JPH05148563A - Production of electrolytic capacitor electrode material - Google Patents

Production of electrolytic capacitor electrode material

Info

Publication number
JPH05148563A
JPH05148563A JP3190398A JP19039891A JPH05148563A JP H05148563 A JPH05148563 A JP H05148563A JP 3190398 A JP3190398 A JP 3190398A JP 19039891 A JP19039891 A JP 19039891A JP H05148563 A JPH05148563 A JP H05148563A
Authority
JP
Japan
Prior art keywords
foil
alloy
solid solution
solution phase
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3190398A
Other languages
Japanese (ja)
Inventor
Makoto Saga
誠 佐賀
Michio Endo
道雄 遠藤
Yuichi Sato
有一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3190398A priority Critical patent/JPH05148563A/en
Publication of JPH05148563A publication Critical patent/JPH05148563A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an anode material having high electrostatic capacity and CV product by incorporating and laminating an easily etchable alloy foil, produced by the single roll method, into a core material. CONSTITUTION:An Al alloy foil is made by quenching and solidificating a molten Al alloy by the single roll method. A solid solution phase is formed on the surface layer of the roll surface side of the Al foil and a dendrite type intermetallic compound is finely formed in the thickness direction. The casting raw material is dissolved again at a temp. range, at which the fine intermetallic compound is not dissolved and the Al mother phase and the solid solution phase are dissolved, and is solidified at a relatively low cooling speed. More than three Al alloy foils are piled on a surface of a conductive core material as a middle layer and etching is executed to the depth of the vicinity of the core material. Then, an insulating coated film is formed by chemically treating. In a result, the anode material for a large capacity electrolytic capacitor is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、凝固箔を複数重ね合わ
せて芯材に積層し、高い静電容量を有せしめる電解コン
デンサの電極材料としてのAl合金凝固箔の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an Al alloy coagulated foil as an electrode material for an electrolytic capacitor which has a high capacitance by laminating a plurality of coagulated foils on a core material.

【0002】[0002]

【従来の技術】電解コンデンサ電極用材料は、電解エッ
チング処理で表面を粗面化し、表面積を拡大した上に陽
極酸化処理で絶縁皮膜を形成することにより静電容量を
高め、大容量化をはかっている。即ち、大容量のコンデ
ンサを製造するには、電極材料の表面積を大きくし、ま
た、薄く、かつ絶縁性のよい皮膜を表面に形成すること
が、必要とされている。
2. Description of the Related Art Electrolytic capacitor electrode materials are made to have a roughened surface by electrolytic etching treatment, have a larger surface area, and have an insulating film formed by anodizing treatment to increase the electrostatic capacitance, thereby increasing the capacitance. I'm wearing. That is, in order to manufacture a large-capacity capacitor, it is necessary to increase the surface area of the electrode material and to form a thin film having a good insulating property on the surface.

【0003】従来電極用材料としては、比較的製造し易
いAl箔が用いられている。このAl箔を酸化処理する
とAl2 3 皮膜が生成するが、Al2 3 の誘電率
は、他の金属、例えばTaやTi等の酸化皮膜(Ta2
5 やTiO2 )に比べてそれほど高くない。そのため
機械的手段あるいは電気化学的なエッチング方法によっ
て、表面積を増大すると共に、一方で酸化皮膜の形成す
る陽極化成処理法を改善するなどして、静電容量を高め
る試みも行われているが、これらの方法によっても、十
分に高い特性改善には至っていない。
Al foil, which is relatively easy to manufacture, has been used as a conventional electrode material. When this Al foil is subjected to an oxidation treatment, an Al 2 O 3 film is formed, but the dielectric constant of Al 2 O 3 is different from that of another metal such as an oxide film (Ta 2
It is not so high compared to O 5 and TiO 2 ). Therefore, attempts have been made to increase the capacitance by increasing the surface area by mechanical means or an electrochemical etching method, while improving the anodizing method for forming an oxide film, etc. Even with these methods, sufficiently high characteristic improvement has not been achieved.

【0004】近時、陽極材料として、純Alに他の合金
元素(いわゆるバルブメタル)を加えたAl合金を使用
し、この合金を急冷凝固法で製造することにより、大容
量の電解コンデンサを得ることを、例えば特開平1−1
24212号公報で開示している。これには、Al中
に、Ti、Ta、Zr、HfおよびNbなどのバルブメ
タルの少くとも1種を含み、これらのバルブメタルと、
Alとの金属間化合物を微細に分散晶出させた合金箔電
極を提示している。
Recently, as an anode material, an Al alloy obtained by adding another alloy element (so-called valve metal) to pure Al is used, and this alloy is manufactured by a rapid solidification method to obtain a large capacity electrolytic capacitor. For example, Japanese Patent Laid-Open No. 1-1
It is disclosed in Japanese Patent No. 24212. This includes at least one valve metal such as Ti, Ta, Zr, Hf and Nb in Al.
An alloy foil electrode in which an intermetallic compound with Al is finely dispersed and crystallized is presented.

【0005】しかしながら、このような合金箔に晶出す
る金属間化合物は硬く、合金箔の延性を低下させる。特
に静電容量確保のため、合金元素添加量を増加させる
と、この傾向が大きくなり、電解コンデンサ電極材
(箔)の重要な特性の一つである折り曲げ強度が低下す
るという問題が生じる。
However, the intermetallic compound crystallized in such an alloy foil is hard and reduces the ductility of the alloy foil. In particular, if the amount of alloying element added is increased in order to secure the electrostatic capacity, this tendency increases, and there arises a problem that the bending strength, which is one of the important characteristics of the electrode material (foil) of the electrolytic capacitor, decreases.

【0006】この曲げ強度を改良するために、Al箔を
芯材とし、急冷凝固法で製造したAl合金箔を両側に積
層した電解コンデンサ用電極材料が特開平1−2902
17号公報に開示されている。
In order to improve the bending strength, an electrode material for an electrolytic capacitor is disclosed in JP-A 1-2902, in which an Al foil is used as a core material and Al alloy foils produced by a rapid solidification method are laminated on both sides.
No. 17 publication.

【0007】上記公報に開示された発明によれば、それ
なりの高い特性が得られているが、電極表面積を更に大
きくすれば静電容量を増加することができる。そのため
には電極構成の厚さを大きくし、エッチング深さを十分
にとって表面積の増大を図らなければならない。しかし
単ロール法によって製造される急冷凝固箔を、電極材に
適する微細な凝固組織にして、即ち冷却速度を大きくし
たままで厚さを大きくするには限度があり、従って表面
積を増加するには、自ずから制約がある。
According to the invention disclosed in the above-mentioned publication, some high characteristics are obtained, but the electrostatic capacity can be increased by further increasing the electrode surface area. For that purpose, the thickness of the electrode structure must be increased and the etching depth must be sufficient to increase the surface area. However, there is a limit to making the rapidly solidified foil produced by the single roll method into a fine solidified structure suitable for the electrode material, that is, to increase the thickness while keeping the cooling rate high, and therefore to increase the surface area. , There are restrictions naturally.

【0008】本発明者等はこのような現状に鑑み、単ロ
ール法によって得られる急冷凝固合金箔の箔厚さを最大
限にし得る範囲内において、エッチングが容易になる加
工を施した急冷凝固箔を含めて複数枚重ね、電極材の厚
さを更に大きくして静電容量やCV積等の優れた特性を
有する電解コンデンサ用陽極材料を提案している。しか
し、単ロール法によって製造した急冷凝固合金箔は、ロ
ール接触面にエッチングされにくい合金元素の固溶相が
形成さるため、この様な箔を複数枚積層したとしても、
その中間位置の箔の固溶相がバリヤーとなってエッチン
グの進行を妨げ、前記厚み効果が有効に得られない。そ
のため形成された固溶相を除去した急冷凝固箔を中間層
に使用することを前記提案の目的としている。
In view of the above situation, the inventors of the present invention have processed the rapidly solidified foil which is easily etched within a range in which the thickness of the rapidly solidified alloy foil obtained by the single roll method can be maximized. A plurality of sheets including the above are stacked, and the thickness of the electrode material is further increased to propose an anode material for an electrolytic capacitor having excellent characteristics such as capacitance and CV product. However, the rapidly solidified alloy foil produced by the single roll method, because the solid solution phase of the alloy element which is difficult to be etched is formed on the roll contact surface, even if a plurality of such foils are laminated,
The solid solution phase of the foil at the intermediate position serves as a barrier to prevent the progress of etching, and the thickness effect cannot be effectively obtained. Therefore, the purpose of the above proposal is to use a rapidly solidified foil from which the formed solid solution phase has been removed, as the intermediate layer.

