分に設置し、それぞれの入口13,14をΦ150m
mのダクトにより冷却機と接続した。輻射面の面積は
8.1m 2 (敷設率62%)である。エアコン(冷却
機)6は松下電器産業(株)製のパッケイージ形エアコ
ンCSー36ZH3(冷房能力3550kcal/h)
を使用した。
Fourth Embodiment FIGS. 8 to 11 show a fourth embodiment, which is an air circulation type ceiling.
A schematic cross-sectional view showing the configuration of the well cooling system is shown in FIG.
Figure 9 shows the flow path that forms the ceiling surface, and the upper surface is glass
Field 9 between the plywood 18a and the ceiling material 1 that are insulated by the roof 5a
2cm height with (space between the fields 30cm) as spacer
The air flow path 10 is formed. Top plate material used in this experiment
1 is a 15 mm thick porous material mainly composed of rock wool
The thermal conductivity is 0.04 W / m ・ k (per unit area)
Thermal resistance of 0.38m2・ K / w, moisture permeability is 5.5g /
m2・ It is h · mmHg. Both channels 10 as shown in FIG.
Each end has a cross section of 30 cm x 10 cm.
Is provided as one module. One module
The size of the radiation surface of is 1.5 m × 2.7 m. Headed
-Because the pressure loss of the part is sufficiently smaller than the pressure loss of the flow path part,
The air resistance of each flow path becomes substantially uniform. Module entrance
A sirocco fan is attached to each minute and each flow path is about 2.5 m / s
So that the air is flowing. In the experiment, FIG.
Two identical modules are arranged side by side like 0, and the ceiling in the room
Installed in each part, each entrance 13, 14 is Φ150m
It was connected to the cooler by a duct of m. The area of the radiation surface is
8.1m 2(Laying rate is 62%). Air conditioner (cooling
6) is a package type Airco manufactured by Matsushita Electric Industrial Co., Ltd.
CS-36ZH3 (cooling capacity 3550 kcal / h)
It was used.

【0018】室内寸法;3.6L ×3.6mW ×2.2
5mH (8畳相当) 窓 ;3.2mW ×1.8mH 南向 単層ガラス二重サッシ+レースカーテン 熱損失係数;3.3kcal/m2 h℃ (単位床面積当たりの建物の熱貫流率) 室内に在室2名を想定し、超音波加湿器を用い160g
/hで加湿をおこなった。人体からの発熱は室内に設置
したパソコン等からの機器発熱(240kcal/h)
で代用した。
Room size: 3.6 L x 3.6 m W x 2.2
5m H (equivalent to 8 tatami mats) Window: 3.2m W × 1.8m H South facing single-layer glass double sash + lace curtain Heat loss coefficient: 3.3kcal / m 2 h ℃ (building heat per unit floor area Flow rate) Assuming 2 people in the room, 160g using ultrasonic humidifier
/ H was humidified. The heat generated by the human body is the heat generated by devices such as personal computers installed indoors (240 kcal / h)
I used it instead.

【0019】天井冷房実験値時の室内の温湿度状態の一
例を図11に示す。天井モジュール内を循環する冷気の
温度は入口部分の平均で9.6℃、出口部分の平均で1
2.3℃、輻射面である天井面の平均温度は21.3℃
である。この時の室内平均温湿度は27.2℃,43%
RH、室外平均温湿度は31.8℃,52%RHであっ
た。天井面への結露は発生しなかった。また、エアコン
6より出てくるドレン水量は580g/hであった。
FIG. 11 shows an example of the temperature and humidity conditions inside the room at the time of the ceiling cooling experiment value. The temperature of the cold air circulating in the ceiling module is 9.6 ° C on average at the inlet and 1 on average at the outlet.
2.3 ℃, the average temperature of the radiant ceiling is 21.3 ℃
Is. The average room temperature and humidity at this time were 27.2 ° C and 43%.
RH and the average outdoor temperature and humidity were 31.8 ° C. and 52% RH. There was no condensation on the ceiling. The amount of drain water coming out from the air conditioner 6 was 580 g / h.

【0020】以上のように室内平均温湿度27.2℃,
43%RHで天井面結露の発生しない良好な室内環境を
つくることができた。
As described above, the average room temperature and humidity is 27.2 ° C,
At 43% RH, it was possible to create a good indoor environment without condensation on the ceiling.

