JPH0514472Y2 - - Google Patents
Info
- Publication number
- JPH0514472Y2 JPH0514472Y2 JP1986035982U JP3598286U JPH0514472Y2 JP H0514472 Y2 JPH0514472 Y2 JP H0514472Y2 JP 1986035982 U JP1986035982 U JP 1986035982U JP 3598286 U JP3598286 U JP 3598286U JP H0514472 Y2 JPH0514472 Y2 JP H0514472Y2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- inductor
- temperature
- treated
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 claims description 57
- 230000006698 induction Effects 0.000 claims description 7
- 238000003466 welding Methods 0.000 claims description 6
- 239000004020 conductor Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 6
- 238000010791 quenching Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Landscapes
- General Induction Heating (AREA)
Description
A 産業上の利用分野
本考案は電縫管局部加熱処理装置の誘導子の配
置に関する。
B 考案の概要
本考案は走行する電縫管の溶接部近傍を誘導加
熱により局部加熱する装置において、熱処理ライ
ンに沿つて少なくとも3台の誘導子を順次配設
し、その内の少なくとも1台の誘導子を被熱処理
部の円周方向の中央に対向せしめて配設し、他の
少くとも各1台ずつの誘導子を被熱処理部の円周
方向の夫々反対の端部側に寄せて配設して被熱処
理部を誘導加熱することにより、熱処理すべき溶
接部とその周囲の熱影響部を均一に加熱でき、そ
れにより省エネルギーで円滑に熱処理を行なうこ
とができ、且つ装置の全長を短くすることができ
たものである。
C 従来の技術
電縫管溶接ライン内に誘導子を配設して電縫管
溶接部の焼鈍または焼準を行なつて急冷組織や硬
化部を改善することは既に一般化されている。更
に近年では溶接部に焼入れ・焼戻し熱処理を施し
て低温脆性を改善することも行なわれている。例
えば第7図、第8図を参照して説明すると、1は
矢印方向に走行する電縫管で、図の左側において
帯板を走行させながら徐々に曲げることによつて
形成されるVシーム部2に誘導コイル3により高
周波電力を供給し、スクイズロール4,4によつ
てVシーム部先端の溶接点5が溶接される。6は
高周波電源である。また、7,7…は溶接部8に
対向して且つ直線上に設けた焼鈍又は焼準用の複
数個の誘導子である。このように誘導子7,7…
を間隔をあけて複数個設けてあるのは、電縫管1
を走行させながら溶接部8の外表面を誘導加熱し
て昇温し、さらに肉厚方向への熱伝導によつて内
径面まで昇温せしめるとき、内外面の温度差を少
なくするためである。
ところで、誘導子7は第9図、第10図にその
主要部および断面を示すように電流を流す導体1
0の周囲(但し溶接部8との対向面を除く)を鉄
心9で囲つた構造である。また、導体10は内部
に冷却水を通す孔を有する矩形断面のパイプより
なつている。そして、第9図に示すように導体1
0の両端が電源に接続されて、この導体10を流
れる交番電流によつて誘起される誘起電流が電縫
管1に流れ、誘導子7を対向せしめた溶接部8に
は特にこの誘起電流が集中して流れるので、該溶
接部が昇温する。第6図Aは単一の誘導子7によ
り電縫管1と誘導子7のギヤツプG(第9図、第
10図参照)を変化させて加熱した場合の電縫管
1の周方向の温度分布例を示し、図から分るよう
に電縫管1が加熱されるのはほぼ誘導子7の導体
幅Wcに相当する範囲内である。そして誘導子7
の導体10の幅方向の中央部と対向する部分に温
度ピークが生じ電縫管1と誘導子7とのギヤツプ
GがG1、G2、G3と大きくなるようにして加熱す
る程、この温度ピークはなだらかになる。但し、
加熱効率は勿論劣化する。第6図Bは電縫管1の
断面における温度分布例を等温線で示した図であ
る。
D 考案が解決しようとする問題点
ところで、熱処理すべき場所は電縫管溶接の溶
接部とその両側の熱影響部であるが、この部分を
もれなくカバーするために実際の熱処理範囲は更
に円周方向の両側にやゝ広い範囲となる。そして
管の肉厚が厚くなると熱影響部も溶接部の両側に
広くなり熱処理範囲もそれだけ広くなる。更に焼
入れ、焼戻し熱処理においては、同様に焼入れ範
囲は熱影響部より広い範囲となり、この焼入れ範
囲をもれなくカバーするために焼戻し処理範囲は
円周方向に一層広い範囲となる。これらの熱処理
範囲を第10図にて図形的に示すと溶接部8とそ
の両側の斜線で示す被熱処理部12であり、この
部分は所定の温度範囲内で加熱されなければなら
ない。その理由は、熱処理を施すためには前記被
熱処理部12を所定の熱処理温度以上に昇温しな
ければならないが、反面温度が高くなりすぎると
結晶粒が粗大化するなどで不適当である。したが
つて、最も温度の上り易い外表面の中心a点にお
ける温度(これをT1とする)を適正な熱処理の
ための上限温度以下に抑え、また最も温度の上昇
が遅れる内径側の中心から遠いd1点、d2点の温度
(これをT2とする)を適正な熱処理のための下限