【0009】[0009]

【発明が解決しようとする課題】単ロール法によって製
造する急冷凝固合金箔の厚さは高々100μmであり、
その表層に形成される固溶相を除去するには技術的に正
確度を要し、従って多くの手数が掛かる。本発明は上記
のような複雑な固溶相除去手段を不要にするものであっ
て、冷却凝固して製造する合金箔自体に固溶相を生成し
ないようにし、これを積層中間層に使用することによっ
て、高い静電容量やCV積を得ることができる電解コン
デンサ電極用材料の製造方法を提供することを目的とす
る。
The thickness of the rapidly solidified alloy foil produced by the single roll method is 100 μm at the most,
It is technically necessary to remove the solid solution phase formed on the surface layer, and thus it takes a lot of trouble. The present invention eliminates the need for the complicated solid solution phase removing means as described above, and prevents the solid solution phase from being generated in the alloy foil itself produced by cooling and solidifying, which is used for the laminated intermediate layer. Accordingly, it is an object of the present invention to provide a method for producing a material for an electrolytic capacitor electrode which can obtain a high capacitance and a CV product.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は以下の構成を要旨とする。すなわち、微細
なデンドライト状金属間化合物を晶出し、冷却ロールと
接触した表面側に合金元素の固溶相を有する急冷凝固A
l合金箔を、該微細金属間化合物は溶解しないが、Al
母相および前記固溶相を溶解する温度範囲で再溶解し、
その後回転する単ロール表面に溶湯を噴出し、比較的遅
い冷却速度で固溶相を生成することなしに凝固すること
を特徴とする電解コンデンサ電極用材料の製造方法であ
る。
In order to achieve the above object, the present invention has the following structures. That is, a rapid solidification A in which a fine dendrite intermetallic compound is crystallized and a solid solution phase of an alloy element is present on the surface side in contact with a cooling roll.
l alloy foil, although the fine intermetallic compound is not dissolved,
Re-dissolve in a temperature range that dissolves the mother phase and the solid solution phase,
After that, the molten metal is ejected onto the surface of the rotating single roll and solidified at a relatively slow cooling rate without producing a solid solution phase, which is a method for producing a material for an electrolytic capacitor electrode.

【0011】[0011]

【作用】以下に本発明を詳細に説明する。本発明の対象
とする凝固箔は、Alをベースにし、これにTi,Z
r,Hf及びTa,Nb等のバルブメタルの少なくとも
1種を含む合金であり、これらのバルブメタルとAlと
の金属間化合物が微細に晶出している。
The present invention will be described in detail below. The solidified foil which is the object of the present invention is based on Al, on which Ti, Z
It is an alloy containing at least one of valve metals such as r, Hf and Ta and Nb, and intermetallic compounds of these valve metals and Al are finely crystallized.

【0012】単ロール法によって製造される凝固箔は、
一つの回転するロール表面に、容器内に収容している前
記合金の溶湯を噴出し、ロールにより冷却されて箔とな
る。この際、ロールの回転速度によって冷却速度が異な
り、高速回転して急速冷却すると、形成される箔のロー
ルに接触するロール面側には、その表層にエッチングし
にくい固溶相が生成する。一方自由面は、ロール面より
も冷却速度が遅くなり、そしてロール面より自由面に向
かって微細な金属間化合物が晶出した凝固組織が発達形
成される。この様な組織とするためには、ロールの回転
速度を高速(ロール周速で10m/秒以上)にし、自由
面側においても高い冷却速度を維持する必要があり、従
って箔厚をそれ程大きくすることができず、せいぜい1
00μm程度である。
The solidified foil produced by the single roll method is
The molten metal of the alloy contained in the container is ejected onto the surface of one rotating roll, and the foil is cooled by the roll. At this time, the cooling speed differs depending on the rotation speed of the roll, and when the roll is rotated at a high speed and rapidly cooled, a solid solution phase that is difficult to be etched is generated in the surface layer on the roll surface side of the foil that contacts the roll. On the other hand, the cooling rate of the free surface is slower than that of the roll surface, and a solidified structure in which fine intermetallic compounds are crystallized from the roll surface toward the free surface develops and forms. In order to obtain such a structure, it is necessary to increase the rotation speed of the roll (10 m / sec or more at the peripheral speed of the roll) and maintain a high cooling rate even on the free surface side, and therefore increase the foil thickness to that extent. I can't do it, at most 1
It is about 00 μm.

