JPH05144736A - Reduced-pressure vapor phase growth apparatus - Google Patents

Reduced-pressure vapor phase growth apparatus

Info

Publication number
JPH05144736A
JPH05144736A JP33147291A JP33147291A JPH05144736A JP H05144736 A JPH05144736 A JP H05144736A JP 33147291 A JP33147291 A JP 33147291A JP 33147291 A JP33147291 A JP 33147291A JP H05144736 A JPH05144736 A JP H05144736A
Authority
JP
Japan
Prior art keywords
film
heating mechanism
vapor phase
semiconductor substrate
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33147291A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Morichika
善光 森近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP33147291A priority Critical patent/JPH05144736A/en
Publication of JPH05144736A publication Critical patent/JPH05144736A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a thermal oxide film from being grown on the surface of a semiconductor substrate before a prescribed film is grown when the semiconductor substrate is put into a furnace and to stabilize a semiconductor device in a reduced-pressure vapor phase growth apparatus. CONSTITUTION:In a state that a heating mechanism 7 has been detached from an outer tube 5, semiconductor substrates 1 are loaded on a boat 2, and they are inserted into a vacuum tank which is constituted of the outer tube 5 and a flange 11. After an evacuation operation, an air component is replaced by nitrogen gas. After that, the heating mechanism 7 is moved to a position where the tank is heated around the outer tube 5, and its temperature is stabilized. Then, a material gas is made to flow, and a film as a target is grown. When the film is formed by this procedure, the prescribed film can be grown without growing a thermal oxide film by the residual air.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、減圧気相成長装置に関
し、特に、その真空槽の温度制御のための加熱機構に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reduced pressure vapor phase growth apparatus, and more particularly to a heating mechanism for controlling the temperature of a vacuum chamber of the apparatus.

【0002】[0002]

【従来の技術】従来の縦型減圧気相成長の概略を図3に
示す。図3に示すように、半導体基板1はボート支持台
3のボート2に積載され、内管6中に挿入される。
2. Description of the Related Art FIG. 3 shows an outline of conventional vertical vacuum deposition. As shown in FIG. 3, the semiconductor substrate 1 is loaded on the boat 2 on the boat support 3 and inserted into the inner pipe 6.

【0003】外管5,フランジ11,ハッチ4で構成さ
れる真空槽は、真空排気口9から真空排気装置により排
気される。外管5の周囲には加熱機構7が備えられ、槽
内を所定の温度に保つことができる。
A vacuum chamber composed of the outer tube 5, the flange 11 and the hatch 4 is exhausted from a vacuum exhaust port 9 by a vacuum exhaust device. A heating mechanism 7 is provided around the outer tube 5 to keep the inside of the tank at a predetermined temperature.

【0004】また、気相成長用の材料ガスは、材料ガス
導入管8より槽内に導入される。気相成長は加熱機構7
により予め一定温度(500〜800℃)に保たれた槽
内に、半導体基板1を挿入した後、〜10-2Torrま
で真空排気し続けて、不活性ガスを材料ガス導入管8よ
り流し、〜10-1Torrの圧力に保ちながら半導体基
板の温度を安定させ、しかる後に材料ガスを流すことに
より実現される。
The material gas for vapor phase growth is introduced into the tank through the material gas introduction pipe 8. Vapor growth is heating mechanism 7
After inserting the semiconductor substrate 1 into a tank previously maintained at a constant temperature (500 to 800 ° C.) by, the vacuum is continuously evacuated to −10 −2 Torr, and an inert gas is flown from the material gas introduction pipe 8. This is realized by stabilizing the temperature of the semiconductor substrate while maintaining the pressure of -10 -1 Torr and then flowing the material gas.

【0005】このとき半導体基板の槽内への挿入は大気
圧下で行われるため、挿入開始から真空排気完了までの
間、半導体基板は高温(500〜800℃)下で大気成
分に曝されるため、所望の膜を成長する前に表面に酸化
膜が成長する。
At this time, since the semiconductor substrate is inserted into the tank under atmospheric pressure, the semiconductor substrate is exposed to atmospheric components at a high temperature (500 to 800 ° C.) from the start of insertion to the completion of vacuum evacuation. Therefore, an oxide film grows on the surface before growing a desired film.