温度以下にする必要がある(T1>T2)。なほこの
T1とT2の温度差はできるだけ小さいことが望ま
しい。従つて肉厚方向のみならず円周方向の温度
分布が重要となる。
然るに、従来配置の誘導子7による加熱装置で
は第6図に示すように夫々の誘導子7に対向する
電縫管1の誘起電流が発生して有効に加熱が行な
われるのは、ほぼ導体10の幅に相当する範囲内
である。従つて第10図における誘導子の導体幅
Wcは被熱処理部12の円周方向の幅Whに対し
てWc≧Whであることが必要であつた。更にま
た電縫管1の加熱される部分の円周方向の中心部
に温度の鋭いピークが生じ、このような誘導子7
は電縫管1の走行方向、即ち熱処理ラインに沿つ
て一直線に複数台配置しているため第10図にお
けるa点を適正温度に加熱すればd1点、D2点の
加熱温度が不足し、逆にd1点、d2点を適正温度に
加熱すればa点が過剰に加熱されることになり、
一方a1点、a2点の温度上昇には遅れが生じた。こ
のように電縫管1の肉厚の増大や、溶接部近傍の
焼入れ、焼戻し熱処理等に伴なつて円周方向に広
い被熱処理部12を均一に加熱するには誘導子7
の導体幅Wcが大きくなり装置が大形化して重量
が増大したり、均熱が難かしいなど従来の加熱装
置は適していなかつた。
また、従来は上述の欠点を補うため幅方向及び
肉厚方向ともにもつぱら熱伝導によつて温度の均
一化を計るしかなく、そのため第7図、第8図に
示すように電縫管1の走行方向に大きな間隔をお
いて誘導子7,7…を複数個設けているが、これ
によると幅方向、肉厚方向ともに温度を均一化す
るまでに時間を要し、且つ温度の均一化が難し
く、またその間の放熱分も大きくなつて熱効率の
向上が図りにくかつた。また第7図に示すように
複数個の誘導子7,7…を大きな間隔をあけて用
いるため装置のラインが長くなるという欠点もあ
つた。
しかして、また上述のように被熱処理部12の
加熱が不均一となる原因の一つは電縫管1の肉厚
が厚い(例えば16mm以上)のに対して電流の浸透
深さが浅いためであるが、かといつて浸透深さを
深くするために周波数を下げると誘導子7による
電縫管1への電力の有効な投入が難しくなる。つ
まり、加熱効率が悪くなるという問題がある。
本考案は上記の欠点を解決した電縫管局部加熱
装置を提供することを目的とする。
E 問題点を解決するための手段
本考案は走行する電縫管の溶接部近傍を誘導加
熱により局部加熱する装置において、熱処理ライ
ンに沿つて少なくとも3台の誘導子を順次配設
し、その内の少なくとも1台の誘導子を被熱処理
部の円周方向の中央に対向せしめて配設し、他の
少くとも各1台ずつの誘導子を被熱処理部の円周
方向の夫々反対の端部側に寄せて配設して、被熱
処理部を誘導加熱するようにしたことを特徴とす
る。
F 実施例
以下本考案を第1図〜第5図を参照して説明す
る。
第1図、第2図、第3図は本考案の第1実施
例、第2実施例、第3実施例を平面的に示すもの
である。即ち、第1図においては、3台の誘導子
7の配置例を示し、電縫管1の進行方向にみて最
も手前にある1段目の誘導子7を被熱処理部12
の円周方向中央(つまり溶接部8)に対向せしめ
て配設し、第2段目の誘導子7と3段目の誘導子
7をそれぞれ被熱処理部12の円周方向の左右の
端部側に寄せて配設した例を示している。
第2図は4台の誘導子7の配置例を示し、1段
目から3段目までの誘導子7の配置は第1図の場
合と同様であり、4段目の誘導子7を1段目のそ
れと同様被熱処理部12の円周方向中央に対向せ
しめて配設している。第3図は5台の誘導子7の
配置例を示し、1段目の誘導子7を被熱処理部1
2の円周方向中央に対向配置し、2段目と3段目
の誘導子7,7は中央部から左右に大きく寄せて
配置し、さらに、4段目と5段目の誘導子7,7
は中央部から少しだけ左右に寄せて配置した例を
示している。なお、図では示さないが誘導子7の
数は6台以上であつてもよいが、いずれの場合も
各誘導子7…全体は被熱処理部12の中央部を基
準に左右にバランスよく配置するのが良い。
しかして、第4図には第1図に示した本考案の
第1実施例の誘導子配置による被熱処理部12の
昇温過程を示し、第5図には第7図、第8図に示
した従来の溶接部上の直線的な誘導子配置のよる
被熱処理部12の昇温過程を示すので、各図を比
較して以下説明する。
各図において、t1は被熱処理部の熱処理上限温
度、t2は熱処理下限温度を示し、複数台の誘導子
7を配置した場合において、最終段の誘導子7
(図では3台の誘導子を配置した例を示している
ので3段目の誘導子)によつて加熱された後の被
熱処理部12の各点(例えばa,a1、a2,b,
c1,d1,d2)の温度が上記t1とt2の範囲内に納ま
つていれば被熱処理部全体が適正な熱処理温度範
囲内に加熱されたことになり良好な熱処理が施さ
れる。しかして、第5図に示す従来の誘導子配置
によると、同図に示す温度曲線から分るとおり、
最終段である第3段目の誘導子7により加熱され
た後の被熱処理部12のa,a1,b,c1の各点の
温度はt1(熱処理上限温度)とt2(熱処理下限温
度)の間の温度範囲内に納まつており、a点の温
度はすでにt1に達しているが、中央部から最も離
れたd1、d2(d1=d2)の点の温度はt2よりも下方
にある。つまり円周方向に広い被熱処理部12を
加熱する場合d1,d2近傍は適正な熱処理温度範囲
に入りにくいことが分る。従つてこのような従来
の加熱装置の場合には、d1,d2点の温度がt2以上
になるように加熱するためには、夫々の誘導子7
における導体幅Wcを更に大きくするか、各誘導
子7間の間隔を更に大きく拡げるか、または誘導
子7の数を4台以上に更に増やすなどの対策が必
要となる。しかし、これらはいずれも誘導子7の
幅の増大に伴なう装置の大形化、重量の増大、熱
処理ライン長の長大化、装置の製作費用の増大、
加熱のための消費電力量の増大を招くものとな
る。
これに対し、第4図に示す本考案の誘導子配置
によると、第1段目の誘導子7を溶接部の中心位
置に配置したことにより、被熱処理部12のa,
b点近傍が主に加熱され、第2段目の誘導子7を
右にずらして配置したことによりa1、d1点近傍が
主に加熱され、第3段目の誘導子7を左にずらし
て配置したことによりa2,d2点近傍が主に加熱さ
れる。その結果、最終段である第3段目の誘導子
7を被熱処理部12が通過するときは、同図の温
度曲線から分るとおり、最も加熱されにくいd1、
d2点と、加熱しやすいa点との温度差が小さくな
り、被熱処理部全体を適正な熱処理温度範囲内に
昇温することが容易であることが判る。
また、本考案の誘導子配置による加熱では、熱
処理ライン上の複数台の誘導子7を電縫管1の被
熱処理部12の円周方向の中央部および両端側に
寄せて交互に配置して加熱するので、誘導子7の
導体幅Wcは被熱処理部の幅Whより小さくてよ
い。従つて誘導子7を含む装置は小形軽量化する
ことができる。
さらに、上記第1図と第8図の各誘導子配置に
より比較実験を行つたところ下記のような結果が
得られた。なお、実験には、肉厚16mmの電縫管を
13m/mmのラインスピードで走行させ、溶接部近
傍の被熱処理部12を560℃を中心とする所定の
温度範囲内に加熱するのに要する消費電力を調べ
た。
A. Industrial Application Field The present invention relates to the arrangement of an inductor in an electric resistance welded tube local heat treatment device. B. Summary of the invention This invention is a device that locally heats the vicinity of the welded part of a running electric resistance welded pipe by induction heating, in which at least three inductors are sequentially arranged along the heat treatment line, and at least one of them is The inductor is arranged to face the center of the heat-treated part in the circumferential direction, and at least one other inductor is arranged near the opposite end of the heat-treated part in the circumferential direction. By induction heating the part to be heat-treated, the welded part to be heat-treated and the heat-affected zone around it can be uniformly heated.This allows for energy-saving and smooth heat treatment, and the overall length of the equipment can be shortened. It was possible to do so. C. Prior Art It has already become common practice to provide an inductor in an ERW tube welding line to anneal or normalize the ERW tube welded portion to improve the quenched structure and hardened portion. Furthermore, in recent years, quenching and tempering heat treatments have been applied to welded parts to improve low-temperature embrittlement. For example, referring to FIGS. 7 and 8, reference numeral 1 indicates an electric resistance welded tube running in the direction of the arrow, and a V-seam portion formed by gradually bending the band plate on the left side of the figure as it runs. 2 is supplied with high frequency power by an induction coil 3, and a welding point 5 at the tip of the V-seam portion is welded by squeeze rolls 4, 4. 6 is a high frequency power source. Further, 7, 7, . . . are a plurality of inductors for annealing or normalizing provided facing the welding portion 8 and on a straight line. In this way, inductors 7, 7...
ERW pipe 1 is provided with multiple at intervals.
This is to reduce the temperature difference between the inner and outer surfaces when the outer surface of the welded portion 8 is heated by induction while running, and the temperature is further increased to the inner diameter surface by heat conduction in the thickness direction. By the way, the inductor 7 is a conductor 1 through which current flows, as shown in FIGS.
0 (excluding the surface facing the welded part 8) is surrounded by an iron core 9. Further, the conductor 10 is made of a rectangular cross-section pipe having a hole through which cooling water passes. Then, as shown in Fig. 9, the conductor 1
Both ends of the conductor 10 are connected to a power source, and an induced current induced by the alternating current flowing through the conductor 10 flows into the electric resistance welded tube 1, and this induced current is particularly applied to the welded part 8 where the inductor 7 is opposed. Since the flow is concentrated, the temperature of the weld zone increases. Figure 6A shows the temperature in the circumferential direction of the ERW tube 1 when heated by a single inductor 7 while changing the gap G between the ERW tube 1 and the inductor 7 (see Figures 9 and 10). An example of the distribution is shown, and as can be seen from the figure, the electric resistance welded tube 1 is heated within a range approximately corresponding to the conductor width Wc of the inductor 7. and inductor 7
A temperature peak occurs at a portion facing the widthwise center of the conductor 10, and the gap G between the ERW tube 1 and the inductor 7 increases to G 1 , G 2 , and G 3 . The temperature peak becomes gentle. however,
Of course, the heating efficiency deteriorates. FIG. 6B is a diagram showing an example of temperature distribution in a cross section of the electric resistance welded tube 1 using isothermal lines. D Problems to be solved by the invention By the way, the area to be heat treated is the welded part of the ERW tube and the heat-affected zone on both sides, but in order to completely cover this part, the actual heat treatment area is further circumferential. The area is rather wide on both sides of the direction. As the wall thickness of the pipe increases, the heat-affected zone also expands on both sides of the weld, and the range of heat treatment becomes correspondingly wider. Furthermore, in the quenching and tempering heat treatments, the quenching range is similarly wider than the heat-affected zone, and in order to completely cover this quenching range, the tempering range is wider in the circumferential direction. These heat-treated ranges are graphically shown in FIG. 10 as the welded portion 8 and the heat-treated portions 12 indicated by diagonal lines on both sides of the welded portion 8, which must be heated within a predetermined temperature range. The reason for this is that in order to perform heat treatment, the temperature of the heat-treated portion 12 must be raised to a predetermined heat treatment temperature or higher, but on the other hand, if the temperature is too high, the crystal grains will become coarse, which is inappropriate. Therefore, the temperature at point a, the center of the outer surface where the temperature rises most easily (this is referred to as T 1 ), is kept below the upper limit temperature for proper heat treatment, and from the center on the inner diameter side, where the temperature rise is the slowest. The temperature at distant points d1 and d2 (these are referred to as T2 ) needs to be lower than the lower limit temperature for proper heat treatment ( T1 > T2 ). Nahoko's
It is desirable that the temperature difference between T 1 and T 2 be as small as possible. Therefore, temperature distribution not only in the thickness direction but also in the circumferential direction is important. However, in a heating device using conventionally arranged inductors 7, as shown in FIG. It is within the range corresponding to the width of . Therefore, the conductor width of the inductor in Fig. 10
It was necessary for Wc to satisfy Wc≧Wh with respect to the width Wh of the heat-treated portion 12 in the circumferential direction. Furthermore, a sharp temperature peak occurs at the circumferential center of the heated portion of the ERW tube 1, and such an inductor 7
Since multiple units are arranged in a straight line along the running direction of the ERW pipe 1, that is, along the heat treatment line, if point a in Fig. 10 is heated to the appropriate temperature, the heating temperature at points d 1 and 2 will be insufficient. , Conversely, if points d 1 and d 2 are heated to the appropriate temperature, point a will be heated excessively,
On the other hand, there was a delay in the temperature rise at points A1 and A2 . In this way, in order to uniformly heat the heat-treated area 12 which is wide in the circumferential direction due to an increase in the wall thickness of the electric resistance welded tube 1, quenching near the welded part, tempering heat treatment, etc., the inductor 7 is required.
As the conductor width Wc becomes larger, the device becomes larger and heavier, and it is difficult to uniformly heat the device, making conventional heating devices unsuitable. In addition, conventionally, in order to compensate for the above-mentioned drawbacks, the only way to make the temperature uniform is through heat conduction in both the width direction and the wall thickness direction. A plurality of inductors 7, 7, etc. are provided at large intervals in the running direction, but with this, it takes time to equalize the temperature in both the width direction and the wall thickness direction, and it is difficult to make the temperature uniform. This was difficult, and the amount of heat dissipated during that time also increased, making it difficult to improve thermal efficiency. Furthermore, as shown in FIG. 7, since a plurality of inductors 7, 7, . . . are used at large intervals, the line of the device becomes long. However, as mentioned above, one of the reasons why the heating of the heat-treated part 12 is uneven is that the electric current penetration depth is shallow while the wall thickness of the ERW tube 1 is thick (for example, 16 mm or more). However, if the frequency is lowered in order to increase the penetration depth, it becomes difficult for the inductor 7 to effectively supply power to the electric resistance welded tube 1. In other words, there is a problem that the heating efficiency deteriorates. An object of the present invention is to provide a local heating device for an electric resistance welded tube that solves the above-mentioned drawbacks. E. Means for Solving the Problems The present invention is a device for locally heating the vicinity of the welded part of a running electric resistance welded pipe by induction heating, in which at least three inductors are sequentially arranged along the heat treatment line. At least one inductor is disposed facing the center of the heat-treated portion in the circumferential direction, and at least one other inductor is disposed at each opposite end of the heat-treated portion in the circumferential direction. It is characterized in that it is arranged closer to the side and the part to be heat treated is heated by induction. F Example The present invention will be described below with reference to FIGS. 1 to 5. 1, 2, and 3 are plan views showing a first embodiment, a second embodiment, and a third embodiment of the present invention. That is, in FIG. 1, an example of the arrangement of three inductors 7 is shown, and the first stage inductor 7 located furthest in the direction of movement of the ERW tube 1 is placed in the heat-treated portion 12.
The second stage inductor 7 and the third stage inductor 7 are arranged opposite to the circumferential center (that is, the welding part 8) of the heat-treated part 12 at the left and right ends in the circumferential direction. An example is shown in which it is placed closer to the side. FIG. 2 shows an example of the arrangement of four inductors 7. The arrangement of the inductors 7 in the first to third stages is the same as that in FIG. 1, and the inductor 7 in the fourth stage is Like those in the second stage, they are disposed to face the center of the heat-treated portion 12 in the circumferential direction. FIG. 3 shows an example of the arrangement of five inductors 7, with the first stage inductor 7 placed in the heat-treated area 1.
The inductors 7, 7 of the second and third stages are arranged to face each other at the center in the circumferential direction of the two, and the inductors 7, 7 of the second and third stages are arranged largely left and right from the center. 7
shows an example of placement slightly to the left and right from the center. Although not shown in the figure, the number of inductors 7 may be six or more, but in any case, each inductor 7...as a whole is arranged in a well-balanced manner on the left and right sides with respect to the center of the heat-treated portion 12. It's good. Therefore, FIG. 4 shows the temperature rising process of the heat-treated part 12 by the inductor arrangement of the first embodiment of the present invention shown in FIG. 1, and FIG. The figure shows the process of increasing the temperature of the heat-treated part 12 due to the conventional linear arrangement of inductors on the welded part, and will be explained below by comparing each figure. In each figure, t 1 indicates the upper limit temperature for heat treatment of the part to be heat treated, and t 2 indicates the lower limit temperature for heat treatment.
(The figure shows an example in which three inductors are arranged , so the third stage inductor) ,
If the temperatures of c 1 , d 1 , d 2 ) are within the range of t 1 and t 2 above, the entire area to be heat treated has been heated within the appropriate heat treatment temperature range, and good heat treatment has been performed. be done. However, according to the conventional inductor arrangement shown in FIG. 5, as can be seen from the temperature curve shown in the same figure,
The temperatures at each point a, a 1 , b, c 1 of the heat-treated portion 12 after being heated by the inductor 7 of the third stage, which is the final stage, are t 1 (heat treatment upper limit temperature) and t 2 (heat treatment upper limit temperature). The temperature at point a has already reached t 1 , but the temperature at point d 1 and d 2 (d 1 = d 2 ) farthest from the center is within the temperature range between The temperature is below t 2 . In other words, when heating the heat-treated portion 12 which is wide in the circumferential direction, it is difficult to enter the appropriate heat treatment temperature range near d 1 and d 2 . Therefore, in the case of such a conventional heating device, in order to heat the points d 1 and d 2 to a temperature higher than t 2 , it is necessary to increase the temperature of each inductor 7.
It is necessary to take measures such as further increasing the conductor width Wc at , further widening the interval between each inductor 7, or further increasing the number of inductors 7 to four or more. However, all of these problems include an increase in the size and weight of the device due to the increase in the width of the inductor 7, an increase in the length of the heat treatment line, and an increase in the manufacturing cost of the device.
This results in an increase in power consumption for heating. On the other hand, according to the inductor arrangement of the present invention shown in FIG.
The area near point b is heated mainly, and by shifting the second stage inductor 7 to the right, the area near points a 1 and d is mainly heated, and the third stage inductor 7 is shifted to the left. Due to the staggered arrangement, the area around the two points a 2 and d is mainly heated. As a result, when the heat-treated portion 12 passes through the third stage inductor 7, which is the final stage, as can be seen from the temperature curve in the same figure, d 1 , which is least likely to be heated,
It can be seen that the temperature difference between point d and point a, which is easy to heat, is small, and it is easy to raise the temperature of the entire heat-treated part to within the appropriate heat treatment temperature range. Furthermore, in the heating using the inductor arrangement of the present invention, a plurality of inductors 7 on the heat treatment line are arranged alternately toward the center and both ends of the heat-treated portion 12 of the ERW tube 1 in the circumferential direction. Since heating is performed, the conductor width Wc of the inductor 7 may be smaller than the width Wh of the heat-treated portion. Therefore, the device including the inductor 7 can be made smaller and lighter. Furthermore, when comparative experiments were conducted using the respective inductor arrangements shown in FIG. 1 and FIG. 8, the following results were obtained. For the experiment, an electric resistance welded tube with a wall thickness of 16 mm was used.
The line was run at a line speed of 13 m/mm, and the power consumption required to heat the heat-treated area 12 near the weld to a predetermined temperature range centered around 560°C was investigated.
【表】
上記の比較実験から、本考案の誘導子配置によ
る加熱装置によると、従来に比べ次の作用効果が
奏されることが判つた。被熱処理部を幅広く均
熱できると共に、加熱範囲の幅を調節可能であ
る。従前に比べてトータル使用電力を1110kw
→630kwと約43%低減でき、省エネルギー効果が
大である。各誘導子7の導体幅Wcを被熱処理
部の幅Whより大きくする必要がないので、小形
化により従前に比べて加熱装置の重量を2.4→1.0
(重量比)と約42%に軽減でき、装置重量と製作
コストを低減ならしめることができる。熱処理
ライン長を短縮することができる。
G 考案の効果
以上のとおりで、本考案の加熱装置によると、
熱処理ラインに沿つて順次配設する少なくとも3
台の誘導子のうち、少くとも1台を被熱処理部の
円周方向の中央部に配設し、他の少くとも各1台
づつの誘導子を中央部よりそれぞれ反対の端部側
に寄せて設けてあるので各誘導子により電縫管の
溶接部とその熱影響部を主体とする被熱処理部は
短時間で均一に加熱することができ、この部分の
熱処理を円滑に行なうことができ、且つ加熱範囲
の幅も容易に調節可能である。また、短時間で均
熱できることから外部への放熱も少ないので省エ
ネルギーで熱処理を行なうことができるようにな
つた。例えば肉厚16mmの電縫管を13m/mmのライ
ンスピードで走行させ、溶接部近傍を560℃を中
心とする所定の温度範囲に加熱するのに、従来配
置による誘導子に比べ、本考案配置による誘導子
によるトータル使用電力を40%以上節約すること
ができ、省エネルギーとなつた。さらに、本考案
によると加熱装置の小形化および重量の50%以上
の軽減とそれに伴なう製作コストの低減が可能と
なる効果がある。
さらに、本考案の誘導子を用いると前述のよう
に電縫管の溶接部近傍を短時間で均熱化すること
ができるため、電縫管ラインに沿つて複数個配設
した各誘導子間の間隔を短縮したり、または配設
する誘導子の数を減らすことが可能となるので熱
処理のための装置ラインの全長を短くすることが
できる。[Table] From the above comparative experiment, it was found that the heating device with the inductor arrangement of the present invention provides the following effects compared to the conventional one. The heat treatment target area can be uniformly heated over a wide range, and the width of the heating range can be adjusted. Total power consumption reduced to 1110kw compared to before.
→630kw, approximately 43% reduction, which is a great energy saving effect. Since it is not necessary to make the conductor width Wc of each inductor 7 larger than the width Wh of the heat-treated part, the weight of the heating device can be reduced from 2.4 to 1.0 compared to the previous one due to miniaturization.
(weight ratio) can be reduced to approximately 42%, reducing the device weight and manufacturing cost. The heat treatment line length can be shortened. G. Effects of the invention As described above, according to the heating device of the invention,
at least three arranged sequentially along the heat treatment line.
At least one of the inductors on the stand is placed in the center of the heat-treated area in the circumferential direction, and at least one other inductor is placed toward the opposite end of the center. Since each inductor is installed in the welded section of the ERW tube and its heat-affected zone, the area to be heat-treated can be uniformly heated in a short time, and the heat treatment of this area can be carried out smoothly. , and the width of the heating range can be easily adjusted. In addition, since heat can be soaked in a short time, less heat is radiated to the outside, making it possible to perform heat treatment with less energy. For example, when an electric resistance welded pipe with a wall thickness of 16 mm is run at a line speed of 13 m/mm and the area near the welded part is heated to a predetermined temperature range centered around 560 degrees Celsius, the proposed inductor arrangement is more effective than the conventional inductor arrangement. The total power used by the inductor can be reduced by more than 40%, resulting in energy savings. Furthermore, the present invention has the effect of making it possible to downsize the heating device, reduce its weight by more than 50%, and reduce manufacturing costs accordingly. Furthermore, by using the inductor of the present invention, as mentioned above, it is possible to uniformize the temperature near the welded part of the ERW pipe in a short time, so it is possible to uniformly heat the area near the welded part of the ERW pipe. Since it is possible to shorten the interval between the two or to reduce the number of installed inductors, the total length of the heat treatment equipment line can be shortened.
第1図A、第2図、第3図は本考案の第1実施
例、第2実施例、第3実施例に係る誘導子配置例
を示す平面図、第1図Bは管の側面図、第4図A
は本考案に係る誘導子配置とこれによる管の被熱
処理部の各点の昇温過程を示す説明図、第4図B
は第4図Aの管の側面図、第4図C,D,Eは同
図Aのイ−イ線、ロ−ロ線、ハ−ハ線における管
の加熱領域を示す説明図、第5図Aは従来の誘導
子配置とこれによる管の被熱処理部の各点の昇温
過程を示す説明図、第5図Bは同図Aの管の側面
図、第5図C,D,Eは同図Aのニ−ニ線、ホ−
ホ線、ヘ−ヘ線における管の加熱領域を示す説明
図、第6図Aは単一の誘導子による加熱における
管の円周方向の温度分布例を示す図、第6図Bは
第6図Aに対応する管の断面における温度分布例
を等温線で示す図、第7図A、第8図は従来の誘
導子配置による熱処理装置の正面図と平面図、第
7図Bは電縫管の断面図、第9図は誘導子に流れ
る電流と電縫管に流れる誘起電流を矢印で表示し
た熱処理装置の主要部の斜視図、第10図は誘導
子により加熱される管の溶接部近傍の被熱処理部
を示す説明図である。
1……電縫管、7……誘導子、8……溶接部、
9……鉄心、10……導体、12……被熱処理
部。
1A, 2, and 3 are plan views showing examples of inductor arrangement according to the first, second, and third embodiments of the present invention, and FIG. 1B is a side view of the tube. , Figure 4A
FIG. 4B is an explanatory diagram showing the inductor arrangement according to the present invention and the temperature increase process at each point of the heat-treated portion of the tube due to the inductor arrangement according to the present invention.
is a side view of the tube in FIG. 4A, FIGS. Figure A is an explanatory diagram showing the conventional inductor arrangement and the temperature increase process at each point in the heat-treated portion of the tube, Figure 5B is a side view of the tube in Figure A, Figures 5C, D, and E. are the knee line and hole in figure A.
An explanatory diagram showing the heating area of the tube at the E line and the Hee line, FIG. A diagram showing an example of temperature distribution in the cross section of the tube corresponding to Figure A using isothermal lines, Figures 7A and 8 are front and plan views of a heat treatment apparatus with a conventional inductor arrangement, and Figure 7B is an electric resistance welding A cross-sectional view of the tube, Figure 9 is a perspective view of the main parts of the heat treatment equipment with arrows indicating the current flowing in the inductor and the induced current flowing in the ERW tube, and Figure 10 is the welded part of the tube heated by the inductor. FIG. 3 is an explanatory diagram showing a nearby heat-treated portion. 1... ERW pipe, 7... Inductor, 8... Welded part,
9... Iron core, 10... Conductor, 12... Part to be heat treated.
Claims (1)
〓をもつて誘導子を対設し、該誘導子により溶接
部近傍を誘導加熱により局部加熱する装置におい
て、熱処理ラインに沿つて少なくとも3台の誘導
子を順次所定間隔で配設し、その内の少なくとも
1台の誘導子を溶接部近傍である被熱処理部の円
周方向の中央に対向せしめて配設し、他の少なく
とも各1台ずつの誘導子を被熱処理部の円周方向
の夫々反対の端部側に寄せて配設して、被熱処理
部を誘導加熱することを特徴とする電縫管局部加
熱装置。 An inductor is installed opposite the welded part of a traveling ERW pipe with a predetermined distance from the ERW pipe, and the apparatus locally heats the vicinity of the welded part by induction heating using the inductor. Three inductors are sequentially arranged at predetermined intervals, at least one of them is arranged facing the center in the circumferential direction of the heat-treated part near the welding part, and at least each 1. A local heating device for an ERW tube, characterized in that each inductor is disposed closer to the opposite end of the heat-treated portion in the circumferential direction to inductively heat the heat-treated portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986035982U JPH0514472Y2 (en) | 1986-03-12 | 1986-03-12 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986035982U JPH0514472Y2 (en) | 1986-03-12 | 1986-03-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62149190U JPS62149190U (en) | 1987-09-21 |
JPH0514472Y2 true JPH0514472Y2 (en) | 1993-04-16 |
Family
ID=30845970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1986035982U Expired - Lifetime JPH0514472Y2 (en) | 1986-03-12 | 1986-03-12 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0514472Y2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS493885A (en) * | 1972-05-04 | 1974-01-14 | ||
JPS5248342A (en) * | 1975-10-15 | 1977-04-18 | Torao Suzuki | Remote voltage control system including temperature compensating circu it |
JPS60116725A (en) * | 1983-09-24 | 1985-06-24 | Meidensha Electric Mfg Co Ltd | Continuous local heat treatment of steel pipe |
-
1986
- 1986-03-12 JP JP1986035982U patent/JPH0514472Y2/ja not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS493885A (en) * | 1972-05-04 | 1974-01-14 | ||
JPS5248342A (en) * | 1975-10-15 | 1977-04-18 | Torao Suzuki | Remote voltage control system including temperature compensating circu it |
JPS60116725A (en) * | 1983-09-24 | 1985-06-24 | Meidensha Electric Mfg Co Ltd | Continuous local heat treatment of steel pipe |
Also Published As
Publication number | Publication date |
---|---|
JPS62149190U (en) | 1987-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6142409B2 (en) | Electric heating method | |
CN202090027U (en) | Horizontal induction heating device for medium plate | |
CA1250904A (en) | Inductive edge heating of hot-worked strip material and the like | |
CN101509062B (en) | Method for quenching end socket ribbet position of assembled camshaft | |
Rudnev et al. | Induction heat treatment: Basic principles, computation, coil construction, and design considerations | |
US2673274A (en) | Strip heating | |
CN114540608A (en) | Heavy rail steel electromagnetic induction heating device, control method thereof and heating system | |
JPH0514472Y2 (en) | ||
US4500366A (en) | Process for producing a grain-oriented electromagnetic steel strip or sheet | |
JP2964351B2 (en) | Induction heating method for sheet metal | |
JP3925149B2 (en) | Continuous heat treatment equipment for thick steel plates. | |
US4401486A (en) | Method for annealing work hardened portions of structural beams | |
CN106011442A (en) | Quenching induction heating device for support roller path part of oversized excavator | |
BR112015032136B1 (en) | SINGLE SHOT INDUCTOR, AND, METHOD FOR THERMAL TREATMENT BY SINGLE SHOT INDUCTION | |
JP3045007B2 (en) | Method and apparatus for induction heating of metal plate | |
CN209443039U (en) | A kind of bracket bearing longitudinal direction heating quenching inductor | |
JPH0425834Y2 (en) | ||
JPS6345445B2 (en) | ||
JP4066652B2 (en) | Heat treatment method and apparatus for steel | |
JPH0514471Y2 (en) | ||
CN109777928B (en) | Locally-reinforced channel beam and manufacturing process thereof | |
JP2015080786A (en) | Heating method of steel plate | |
CN205874501U (en) | Excavator thrust wheel support roll way induction heating of portion frock | |
CN219079606U (en) | Plate strip soaking device | |
US4621794A (en) | Apparatus for producing a grain-oriented electromagnetic steel strip or sheet |