【0021】[0021]

【発明の効果】本発明の天井輻射冷暖房システムによれ
ば、熱媒として従来の水ではなく空気を用いているの
で、漏水の心配がなく、装置全体が簡素化できたので施
工が非常に容易に行なうことができる。また、天井材の
単位面積あたり熱抵抗が0. 01m2 ・K/W以上0.
4m2 ・K/W以下として、好ましくは熱抵抗が0. 0
1m2 ・K/W以上0. 2m2 ・K/W以下として、冷
却あるいは加熱空気を天井材裏面の閉空間で循環させる
ようにしたので、天井冷暖房に必要な天井表面温度を確
保でき、かつ、天井表面の温度分布を非常に小さくでき
る。そのため、空気を熱媒として使用した装置であって
も快適な空調空間を提供することができる。
According to the ceiling radiant cooling and heating system of the present invention, since air is used as the heat medium instead of the conventional water, there is no fear of water leakage and the entire apparatus can be simplified, so construction is very easy. Can be done to. Moreover, the thermal resistance per unit area of the ceiling material is 0.01 m 2 · K / W or more.
4m 2 · K / W or less, preferably thermal resistance is 0.0
Since the cooling air or the heating air is circulated in the closed space on the back surface of the ceiling material by setting it to 1 m 2 · K / W or more and 0.2 m 2 · K / W or less, the ceiling surface temperature necessary for ceiling cooling and heating can be secured, and , The temperature distribution on the ceiling surface can be made very small. Therefore, a comfortable air-conditioned space can be provided even with a device that uses air as a heat medium.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の概略断面図である。FIG. 1 is a schematic sectional view of an embodiment of the present invention.

【図2】(a)は同上の他の実施例の概略断面図、
(b)は同上の部分拡大断面図である。
FIG. 2 (a) is a schematic cross-sectional view of another embodiment of the above.
(B) is a partial expanded sectional view same as the above.

【図3】同上の天井構成を示す斜視図である。FIG. 3 is a perspective view showing a ceiling structure of the above.

【図4】本発明の性能を示す実験データの特性図であ
る。
FIG. 4 is a characteristic diagram of experimental data showing the performance of the present invention.

【図5】本発明の性能を示す実験データの特性図であ
る。
FIG. 5 is a characteristic diagram of experimental data showing the performance of the present invention.

【図6】本発明の性能を示す実験データの特性図であ
る。
FIG. 6 is a characteristic diagram of experimental data showing the performance of the present invention.

【図7】同上のシュミレーションを行なったモデルを示
す概略断面図である。
FIG. 7 is a schematic cross-sectional view showing a model obtained by performing the above simulation.

【図8】同上の更に他の実施例の概略断面図である。FIG. 8 is a schematic cross-sectional view of still another embodiment of the same.

【図9】同上の部分拡大断面図である。FIG. 9 is a partially enlarged sectional view of the above.

【図10】同上の天井構成を示す斜視図である。FIG. 10 is a perspective view showing the ceiling structure of the above.

【図11】同上の性能を示す実験データの特性図であ
る。
FIG. 11 is a characteristic diagram of experimental data showing the same performance.

【図12】従来例の断面図である。FIG. 12 is a sectional view of a conventional example.

【図13】他の従来例の概略破断斜視図である。FIG. 13 is a schematic cutaway perspective view of another conventional example.

【符号の説明】[Explanation of symbols]

1 天井材 2 天井裏空間 3 室内 6 エアコン(室内機) 16 熱源 1 Ceiling material 2 Ceiling space 3 Indoors 6 Air conditioner (indoor unit) 16 Heat source

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】単位面積あたり熱抵抗が0. 01m2 ・K
/W以上0. 4m2 ・K/W以下である天井材で構成さ
れる天井面と、前記天井材の裏面に形成され適切に断熱
された閉空間と、前記閉空間内に冷気あるいは暖気を循
環させる熱源および送風機から成る天井輻射冷暖房シス
テム。
1. The thermal resistance per unit area is 0.01 m 2 · K.
/ W or more and 0.4 m 2 · K / W or less, a ceiling surface composed of a ceiling material, a closed space that is formed on the back surface of the ceiling material and is appropriately insulated, and cool air or warm air in the closed space. A ceiling radiant cooling and heating system consisting of a circulating heat source and a blower.
【請求項2】単位面積あたり熱抵抗が0. 01m2 ・K
/W以上0. 2m2 ・K/W以下である天井材で構成さ
れる天井面と、前記天井材の裏面に形成され適切に断熱
された閉空間と、前記閉空間内に冷気あるいは暖気を循
環させる熱源および送風機から成る天井輻射冷暖房シス
テム。
2. The thermal resistance per unit area is 0.01 m 2 · K.
/ W or more and 0.2 m 2 · K / W or less, a ceiling surface composed of a ceiling material, a closed space formed on the back surface of the ceiling material and appropriately insulated, and cool air or warm air in the closed space. A ceiling radiant cooling and heating system consisting of a circulating heat source and a blower.
JP3185004A 1990-08-03 1991-07-25 Ceiling radiation cooling and heating system Expired - Fee Related JP2710707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3185004A JP2710707B2 (en) 1990-08-03 1991-07-25 Ceiling radiation cooling and heating system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-207264 1990-08-03
JP20726490 1990-08-03
JP3185004A JP2710707B2 (en) 1990-08-03 1991-07-25 Ceiling radiation cooling and heating system

Publications (2)

Publication Number Publication Date
JPH05149586A true JPH05149586A (en) 1993-06-15
JP2710707B2 JP2710707B2 (en) 1998-02-10

Family

ID=26502840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3185004A Expired - Fee Related JP2710707B2 (en) 1990-08-03 1991-07-25 Ceiling radiation cooling and heating system

Country Status (1)