【0006】この防止策として、槽の実側より大量の窒
素ガスを窒素ガス導入口16より流しながら半導体基板
を挿入し、槽内の大気成分を軽減する方法がよく用いら
れる。
As a preventive measure, a method is often used in which a semiconductor substrate is inserted while a large amount of nitrogen gas is allowed to flow from the nitrogen gas inlet 16 from the real side of the tank to reduce atmospheric components in the tank.

【0007】[0007]

【発明が解決しようとする課題】この従来の気相成長装
置では、槽の奥側より大量の窒素ガスを流しながら半導
体基板を挿入することにより、槽内の大気成分を軽減す
ることはできるが、槽の入口側が開放されているため、
完全に大気成分を除去することはできない。このため、
表面に極薄い酸化膜が成長する危険性が高い。
In this conventional vapor phase growth apparatus, it is possible to reduce atmospheric components in the tank by inserting a semiconductor substrate while flowing a large amount of nitrogen gas from the inner side of the tank. Since the tank entrance side is open,
It is not possible to completely remove atmospheric components. For this reason,
There is a high risk that an extremely thin oxide film will grow on the surface.

【0008】近年、半導体装置が微細化されるに従い、
容量絶縁膜の薄膜化や、コンタクトの微細化が進み、従
来問題とならなかった成膜前の極薄い酸化膜も素子の歩
留に大きく影響するようになった。しかし、従来の装置
では、安定した歩留が得られないという問題点があっ
た。
With the recent miniaturization of semiconductor devices,
The thinning of the capacitance insulating film and the miniaturization of contacts have advanced, and the ultra-thin oxide film before film formation, which has not been a problem in the past, also has a great influence on the device yield. However, the conventional device has a problem that a stable yield cannot be obtained.

【0009】また従来の気相成長装置の窒素ガスの流れ
は、材料ガスの流れる方向と逆であり、パーティクルの
巻き上げを起こしやすく、半導体装置の歩留低下の原因
になりやすいという問題点があった。
Further, the flow of the nitrogen gas in the conventional vapor phase growth apparatus is opposite to the flow direction of the material gas, and there is a problem that the particles are likely to be wound up and the yield of the semiconductor device is lowered. It was

【0010】本発明の目的は、半導体基板挿入炉時に、
所定の膜の成長前に基板表面に熱酸化膜が成長すること
を防止した減圧気相成長装置を提供することにある。
An object of the present invention is to provide a semiconductor substrate insertion furnace,
It is an object of the present invention to provide a low pressure vapor phase growth apparatus that prevents a thermal oxide film from growing on the surface of a substrate before the growth of a predetermined film.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る減圧気相成長装置においては、真空槽
と、加熱機構とを有し、半導体基板上に所望の薄膜を成
長する減圧気相成長装置であって、真空槽は、内部で半
導体基板に薄膜成長が行なわれるものであり、加熱機構
は、真空槽を加熱するものであり、真空槽に対して相対
変位可能に設けられたものである。
In order to achieve the above object, in a reduced pressure vapor phase growth apparatus according to the present invention, a reduced pressure for growing a desired thin film on a semiconductor substrate has a vacuum chamber and a heating mechanism. In the vapor phase growth apparatus, a vacuum chamber is used to grow a thin film on a semiconductor substrate inside, and a heating mechanism is for heating the vacuum chamber and is provided so that it can be displaced relative to the vacuum chamber. It is a thing.

【0012】[0012]

【作用】槽内を低温状態にして半導体基板を挿入し、パ
ーティクルの巻き上げを防止するとともに、基板表面に
酸化膜が成長することを防止する。
The semiconductor substrate is inserted by keeping the inside of the bath at a low temperature to prevent the particles from being wound up and to prevent the oxide film from growing on the surface of the substrate.

【0013】[0013]

【実施例】次に本発明について図面を参照して説明す
る。図1は、本発明の一実施例に係る減圧気相成長装置
を示す概略図である。
The present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a reduced pressure vapor phase growth apparatus according to an embodiment of the present invention.

【0014】図1において、真空槽の構成,ガス導入
管,真空排気方法は従来の装置と同様の構造である。
In FIG. 1, the structure of the vacuum chamber, the gas introduction pipe, and the vacuum exhaust method are the same as those of the conventional device.

【0015】図において、本発明によれば、加熱機構7
は、加熱機構移動機構10の加熱機構支持ガイド12に
取付けられ、加熱機構移動機構10により真空槽(4,
5,11)に対して相対変位可能に設けられている。
In the figure, according to the invention, the heating mechanism 7
Is attached to the heating mechanism support guide 12 of the heating mechanism moving mechanism 10, and the heating chamber moving mechanism 10 causes the vacuum chamber (4,
It is provided so as to be relatively displaceable with respect to (5, 11).

【0016】このため、加熱機構7は、外管5の周囲で
真空槽を加熱する位置と、外管5から完全に外れ真空槽
を加熱しない位置を選ぶことができる。
Therefore, the heating mechanism 7 can select a position where the vacuum chamber is heated around the outer tube 5 and a position where the vacuum chamber is completely removed from the outer tube 5 and the vacuum chamber is not heated.

【0017】また、真空槽には窒素ガス,材料ガス,前
処理ガスが各供給系13,14,15により供給できる
構造となっている。
Further, the vacuum chamber has a structure in which nitrogen gas, material gas and pretreatment gas can be supplied by the respective supply systems 13, 14 and 15.

【0018】本装置における成膜は次の手順で行う。先
ず、加熱機構7が外管5から外れた状態で半導体基板1
をボート2へ積載して真空槽内に挿入し真空排気を行
う。
The film formation in this apparatus is performed in the following procedure. First, with the heating mechanism 7 removed from the outer tube 5, the semiconductor substrate 1
Is loaded on the boat 2 and is inserted into the vacuum chamber for vacuum evacuation.

【0019】真空槽の圧力が〜10-3Torr以下にな
るまで真空排気した後、材料ガス導入管8より窒素ガス
供給系13の窒素ガスを5SLM流す。この状態で加熱
機構7を外管5の周囲で槽を加熱する位置へ移動させ、
温度の安定を40分待つ。
After the vacuum chamber is evacuated to a pressure of -10 -3 Torr or less, 5 SLM of nitrogen gas is supplied from the nitrogen gas supply system 13 through the material gas introduction pipe 8. In this state, the heating mechanism 7 is moved to a position where the tank is heated around the outer tube 5,
Wait 40 minutes for the temperature to stabilize.

【0020】その後、窒素ガスを材料ガス供給系14の
材料ガスに切り換え成膜を行う。このとき、加熱機構7
は、3ゾーンに分けられ独立に温度制御可能であるが、
温度の設定は、予め真空槽内の膜厚が均一になるように
定められ、加熱機構7の移動とは関係なく一定の温度分
布に保たれている。
After that, the nitrogen gas is switched to the material gas of the material gas supply system 14 to form a film. At this time, the heating mechanism 7
Is divided into 3 zones and temperature can be controlled independently,
The temperature is set in advance so that the film thickness in the vacuum chamber is uniform, and is maintained at a constant temperature distribution regardless of the movement of the heating mechanism 7.

【0021】(実施例2)次に本発明の実施例2におけ
る成膜について説明する。加熱機構7が外管5から外れ
た状態で半導体基板を真空槽内に挿入し真空排気を行
う。
Example 2 Next, film formation in Example 2 of the present invention will be described. With the heating mechanism 7 removed from the outer tube 5, the semiconductor substrate is inserted into the vacuum chamber and evacuated.

【0022】真空槽の圧力が10-3Torr以下になる
まで真空排気を行った後、窒素ガスを1SLM流しなが
ら、前処理ガス供給系15より、10%HFガスを10
0sccm,10分間流す。
After evacuation was performed until the pressure in the vacuum chamber became 10 −3 Torr or less, 10% HF gas was supplied to 10% from the pretreatment gas supply system 15 while flowing 1 SLM of nitrogen gas.
Run at 0 sccm for 10 minutes.

【0023】HFガスを停止した後、窒素ガスを5SL
M,10分間流し、加熱機構7を外管5の周囲で槽を加
熱する位置へ移動させ、温度の安定を40分待つ。その
後に窒素ガスを材料ガスに切り換え成膜を行う。
After stopping the HF gas, 5 SL of nitrogen gas is supplied.
After flowing for 10 minutes, the heating mechanism 7 is moved to a position for heating the tank around the outer tube 5, and the temperature is stabilized for 40 minutes. After that, the nitrogen gas is switched to the material gas to form a film.

【0024】実施例1では、所定の膜を成長する前の酸
化膜の厚さは、作業開始前に既に成長していた膜厚と同
じ4〜5Åであり、従来例の10〜20Åに比較し低減
されている。
In Example 1, the thickness of the oxide film before the growth of the predetermined film is 4 to 5Å, which is the same as the film thickness that has already been grown before the start of the work, compared with 10 to 20Å of the conventional example. Has been reduced.

【0025】これに対して、実施例2では、HFガスに
よる前処理があるため、ほとんど酸化膜はなく、0〜1
Åとなっている。
On the other hand, in the second embodiment, since there is pretreatment with HF gas, there is almost no oxide film, and 0 to 1
It has become Å.

【0026】[0026]

【発明の効果】以上説明したように本発明は、減圧気相
成長装置の加熱機構の真空槽との相対位置を変える構造
とし、槽内が低温の状態での半導体基板の挿入,真空引
き,前処理の後に、加熱機構を移動し槽内を加熱する構
造としたので、従来の技術と比較し、パーティクルの巻
き上げの危険性なしに半導体基板表面の極薄い酸化膜の
成長を完全に防止して気相成長が実現でき、半導体装置
の歩留が安定できるという効果を有する。
As described above, the present invention has a structure in which the relative position of the heating mechanism of the reduced-pressure vapor phase growth apparatus to the vacuum chamber is changed. After the pre-treatment, the heating mechanism is moved to heat the inside of the bath, so compared to the conventional technology, the growth of ultra-thin oxide film on the surface of the semiconductor substrate is completely prevented without the risk of particle winding. Vapor growth can be realized, and the yield of semiconductor devices can be stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る減圧気相成長装置の一実施例を示
す概略図である。
FIG. 1 is a schematic view showing an embodiment of a reduced pressure vapor phase growth apparatus according to the present invention.

【図2】従来の減圧気相成長装置を示す概略図である。FIG. 2 is a schematic view showing a conventional low pressure vapor phase growth apparatus.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 ボート 3 ボート支持台 4 ハッチ 5 外管 6 内管 7 加熱機構 8 材料ガス導入管 9 真空排気口 10 加熱機構移動機構 11 フランジ 12 加熱機構支持ガイド 13 窒素ガス供給系 14 材料ガス供給系 15 前処理ガス供給系 16 酸化膜防止用窒素ガス導入口 1 semiconductor substrate 2 boat 3 boat support 4 hatch 5 outer pipe 6 inner pipe 7 heating mechanism 8 material gas introduction pipe 9 vacuum exhaust port 10 heating mechanism moving mechanism 11 flange 12 heating mechanism support guide 13 nitrogen gas supply system 14 material gas supply System 15 Pretreatment gas supply system 16 Nitrogen gas inlet for oxide film prevention

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空槽と、加熱機構とを有し、半導体基
板上に所望の薄膜を成長する減圧気相成長装置であっ
て、 真空槽は、内部で半導体基板に薄膜成長が行なわれるも
のであり、 加熱機構は、真空槽を加熱するものであり、真空槽に対
して相対変位可能に設けられたものであることを特徴と
する減圧気相成長装置。
1. A reduced pressure vapor phase growth apparatus for growing a desired thin film on a semiconductor substrate, comprising a vacuum chamber and a heating mechanism, wherein the vacuum chamber internally grows a thin film on the semiconductor substrate. The reduced pressure vapor phase growth apparatus is characterized in that the heating mechanism heats the vacuum chamber and is provided so as to be capable of relative displacement with respect to the vacuum chamber.
JP33147291A 1991-11-20 1991-11-20 Reduced-pressure vapor phase growth apparatus Pending JPH05144736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33147291A JPH05144736A (en) 1991-11-20 1991-11-20 Reduced-pressure vapor phase growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33147291A JPH05144736A (en) 1991-11-20 1991-11-20 Reduced-pressure vapor phase growth apparatus

Publications (1)

Publication Number Publication Date
JPH05144736A true JPH05144736A (en) 1993-06-11

Family

ID=18244030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33147291A Pending JPH05144736A (en) 1991-11-20 1991-11-20 Reduced-pressure vapor phase growth apparatus

Country Status (1)

Country Link
JP (1) JPH05144736A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291519A (en) * 2008-06-09 2009-12-17 Fuji Netsugaku Kogyo Kk Heating furnace lowering type granite porphyry sauna equipment
JP2009291518A (en) * 2008-06-09 2009-12-17 Fuji Netsugaku Kogyo Kk Heating furnace rising type granite porphyry sauna equipment
US9487859B2 (en) 2014-03-24 2016-11-08 Tokyo Electron Limited Operating method of vertical heat treatment apparatus, storage medium, and vertical heat treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291519A (en) * 2008-06-09 2009-12-17 Fuji Netsugaku Kogyo Kk Heating furnace lowering type granite porphyry sauna equipment
JP2009291518A (en) * 2008-06-09 2009-12-17 Fuji Netsugaku Kogyo Kk Heating furnace rising type granite porphyry sauna equipment
JP4633823B2 (en) * 2008-06-09 2011-02-16 不二熱学工業株式会社 Heating furnace descending type barley stone sauna equipment
US9487859B2 (en) 2014-03-24 2016-11-08 Tokyo Electron Limited Operating method of vertical heat treatment apparatus, storage medium, and vertical heat treatment apparatus

Similar Documents

Publication Publication Date Title
US4913790A (en) Treating method
KR20120126012A (en) Gas supply apparatus, thermal treatment apparatus, gas supply method, and thermal treatment method
JP2009108402A (en) In situ deposition of different metal-containing film using cyclopentadienyl metal precursor
WO2016151684A1 (en) Method for manufacturing semiconductor device, recording medium and substrate processing apparatus
WO2023045835A1 (en) Preparation method for metal compound film
JPS60257526A (en) Method of growing insulator layer
JPH05144736A (en) Reduced-pressure vapor phase growth apparatus
JPS5884111A (en) Improved plasma deposition for silicon
US5254363A (en) Method for producing oxide films
JP2010109335A (en) Removing method and processing device for silicon oxide film
JPS6136699B2 (en)
JPH09235189A (en) Production of semiconductor single crystal thin film
JPH0585890A (en) Apparatus for forming thin film
US20240035196A1 (en) Method of selective etching of dielectric materials
US6784031B2 (en) Method for forming thin films of semiconductor devices
CN114574956B (en) Growth method and growth device of doped aluminum nitride crystal
JP2009278086A (en) Process and apparatus processing wafer
JPH0521867Y2 (en)
JP2001007117A (en) Treating apparatus and treating method
JPS62128518A (en) Vapor growth equipment
JPS63164424A (en) Vapor growth method
JPS63166215A (en) Semiconductor vapor growth system
JP3448695B2 (en) Vapor growth method
JPS5875830A (en) Reduced pressure hot wall cvd method
JPS6272131A (en) Vapor reaction method and vapor reaction device directly used therefor