【0013】ここで固溶相とはベース金属のAlの中に
Ti、Zr、HfおよびTa、Nb等の合金元素が例え
ば1wt%以上とかなり固溶している相である。この固溶
相は通常の冷却速度での凝固では生成しないが、例えば
単ロール法のように急冷凝固できる場合で、しかもロー
ル面のように非常に大きな冷却速度で凝固するところで
生成する。
Here, the solid solution phase is a phase in which Al, which is a base metal, contains Ti, Zr, Hf and alloying elements such as Ta and Nb in a solid solution of, for example, 1 wt% or more. This solid solution phase is not formed by solidification at a normal cooling rate, but is formed when it can be rapidly solidified by a single roll method, for example, and when it is solidified at a very large cooling rate like a roll surface.

【0014】表面積を増大するために、急冷凝固合金箔
はエッチングされるが、この際、ロール面からのエッチ
ングでは固溶相が腐食のバリヤーになり、固溶相間に露
出するAl地が腐食孔となってエッチングが奥深く、し
かも、微細に晶出した凝固組織に沿って進行するため
に、表面積の増大が顕著になる。従って、複数枚積層し
て電極材とする場合には、最表面が固溶相になるように
配置する。しかし、中間層に固溶相のある箔を使用する
と、この部分でエッチングは進行しなくなり、積層した
目的は達成されなくなる。
In order to increase the surface area, the rapidly solidified alloy foil is etched. At this time, the etching from the roll surface causes the solid solution phase to become a barrier for corrosion, and the Al base exposed between the solid solution phases is corroded by corrosion holes. Therefore, since the etching proceeds deeply and further along the finely crystallized solidified structure, the increase of the surface area becomes remarkable. Therefore, when a plurality of sheets are laminated to form an electrode material, they are arranged such that the outermost surface is in a solid solution phase. However, when a foil having a solid solution phase is used for the intermediate layer, etching does not proceed in this portion, and the purpose of stacking cannot be achieved.

【0015】本発明は、この様な中間層に使用するため
に固溶相がなく、しかもAl母相中に微細な金属間化合
物が晶出した箔を製造する。即ち本発明の素材は、Al
にTi,Zr,Hf,Ta,Nb等の少なくとも1種を
3at%以上含有する合金を溶融し、これを単ロール法で
急冷凝固したAl合金箔であり、該箔のロール面側表層
には固溶相が生成しているが、厚み方向にはデンドライ
ト状金属間化合物が微細に形成されている。この鋳造素
材の固溶相を消失し、かつ形成された微細金属間化合物
を使用するために、該素材を再溶解するのであるが、こ
の再溶解温度を、微細な金属間化合物は溶解せず、Al
母相と固溶相を溶解する温度域とし、そして、この溶湯
を比較的低い冷却速度で凝固する。再溶解温度は、通常
Alの溶融温度が660℃であるからこれ以上の温度が
必要であり、また金属間化合物の溶融温度は種類によっ
て異なるが、例えばAl3 Zrでは1582℃であるの
でその温度以下にしなければならず、好ましくは融点よ
り100℃以下に設定するとよい。また、凝固させる冷
却速度は102℃/秒以下にすることが好ましい。この
結果、Al地に微細金属間化合物が粗大化すること無く
分散する。
The present invention produces a foil which does not have a solid solution phase and has fine intermetallic compounds crystallized in the Al matrix for use in such an intermediate layer. That is, the material of the present invention is Al
Is an Al alloy foil obtained by melting an alloy containing 3 at% or more of at least one kind of Ti, Zr, Hf, Ta, Nb, etc., and rapidly solidifying this by a single roll method. Although a solid solution phase is generated, dendrite-like intermetallic compounds are finely formed in the thickness direction. In order to eliminate the solid solution phase of this casting material and to use the formed fine intermetallic compound, the material is redissolved, but this remelting temperature is such that the fine intermetallic compound does not dissolve. , Al
The mother phase and the solid solution phase are melted in a temperature range, and the melt is solidified at a relatively low cooling rate. Since the melting temperature of Al is usually 660 ° C, the remelting temperature needs to be higher than this, and the melting temperature of the intermetallic compound varies depending on the type. For example, the melting temperature of Al 3 Zr is 1582 ° C. However, it is preferable to set the temperature to 100 ° C. or lower than the melting point. The cooling rate for solidification is preferably 10 2 ° C / sec or less. As a result, the fine intermetallic compound is dispersed in the Al base without coarsening.

【0016】本発明は、この様な急冷凝固箔の各面の特
性を活用し、一枚の急冷凝固箔であるならばそれだけの
表面積拡大しか図れないものを、心材の少なくとも1面
に、Al合金箔を3枚以上の複数枚重ね、しかもその中
間に本発明材を積層することにより、エッチングを心材
近傍まで深く進行させ、これを化成処理して絶縁被膜を
形成すれば、極めて有用な大容量の電解コンデンサ用陽
極材料となる。
The present invention takes advantage of the characteristics of each surface of the rapidly solidified foil as described above, and if one sheet of rapidly solidified foil can only increase its surface area by at least one surface of the core material, By stacking three or more alloy foils and stacking the material of the present invention in the middle of the foils, etching proceeds deeply to the vicinity of the core material, and chemical conversion treatment is performed to form an insulating coating, which is extremely useful. It serves as an anode material for electrolytic capacitors of high capacity.

【0017】図1は、本発明法による合金箔を用いて製
造した電解コンデンサ用陽極材料の横断面概要図の一例
であり、1は芯材、2(2a,2b,2c,2d,)は
ロール面Rに固溶相を有する急冷凝固合金箔、3(3
a,3b)はを本発明法によって製造した固溶相のない
合金箔を示す。図中Fは自由面である。心材1は、導電
性に優れ、曲げ加工性の良好な純Alが良く、また急冷
凝固箔2は高誘電率を有するバルブメタル、例えばT
i,Zr,Hf,Ta,Nb等の少なくとも1種とAl
との合金箔を用いる。図示の例では、芯材1の各面に、
急冷凝固合金箔2a,2b,とその中間に本発明合金箔
3aが、また急冷凝固合金箔2c,2dとその中間に本
発明合金箔3bが、それぞれ3層となる構成としてお
り、最外層の箔2a,2dの最外面と、最内層の箔2
b,2cの芯材に接する最内面とがロール面Rになるよ
うにし、中間層の箔3a,3bは、他の箔2a〜dの自
由面Fと接した7層に積層した場合を示している。しか
し、本発明はこれに限定するものでなく、芯材1の1面
だけに積層する場合もさらに芯材の1面もしくは両面に
4枚以上積層する場合も包含する。積層の方法は、芯材
1と急冷凝固合金箔2とを加熱圧着や圧延等既に知られ
ている手段で実施すればよく、これらがエッチングや加
工によって剥離しないよう密に接着すれば何れの方法を
採用してもよい。
FIG. 1 is an example of a schematic cross-sectional view of an anode material for an electrolytic capacitor produced by using an alloy foil according to the present invention, in which 1 is a core material and 2 (2a, 2b, 2c, 2d,) are A rapidly solidified alloy foil having a solid solution phase on the roll surface R, 3 (3
a, 3b) represents an alloy foil produced by the method of the present invention without a solid solution phase. In the figure, F is a free surface. The core material 1 is preferably pure Al, which is excellent in conductivity and bending workability, and the rapidly solidified foil 2 is made of a valve metal having a high dielectric constant, such as T.
At least one kind of i, Zr, Hf, Ta, Nb and Al
Use alloy foil with. In the illustrated example, on each surface of the core material 1,
The rapidly solidified alloy foils 2a and 2b, and the alloy foil 3a of the present invention in the middle thereof, and the rapidly solidified alloy foils 2c and 2d and the alloy foil 3b of the present invention in the middle, each have three layers. The outermost surfaces of the foils 2a and 2d and the innermost foil 2
The innermost surface of b and 2c in contact with the core material is the roll surface R, and the intermediate foils 3a and 3b are laminated in seven layers in contact with the free surfaces F of the other foils 2a to 2d. ing. However, the present invention is not limited to this, and includes a case of laminating only one surface of the core material 1 and a case of laminating four or more sheets on one surface or both surfaces of the core material 1. The lamination method may be carried out by a known method such as thermocompression bonding or rolling of the core material 1 and the rapidly solidified alloy foil 2, and any method may be used as long as they are closely adhered so that they are not separated by etching or processing. May be adopted.

【0018】上記積層陽極用材料は、エッチング処理に
付されるが、積層急冷凝固合金箔の最表面での固溶相は
エッチングされにくいため表面を維持し、固溶相間に露
出するAl素地を起点として箔内部にエッチングが凝固
組織に沿って進行する。しかも中間層には固溶相がなく
エッチングされ易くなっているため、これらを通ってエ
ッチングは表層−中間層−内層へと奥深くまで達する。
芯材1と急冷凝固合金箔2b,2cとの境界には、それ
ぞれの箔2b,2cに形成された固溶層が存在するた
め、そこまでエッチングが進行してもこれによって阻止
される。本発明は、この様にエッチングし易い多層構成
としたため、エッチング深さをより大きくでき、材料表
面積を極めて拡大することができる。
Although the above-mentioned laminated anode material is subjected to etching treatment, the solid solution phase on the outermost surface of the laminated rapidly solidified alloy foil is hard to be etched, so that the surface is maintained and the Al base exposed between the solid solution phases is removed. As a starting point, etching proceeds inside the foil along the solidified structure. Moreover, since the intermediate layer has no solid solution phase and is easily etched, the etching reaches deep inside through the surface layer, the intermediate layer and the inner layer.
At the boundaries between the core material 1 and the rapidly solidified alloy foils 2b and 2c, there are solid solution layers formed on the respective foils 2b and 2c. Since the present invention has such a multilayer structure that facilitates etching, the etching depth can be increased and the material surface area can be greatly expanded.

【0019】[0019]

【実施例】Ti:8wt%を含有するAl−Ti合金、及
びZr:18wt%を含有するAl−Zr合金を1500
℃に加熱溶解し、この溶湯を1600rpm で回転してい
る直径300mmの単ロール上に圧力0.8kg/cm2 で噴
出して凝固し、急冷凝固合金箔(素材)を製造した。こ
の素材箔をさらに700℃で溶解し、この溶湯を100
0rpm で回転している直径300mmのBNを塗布した単
ロール上に圧力0.5kg/cm2 で噴出し、凝固して幅4
0mm,厚さ100μm程度の本発明合金箔を製造した。
得られた合金箔の断面構造を調査したところ、ロール面
側にはTi及びZr固溶相はほぼ認められず、微細な金
属間化合物が分散していた。
EXAMPLES 1500: Al-Ti alloy containing Ti: 8 wt% and Al-Zr alloy containing Zr: 18 wt% 1500
It was heated and melted at 0 ° C., and the melt was jetted at a pressure of 0.8 kg / cm 2 onto a single roll having a diameter of 300 mm rotating at 1600 rpm to be solidified to produce a rapidly solidified alloy foil (material). This material foil is further melted at 700 ° C, and this molten metal is melted to 100
A single roll coated with BN having a diameter of 300 mm rotating at 0 rpm is jetted at a pressure of 0.5 kg / cm 2 and solidified to a width of 4
The alloy foil of the present invention having a thickness of 0 mm and a thickness of about 100 μm was manufactured.
When the cross-sectional structure of the obtained alloy foil was investigated, Ti and Zr solid solution phases were hardly observed on the roll surface side, and fine intermetallic compounds were dispersed.

【0020】また、Al−Ti合金及びAl−Zr合金
の2種類の合金系を使用して図1に示すような積層材試
料を製造し、下記条件にてエッチング、化成処理を施し
た後、静電容量及び耐電圧を測定した。その結果を表1
に示す。表中試料A−1及びB−1はAl−8wt%Ti
合金、試料A−2及びB−2はAl−18wt%Zr合金
であるり、試料Aは上記本発明合金箔を中間層として用
いていないもの、試料Bは上記本発明合金箔を中間層と
して用いた試料である。 [エッチング条件] エッチング液:6%塩酸溶液、電気量:300C/cm2 [化成条件] 化成液:ホウ酸溶液、化成電圧:20V
A laminated material sample as shown in FIG. 1 was manufactured using two kinds of alloy systems of Al--Ti alloy and Al--Zr alloy, and after etching and chemical conversion treatment under the following conditions, The capacitance and withstand voltage were measured. The results are shown in Table 1.
Shown in. Samples A-1 and B-1 in the table are Al-8 wt% Ti
Alloys, Samples A-2 and B-2 are Al-18 wt% Zr alloys, Sample A does not use the alloy foil of the present invention as an intermediate layer, Sample B has the alloy foil of the present invention as an intermediate layer. This is the sample used. [Etching conditions] Etching solution: 6% hydrochloric acid solution, electricity: 300 C / cm 2 [Chemical conversion conditions] Chemical conversion solution: boric acid solution, chemical conversion voltage: 20 V

【0021】[0021]

【表1】 [Table 1]

【0022】表1から明らかのように、中間層に本発明
によって製造した合金箔を用いた試料Bは何れも優れた
CV積を示している。また、測定後のクラッド箔から光
学顕微鏡用サンプルを作製し、表面を鏡面研磨下後、光
学顕微鏡により観察したところA−1,2は中間層箔の
固溶相部分でエッチングが止まっている領域が多く、表
面からのエッチング組織の剥離が著しい。一方B−1、
2においては第3層までエッチングが進行しており、表
面からの剥離も極めて少なかった。
As is clear from Table 1, all the samples B using the alloy foil manufactured according to the present invention as the intermediate layer show excellent CV products. Moreover, when a sample for an optical microscope was prepared from the clad foil after the measurement, and the surface was mirror-polished and then observed by an optical microscope, A-1 and 2 were regions where etching was stopped in the solid solution phase portion of the intermediate layer foil. In many cases, the peeling of the etching structure from the surface is remarkable. On the other hand, B-1,
In No. 2, etching progressed to the third layer, and peeling from the surface was extremely small.

【0023】[0023]

【発明の効果】以上のように、本発明法によれば、芯材
の一面あるいは両面に、単ロール法で製造した急冷凝固
合金箔をエッチングに支障のないように3層以上の多層
にし、中間層に本発明法によって製造した合金箔を積層
して圧着したクラッド箔にすることにより、エッチング
深さをより大きくすることが可能となって、静電容量の
極めて大きい陽極材料を簡易に且つ生産性よく得ること
ができ、電解コンデンサを一層高性能に成し得る。
As described above, according to the method of the present invention, the rapidly solidified alloy foil produced by the single roll method is formed on one surface or both surfaces of the core material in three or more layers so as not to interfere with etching. By stacking the alloy foil produced by the method of the present invention on the intermediate layer and forming a clad foil by pressure bonding, the etching depth can be increased, and an anode material having an extremely large capacitance can be easily and easily formed. The electrolytic capacitor can be obtained with high productivity, and the electrolytic capacitor can have higher performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法によって得た合金箔を用いた陽極用材
料の一例を示す横断面図である。
FIG. 1 is a cross-sectional view showing an example of an anode material using an alloy foil obtained by the method of the present invention.

【符号の説明】[Explanation of symbols]

1:芯材 2:急冷凝固合金箔 3:本発明の合金箔 1: Core material 2: Rapidly solidified alloy foil 3: Alloy foil of the present invention

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 微細なデンドライト状金属間化合物を晶
出し、冷却ロールと接触した表面側に合金元素の固溶相
を有する急冷凝固Al合金箔を、該微細金属間化合物は
溶解しないが、Al母相および前記固溶相を溶解する温
度範囲で再溶解し、その後溶湯を単ロール法で冷却し固
溶相を生成することなしに凝固することを特徴とする電
解コンデンサ電極用材料の製造方法。
1. A rapidly solidified Al alloy foil in which a fine dendrite-like intermetallic compound is crystallized and a solid solution phase of an alloy element is present on the surface side in contact with a cooling roll, although the fine intermetallic compound is not dissolved, A method for producing a material for an electrolytic capacitor electrode, characterized in that the mother phase and the solid solution phase are redissolved within a temperature range of melting, and then the molten metal is cooled by a single roll method to solidify without forming a solid solution phase. ..
JP3190398A 1991-07-30 1991-07-30 Production of electrolytic capacitor electrode material Withdrawn JPH05148563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3190398A JPH05148563A (en) 1991-07-30 1991-07-30 Production of electrolytic capacitor electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3190398A JPH05148563A (en) 1991-07-30 1991-07-30 Production of electrolytic capacitor electrode material

Publications (1)

Publication Number Publication Date
JPH05148563A true JPH05148563A (en) 1993-06-15

Family

ID=16257493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3190398A Withdrawn JPH05148563A (en) 1991-07-30 1991-07-30 Production of electrolytic capacitor electrode material

Country Status (1)

Country Link
JP (1) JPH05148563A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845542A1 (en) * 1996-11-27 1998-06-03 KS Aluminium Technologie Aktiengesellschaft Process of manufacturing semi-finished products in aluminium
US11538697B2 (en) 2019-09-11 2022-12-27 Samsung Electronics Co., Ltd. Substrate processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845542A1 (en) * 1996-11-27 1998-06-03 KS Aluminium Technologie Aktiengesellschaft Process of manufacturing semi-finished products in aluminium
US11538697B2 (en) 2019-09-11 2022-12-27 Samsung Electronics Co., Ltd. Substrate processing apparatus

Similar Documents

Publication Publication Date Title
US6914769B2 (en) High power capacitors from thin layers of metal powder or metal sponge particles
JP3816508B2 (en) Capacitor layer forming material and printed wiring board with built-in capacitor layer obtained using the capacitor layer forming material
WO2006118236A1 (en) Method for oxide dielectric layer formation, and capacitor layer forming material comprising oxide dielectric layer formed by said formation method
JPH05148563A (en) Production of electrolytic capacitor electrode material
JP3958343B2 (en) Method for forming oxide dielectric layer and capacitor layer forming material having oxide dielectric layer obtained by the method
JPH0291918A (en) Electrode material for electrolytic capacitor
JP2006328531A5 (en)
JP3178079B2 (en) Metal member provided with alumina crystal growth layer and method of manufacturing the same
JPH05299309A (en) Manufacture of electrode for chip type solid electrolytic capacitor
JP2713507B2 (en) Method for producing anode material for electrolytic capacitor
JP5063057B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP3224563B2 (en) A method for enlarging the active surface area of alloy materials in which intermetallic compounds are uniformly dispersed
JPH01290217A (en) Electrode material for electrolytic capacitor and its manufacture
JPH0734423B2 (en) Anode material for electrolytic capacitors
JPH05251284A (en) Anode material of electrolytic capacitor of high electrostatic capacity
JPH05275287A (en) Anode material for electrolytic capacitor
JPH07114179B2 (en) Material for electrolytic capacitor anode
JP4465521B2 (en) Manufacturing method of aluminum alloy sheet for electrolytic capacitor
JP4665854B2 (en) Valve metal composite electrode foil and manufacturing method thereof
JPH05335188A (en) Manufacture of laminated material for electrode of electrolytic capacitor
JP3897634B2 (en) Al-Nb alloy thin plate having nitride, method for producing the same, and electrolytic capacitor
JPH01124212A (en) Aluminum alloy electrode for electrolytic capacitor
JPH06325985A (en) Foil for positive electrode of electrolytic capacitor
JPH0679138U (en) Capacitor electrode
JPH04138846A (en) Production of quench solidified clad foil from different molten bodies

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008