JPH05147920A - Production of partialy substituted fluorosilane - Google Patents
Production of partialy substituted fluorosilaneInfo
- Publication number
- JPH05147920A JPH05147920A JP31045591A JP31045591A JPH05147920A JP H05147920 A JPH05147920 A JP H05147920A JP 31045591 A JP31045591 A JP 31045591A JP 31045591 A JP31045591 A JP 31045591A JP H05147920 A JPH05147920 A JP H05147920A
- Authority
- JP
- Japan
- Prior art keywords
- fluorosilane
- znf
- partially substituted
- reaction
- sih
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/08—Compounds containing halogen
- C01B33/107—Halogenated silanes
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は部分置換フルオロシラン
の製造方法に関する。更に詳しくは、ハロゲン交換法に
よるフルオロシラン(モノフルオロモノシラン、ジフル
オロモノシラン、トリフルオロモノシラン)の製造方法
の改良に関する。FIELD OF THE INVENTION The present invention relates to a method for producing partially substituted fluorosilanes. More specifically, it relates to an improvement in a method for producing fluorosilane (monofluoromonosilane, difluoromonosilane, trifluoromonosilane) by a halogen exchange method.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】部分置
換フルオロシランは、フッ素化アモルファスシリコン薄
膜を形成させる場合等に有用な化合物である。部分置換
フルオロシラン類の製造方法としては、対応するクロロ
シランをフッ素化剤でフッ素化するいわゆるハロゲン交
換法が知られている。2. Description of the Related Art Partially substituted fluorosilane is a useful compound for forming a fluorinated amorphous silicon thin film. As a method for producing partially substituted fluorosilanes, a so-called halogen exchange method in which the corresponding chlorosilane is fluorinated with a fluorinating agent is known.
【0003】このフッ素化剤としてフッ化亜鉛(以下Z
nF2と記す)を用いる出願(特開昭61−15101
5)がある。該出願によると、クロロシランあるいはフ
ルオロシランは、水が存在すれば加水分解する性質をも
っているため、反応に使用するZnF2は勿論、使用す
る器具も使用直前に完全に脱水しておく必要があり、Z
nF2の場合は例えば200℃で4時間加熱処理による
脱水で充分とされている。Zinc fluoride (hereinafter referred to as Z
Application using nF 2 ) (Japanese Patent Laid-Open No. 61-15101)
There is 5). According to the application, since chlorosilane or fluorosilane has a property of being hydrolyzed in the presence of water, it is necessary to completely dehydrate ZnF 2 used in the reaction as well as the equipment used immediately before use, Z
In the case of nF 2 , for example, dehydration by heat treatment at 200 ° C. for 4 hours is sufficient.
【0004】しかし、この方法で処理したZnF2を使
用して部分置換クロロシランをハロゲン交換を行なう
と、対応する部分置換フルオロシラン以外のフルオロシ
ランやシラン、四フッ化珪素等が副生する事実が判明し
た。However, when halogen exchange is performed on partially substituted chlorosilanes using ZnF 2 treated by this method, the fact that fluorosilanes, silanes, silicon tetrafluoride and the like other than the corresponding partially substituted fluorosilanes are by-produced is found. found.
【0005】[0005]
【課題を解決するための手段】本発明は上記問題点に鑑
み、ハロゲン交換法によって純度の高い部分置換フルオ
ロシラン類を製造するにあたり、取扱いが容易でかつ反
応効率の良好なフッ素化剤を探索することを試み、特に
ZnF2の処理方法を改良することでその目的を達しう
ることを見出し、本発明を完成するに至った。In view of the above problems, the present invention seeks a fluorinating agent that is easy to handle and has good reaction efficiency in producing highly pure partially substituted fluorosilanes by the halogen exchange method. The inventors have found that the object can be achieved by improving the treatment method of ZnF 2 , and have completed the present invention.
【0006】すなわち、本発明は一般式SiHn Cl
4-n ( n=1〜3の整数)で表わされる部分置換クロロ
シランをハロゲン交換法によって対応する部分置換フル
オロシランに変換するにあたり、フッ素化剤として含水
率が0.2重量%以下である無水フッ化亜鉛を用いる一
般式SiHnF4-n ( n=1〜3の整数)で表わされる
部分置換フルオロシランの製造方法に関する。That is, the present invention has the general formula SiH n Cl
When the partially substituted chlorosilane represented by 4-n (n = 1 to 3) is converted to the corresponding partially substituted fluorosilane by the halogen exchange method, the water content of the fluorinating agent is 0.2% by weight or less. zinc fluoride process for the preparation of partial substitution fluorosilane represented by the general formula SiH n F 4-n (n = 1~3 integer) used.
【0007】本発明を更に詳細に説明する。本発明で使
用するZnF2は含水率0.2重量%以下の無水物でな
ければならない。含水率が0.2重量%を越えるZnF
2を使用して部分置換クロロシランをハロゲン交換を行
なうと、対応する部分置換フルオロシラン以外のフルオ
ロシランやシラン、四フッ化珪素等が副生するので好ま
しくない。The present invention will be described in more detail. ZnF 2 used in the present invention must be an anhydride having a water content of 0.2% by weight or less. ZnF with a water content exceeding 0.2% by weight
Halogen exchange of partially substituted chlorosilanes using 2 is not preferable because fluorosilanes other than the corresponding partially substituted fluorosilanes, silanes, silicon tetrafluoride and the like are by-produced.
【0008】本文に於ける含水率とは付着水及び結晶水
を含む重量パ−セントを意味するものである。クロロシ
ランあるいはフルオロシランは、水が存在すれば加水分
解する性質をもっているため、反応に使用するZnF2
は完全に脱水しなければならない。酸化亜鉛または炭酸
亜鉛とフッ化水素との反応、あるいは市販のZnF2四
水和物を大気中で150〜200℃に加熱することによ
ってかなり脱水することができるが部分置換フルオロシ
ランの製造に於いては充分とはいえない。含水率0.2
重量%以下の無水ZnF2を得るにはいくつかの方法が
ある。The water content in the present text means a weight percentage including attached water and crystal water. Chlorosilane or fluorosilane has the property of being hydrolyzed in the presence of water, so ZnF 2 used in the reaction
Must be completely dehydrated. It can be significantly dehydrated by reacting zinc oxide or zinc carbonate with hydrogen fluoride, or by heating commercially available ZnF 2 tetrahydrate to 150 to 200 ° C. in the production of partially substituted fluorosilanes. Is not enough. Moisture content 0.2
There are several ways to obtain up to wt% anhydrous ZnF 2 .
【0009】例えば、上記の方法で脱水処理した後、不
活性ガス雰囲気あるいは真空下で好ましくは400〜7
00℃、更に、好ましくは500〜600℃にて1〜2
0時間加熱処理を行なう方法が好適である。For example, after dehydration treatment by the above method, it is preferably 400 to 7 in an inert gas atmosphere or under vacuum.
1-2 at 00 ° C, more preferably 500-600 ° C
A method of performing heat treatment for 0 hours is preferable.
【0010】また、結晶水を持たない亜鉛化合物とフッ
素ガスの反応により得られるZnF 2は、水和物を経由
しないことから好適に使用される。反応に使用するZn
F2は勿論、使用する器具も使用直前に完全に脱水して
おく必要がある。In addition, a zinc compound having no water of crystallization and fluorine
ZnF obtained by reaction of elementary gas TwoVia the hydrate
It is preferably used because it does not. Zn used for reaction
FTwoOf course, the equipment to be used should be thoroughly dehydrated just before use.
I need to leave.
【0011】クロロシランとZnF2の接触方法は、Z
nF2充填層にクロロシランをガス状で通過させる方法
が好ましいが、本発明はこれに限定されるものではな
い。The method of contacting chlorosilane and ZnF 2 is Z
A method of passing chlorosilane in a gaseous state through the nF 2 packed layer is preferable, but the present invention is not limited thereto.
【0012】クロロシランとZnF2との反応はかなり
の発熱反応であり、生成した部分置換フルオロシランが
熱的に不安定であることから、生成した熱を有効に除去
する配慮が高い純度を得るためには必要であり、その点
からエーテルなどの有機溶媒中にZnF2を懸濁して反
応を行う方法は有効である。The reaction between chlorosilane and ZnF 2 is a considerably exothermic reaction, and since the partially substituted fluorosilane produced is thermally unstable, it is necessary to effectively remove the produced heat in order to obtain high purity. In that respect, a method of suspending ZnF 2 in an organic solvent such as ether to carry out the reaction is effective.
【0013】反応温度は−30〜40℃が好ましく、更
に、好ましくは−10〜5℃が好適である。反応温度が
−30℃未満ではハロゲン交換反応の反応率が低下し、
又逆に、反応温度が40℃を越えると生成した部分置換
フルオロシランが熱分解を起こし、したがって反応収率
が低下するので好ましくない。The reaction temperature is preferably -30 to 40 ° C, more preferably -10 to 5 ° C. If the reaction temperature is less than -30 ° C, the reaction rate of the halogen exchange reaction decreases,
On the contrary, if the reaction temperature exceeds 40 ° C., the partially substituted fluorosilane produced is thermally decomposed, and the reaction yield is reduced, which is not preferable.
【0014】[0014]
【実施例】以下実施例により本発明を更に詳細に説明す
る。尚%は重量%を示す。The present invention will be described in more detail with reference to the following examples. In addition,% means% by weight.
【0015】実施例1 ZnF2・4H2Oを200℃で4時間脱水処理し、更に
真空下で600℃にて2時間加熱処理した。処理後、ポ
リエチの袋にいれデシケ−タ−内に保管した。このZn
F2を使用前にHeガスパ−ジされた示差熱天秤にて室
温から700℃までの重量変化を測定した。この結果、
重量の減量は0.14%であった。このZnF2200
gを200mlのガラス製フラスコに仕込み、系内をN
2で充分置換した。その後、N2気流下でSiHCl3を
0.5g/minの速度で全量で100gになるようフ
ラスコ内に供給した。尚反応中にフラスコは氷水の中に
浸漬し反応温度の上昇を防止した。Example 1 ZnF 2 .4H 2 O was dehydrated at 200 ° C. for 4 hours, and further heat-treated under vacuum at 600 ° C. for 2 hours. After the treatment, it was put in a polyethylene bag and stored in a desiccator. This Zn
Before using F 2 , the weight change from room temperature to 700 ° C. was measured by a differential thermal balance with a He gas purge. As a result,
The weight loss was 0.14%. This ZnF 2 200
g into a 200 ml glass flask and set the inside of the system to N
Replaced well with 2 . After that, SiHCl 3 was fed into the flask at a rate of 0.5 g / min so that the total amount became 100 g under N 2 flow. During the reaction, the flask was immersed in ice water to prevent the reaction temperature from rising.
【0016】フラスコから発生したガスは、ドライアイ
スアセトントラップで不純物を除去したのち、液体窒素
トラップ中に捕集した。SiHCl3ベ−スに於ける収
率は77%であった。尚、捕集ガス純度(SiHF3)
は98%で同族不純ガス成分は表1に示す如く各々0.
5%以下であった。The gas generated from the flask was collected in a liquid nitrogen trap after removing impurities with a dry ice acetone trap. The yield based on SiHCl 3 was 77%. The purity of the collected gas (SiHF 3 )
Is 98%, and the impure gas components of the same group are each 0.
It was 5% or less.
【0017】実施例2 ZnF2・4H2Oを200℃で4時間脱水処理し更にN
2雰囲気で600℃にて2時間加熱処理したZnF2を実
施例1と同様に保管し、使用前の重量減量を実施例1に
したがって測定したところ0.17%であった。このZ
nF2200gを1lの撹拌機付きガラスフラスコに入
れ、400mlのアニソ−ルに懸濁させた。Example 2 ZnF 2 .4H 2 O was dehydrated at 200 ° C. for 4 hours and further N
ZnF 2 heat-treated at 600 ° C. for 2 hours in two atmospheres was stored in the same manner as in Example 1, and the weight loss before use was measured according to Example 1 and found to be 0.17%. This Z
200 g of nF 2 was placed in a 1-liter glass flask equipped with a stirrer and suspended in 400 ml of anisole.
【0018】系内ををN2 で充分置換したのち、撹拌し
ながらSiH3Clの100gを0.5g/minの速
度でフラスコ内に供給した。尚反応中にフラスコは氷水
の中に浸漬し反応温度の上昇を防止するとともに、リフ
ラクスコンデンサーを取り付けてアニソ−ルの蒸発を防
止した。After thoroughly replacing the inside of the system with N 2 , 100 g of SiH 3 Cl was fed into the flask at a rate of 0.5 g / min while stirring. During the reaction, the flask was immersed in ice water to prevent the reaction temperature from rising, and a reflux condenser was attached to prevent evaporation of anisole.
【0019】フラスコから発生した反応ガスはドライア
イスアセトントラップで不純物を除去したのち、液体窒
素トラップ中に捕集した。SiH3Clベ−スに於ける
収率は85%であった。尚、捕集ガス純度(SiH
3F)は98%で同族不純ガス成分は表1に示す如く各
々0.5%以下であった。The reaction gas generated from the flask was collected in a liquid nitrogen trap after removing impurities with a dry ice acetone trap. The yield in SiH 3 Cl base was 85%. The purity of the collected gas (SiH
3 F) was 98%, and the congenital impure gas components were 0.5% or less, respectively, as shown in Table 1.
【0020】実施例3 ZnOとF2ガスの反応によって得られたZnF2を実施
例1と同様に保管し、使用前の重量減量を実施例1にし
たがって測定したところ0.18%であった。このZn
F2200gを実施例2と同様な方法でSiH2Cl2か
らSiH2F2の製造を行った。SiH2Cl2ベ−スに於
ける収率は85%であった。尚、捕集ガス(SiH
2F2)純度は98%で同族不純ガス成分は表1に示す如
く各々0.5%以下であった。Example 3 ZnF 2 obtained by the reaction of ZnO and F 2 gas was stored in the same manner as in Example 1, and the weight loss before use was measured according to Example 1 to be 0.18%. .. This Zn
It was produced SiH 2 F 2 from the SiH 2 Cl 2 at F 2 200 g Example 2 The same manner. The yield in SiH 2 Cl 2 base was 85%. The collected gas (SiH
The 2 F 2 ) purity was 98%, and the impure homologous gas components were 0.5% or less for each as shown in Table 1.
【0021】比較例1 ZnF2・4H2Oを200℃で4時間脱水処理したZn
F2を実施例1と同様に保管し、使用前の重量減量を測
定したところ1.84%であった。このZnF 2を使用
した以外は実施例1と同じ操作で反応を行なった。結果
は表1に示す如く、SiHF3 以外の同族不純物が実施
例1に比べ多く副生しており、収率も低いことが判明し
た。Comparative Example 1 ZnF2・ 4H2Zn dehydrated from O at 200 ° C. for 4 hours
F2Was stored in the same manner as in Example 1, and the weight loss before use was measured.
When determined, it was 1.84%. This ZnF 2use
The reaction was performed in the same manner as in Example 1 except that the above was carried out. result
As shown in Table 1, SiHF3 Congenital impurities other than implemented
It was found that more by-product was produced and the yield was lower than in Example 1.
It was
【0022】比較例2 比較例1と同じZnF2を用いた以外は実施例2と同じ
操作で反応を行なった。結果は表1に示す如く、SiH
3F以外の同族不純物が実施例に比べ多く副生してお
り、収率も低いことが判明した。Comparative Example 2 The reaction was performed in the same manner as in Example 2 except that the same ZnF 2 as in Comparative Example 1 was used. The results are as shown in Table 1, SiH
It was found that a large amount of homologous impurities other than 3 F were by-produced as compared with the examples, and the yield was low.
【0023】比較例3 比較例1と同じZnF2を用いた以外は実施例3と同じ
操作で反応を行なった。結果は表1に示す如く、SiH
2F2以外の同族不純物が実施例に比べ多く副生してお
り、収率も低いことが判明した。Comparative Example 3 The reaction was performed in the same manner as in Example 3 except that the same ZnF 2 as in Comparative Example 1 was used. The results are as shown in Table 1, SiH
It was found that a large amount of homologous impurities other than 2 F 2 were by-produced as compared with the examples, and the yield was low.
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【発明の効果】本発明は以上詳細に説明したように、実
施例、比較例に示した如く、本発明の部分置換フルオロ
シランの製造方法はフッ素化剤として含水率0.2重量
%以下のフッ化亜鉛を使用することにより、従来から一
般的に使用されているフッ化亜鉛と比べて、格段に高収
率でしかも同族不純物の少ない部分置換フルオロシラン
の製造が可能であり、その効果は極めて大なるものがあ
る。INDUSTRIAL APPLICABILITY As described in detail above, the present invention, as shown in the examples and comparative examples, is a method for producing a partially substituted fluorosilane according to the present invention. By using zinc fluoride, it is possible to produce a partially substituted fluorosilane with significantly higher yield and less homologous impurities, compared with zinc fluoride that has been generally used from the past, and the effect is There is an extremely large one.
【0026】即ち、本発明の範囲外である比較例は、同
族不純物の発生が高く、したがって、収率が低い。これ
に対し、本発明の範囲内である実施例は、これらの性能
がすべて優れているのは明らかであり、本発明の意義は
大きい。That is, in the comparative examples which are out of the scope of the present invention, the generation of the homologous impurities is high and therefore the yield is low. On the other hand, it is clear that the Examples within the scope of the present invention are all excellent in these performances, and the present invention is of great significance.
Claims (1)
の整数)で表わされる部分置換クロロシランをハロゲン
交換法によって対応する部分置換フルオロシランに変換
するにあたり、フッ素化剤として含水率が0.2重量%
以下である無水フッ化亜鉛を用いることを特徴とする一
般式SiHn F4-n ( n=1〜3の整数)で表わされる
部分置換フルオロシランの製造方法。1. The general formula SiH n Cl 4-n (n = 1 to 3)
In the conversion of the partially substituted chlorosilane represented by the formula (1) to the corresponding partially substituted fluorosilane by the halogen exchange method, the water content as a fluorinating agent is 0.2% by weight.
A method for producing a partially substituted fluorosilane represented by the general formula SiH n F 4-n (n = an integer of 1 to 3), characterized by using the following anhydrous zinc fluoride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31045591A JPH05147920A (en) | 1991-11-26 | 1991-11-26 | Production of partialy substituted fluorosilane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31045591A JPH05147920A (en) | 1991-11-26 | 1991-11-26 | Production of partialy substituted fluorosilane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05147920A true JPH05147920A (en) | 1993-06-15 |
Family
ID=18005459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31045591A Pending JPH05147920A (en) | 1991-11-26 | 1991-11-26 | Production of partialy substituted fluorosilane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05147920A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0599278A1 (en) * | 1992-11-27 | 1994-06-01 | MITSUI TOATSU CHEMICALS, Inc. | Process for the preparation of partially-substituted fluorosilane |
-
1991
- 1991-11-26 JP JP31045591A patent/JPH05147920A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0599278A1 (en) * | 1992-11-27 | 1994-06-01 | MITSUI TOATSU CHEMICALS, Inc. | Process for the preparation of partially-substituted fluorosilane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005514312A (en) | Method for producing amorphous silicon and / or organohalogensilane obtained therefrom | |
JP2719211B2 (en) | Manufacturing method of higher order silane | |
US4861574A (en) | Process for preparing chloropolysilanes | |
JPH05147920A (en) | Production of partialy substituted fluorosilane | |
US2551571A (en) | Method of producing silanes | |
JPS64324B2 (en) | ||
JP2664048B2 (en) | Synthesis method of disilicon hexafluoride | |
CN108417819A (en) | A kind of preparation method of silicon nanoparticle | |
JPS61151015A (en) | Production of partially substituted fluorosilane | |
JPH06298720A (en) | Purification of fluoroalkyl sulfonic acid | |
JP2508798B2 (en) | Method for producing hexachlorodisilane and octachlorotrisilane | |
JPS604126B2 (en) | Purification method of silicon tetrafluoride | |
JPH06298506A (en) | Purification of lithium hexafluorophosphate | |
JP3123698B2 (en) | Manufacturing method of fluorinated silane | |
WO2010050579A1 (en) | Method for producing monosilane and tetraalkoxysilane | |
Lewis et al. | Preparation of High‐Purity Silicon from Silane | |
KR960008620B1 (en) | Process for the preparation of partially-substituted fluorosilane | |
JPS6389414A (en) | Production of chloropolysilane | |
JP4663079B2 (en) | Method for producing silane from trialkoxysilane and method for producing trialkoxysilane from tetraalkoxysilane | |
JPS5860603A (en) | Method of raising the purification of hexagonal boron nitride | |
JPH0640710A (en) | Production of high-purity phosphorus | |
JPH0328370B2 (en) | ||
JP2536027B2 (en) | Method for producing disilane | |
JP3107677B2 (en) | Synthesis method of difluorosilane | |
JPS62288109A (en) | Production of trichlorosilane |