Country Link
JP (1) JP2710707B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120009A (en) * 1993-10-26 1995-05-12 Matsushita Electric Works Ltd Air-conditioning system
JP2008241063A (en) * 2007-03-26 2008-10-09 Matsushita Electric Ind Co Ltd Radiant heating and cooling system
JP2017180904A (en) * 2016-03-29 2017-10-05 株式会社フジタ Radiation air-conditioning system
JP2020186907A (en) * 2016-04-05 2020-11-19 株式会社フジタ Radiant cooling/heating system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108629A (en) * 1983-11-17 1985-06-14 Taikisha Ltd Ceiling radiant type air conditioner
JPS61141406U (en) * 1985-02-22 1986-09-01
JPS62154107U (en) * 1986-03-25 1987-09-30
JPS6334813U (en) * 1986-08-26 1988-03-05
JPS6422918U (en) * 1987-07-31 1989-02-07
JPH01184348A (en) * 1988-01-20 1989-07-24 Ohbayashi Corp Air conditioning device for building and its ceiling structure
JPH01230940A (en) * 1988-03-10 1989-09-14 Taikisha Ltd Radiant type cooling device
JPH0252939A (en) * 1988-08-12 1990-02-22 Taikisha Ltd Radiant air-conditioning apparatus
JPH02114841U (en) * 1989-02-28 1990-09-13
JPH0490432A (en) * 1990-08-03 1992-03-24 Matsushita Electric Works Ltd Cooling/heating system with radiant ceiling
JPH04143534A (en) * 1990-10-04 1992-05-18 Daiken Trade & Ind Co Ltd Ceiling panel shaped cooling and heating device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108629A (en) * 1983-11-17 1985-06-14 Taikisha Ltd Ceiling radiant type air conditioner
JPS61141406U (en) * 1985-02-22 1986-09-01
JPS62154107U (en) * 1986-03-25 1987-09-30
JPS6334813U (en) * 1986-08-26 1988-03-05
JPS6422918U (en) * 1987-07-31 1989-02-07
JPH01184348A (en) * 1988-01-20 1989-07-24 Ohbayashi Corp Air conditioning device for building and its ceiling structure
JPH01230940A (en) * 1988-03-10 1989-09-14 Taikisha Ltd Radiant type cooling device
JPH0252939A (en) * 1988-08-12 1990-02-22 Taikisha Ltd Radiant air-conditioning apparatus
JPH02114841U (en) * 1989-02-28 1990-09-13
JPH0490432A (en) * 1990-08-03 1992-03-24 Matsushita Electric Works Ltd Cooling/heating system with radiant ceiling
JPH04143534A (en) * 1990-10-04 1992-05-18 Daiken Trade & Ind Co Ltd Ceiling panel shaped cooling and heating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120009A (en) * 1993-10-26 1995-05-12 Matsushita Electric Works Ltd Air-conditioning system
JP2008241063A (en) * 2007-03-26 2008-10-09 Matsushita Electric Ind Co Ltd Radiant heating and cooling system
JP2017180904A (en) * 2016-03-29 2017-10-05 株式会社フジタ Radiation air-conditioning system
JP2020186907A (en) * 2016-04-05 2020-11-19 株式会社フジタ Radiant cooling/heating system

Also Published As

Publication number Publication date
JP2710707B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP2011174674A (en) Air conditioning system
WO2010003378A1 (en) Radiation heat exchanging air conditioning system and radiation heat exchanging ceiling thereof
JP2008134032A (en) Air conditioning system
JP2016217630A (en) Radiation air-conditioning system
JP2012225517A (en) Radiation air conditioning apparatus and dehumidification and humidification air conditioning system
CN113188205A (en) Airflow-prevention tissue cross heat exchange system with cold and heat radiation plates
JP2710707B2 (en) Ceiling radiation cooling and heating system
JPH05141708A (en) Radiational panel for cooling and heating
JPH11304195A (en) Radiation heating-cooling combination system
JP3818379B2 (en) Recessed floor air conditioner
JP2697323B2 (en) Ceiling cooling and heating system
JPH0762545B2 (en) Ceiling radiation cooling and heating system
JP2522608B2 (en) Ceiling heating and cooling system
JP2586746B2 (en) Ceiling cooling and heating system
JPH04190027A (en) Radiation type cooler and heater
CN216203917U (en) Radiant panel group for indoor heat exchange and office station air conditioning system
CN216281801U (en) Airflow-prevention tissue cross heat exchange system with cold and heat radiation plates
JP2568697B2 (en) Air conditioning ventilation hot water supply system
CN215412342U (en) Negative pressure fresh air system for preventing streamline intersection of airflow tissue
JPH07158907A (en) Air-conditioning machine
JP6224881B2 (en) Radiant air conditioning system
JP2000248646A (en) Housing air-conditioning system
JP2008281284A (en) Building air-blowing system, and building
WO1983003111A1 (en) An arrangement in internal panels for eliminating cold radiating surfaces on walls, ceilings and floors
JPH09273776A (en) Radiant ceiling type air-conditioning system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees