JPS60116725A - Continuous local heat treatment of steel pipe - Google Patents
Continuous local heat treatment of steel pipeInfo
- Publication number
- JPS60116725A JPS60116725A JP58176765A JP17676583A JPS60116725A JP S60116725 A JPS60116725 A JP S60116725A JP 58176765 A JP58176765 A JP 58176765A JP 17676583 A JP17676583 A JP 17676583A JP S60116725 A JPS60116725 A JP S60116725A
- Authority
- JP
- Japan
- Prior art keywords
- inductor
- heat treatment
- seam
- frequency heating
- inductors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/42—Induction heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/50—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は鋼管局部連続熱処理方法に関する。[Detailed description of the invention] The present invention relates to a method for local continuous heat treatment of steel pipes.
電縫管溶接ラインを用いて電縫管シーム部を焼純または
規準することは既に一般化されている。It has already become common to sinter or standardize an ERW tube seam using an ERW tube welding line.
このような上記溶接ラインにおける溶接装置の電力を仮
に600謂ぐらいと仮定すると、溶接能力にマツチング
する焼純能力を上記溶接装置に持たせるのには、約20
00 M程度の電力が必要となる。Assuming that the power of the welding equipment in the welding line is approximately 600 kW, it would take approximately 20 kW to give the welding equipment a sintering capacity that matches the welding capacity.
Approximately 0.00 M of power is required.
このため、上記溶接装置の焼純電力が非常に太きくなる
という問題がある。また電縫管の内外面の温度差を大き
くしないで、シーム部を特定温度以上に上げると、表面
の金属特性が低゛上するのは周知の仁とである。すなわ
ち、前記シーム部を1050℃以上にすると、金属の結
晶粒が粗大化して強度は低トし、また950℃以下にす
ると、靭性が回復しなくなるという問題もあった。For this reason, there is a problem in that the sintering power of the welding device becomes extremely large. Furthermore, it is well known that if the seam portion is raised to a certain temperature or higher without increasing the temperature difference between the inner and outer surfaces of the electric resistance welded tube, the metal properties of the surface will deteriorate. That is, when the temperature of the seam portion is raised to 1050°C or higher, the metal crystal grains become coarse and the strength is reduced, and when the temperature is set to lower than 950°C, there is a problem that the toughness is not recovered.
本発明は上記問題点の解決のためになされたものでs
’TiV縫管浴抜管浴接ラインて、シーム部の内外面の
温度差を所定値に保持させて該シーム部の金IQ特性の
劣化を招かないようにするとともに省電力化を可能とし
た鋼管局部連続熱処理方法を提供することを目的とする
。The present invention has been made to solve the above problems.
'TiV sewn pipe bathing pipe bathing line is a steel pipe that maintains the temperature difference between the inner and outer surfaces of the seam part at a predetermined value to prevent deterioration of the gold IQ characteristics of the seam part and saves power. The purpose of the present invention is to provide a local continuous heat treatment method.
以−ト、本発明の実施例を図面を参照して説明する。第
1図は本発明の実施例の構成を示す斜視図である。同図
において、/は肉厚が12g以上の電縫管で、図示矢印
λ方向に移送されている。3゜弘、jは焼純、規準用の
長さ400iWから1500鶏の誘導子で、これら誘導
子3.グ、jは所定の間隔を隔て直列に配列される。そ
の配列は電縫管/の所定部が銹導子間を通過するに要す
る時間(熱浸透時間)が5秒以上となるように設定され
る。mll熟熱浸透時間T)は次式で決定される。Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a perspective view showing the configuration of an embodiment of the present invention. In the figure, / is an electric resistance welded tube with a wall thickness of 12 g or more, which is being transported in the direction of the arrow λ shown in the figure. 3゜Hiro, J is a pure fired inductor, standard length 400iW to 1500mm, these inductors 3. The groups, j are arranged in series at predetermined intervals. The arrangement is set so that the time required for a predetermined portion of the electric resistance welded pipe to pass between the rust conductors (heat penetration time) is 5 seconds or more. ml ripening heat penetration time T) is determined by the following formula.
T ) 9.5X 10=X t’ 但し、tは管の肉厚である。T) 9.5X 10=Xt' However, t is the wall thickness of the tube.
前記のように配列された誘導子3.μ、Sには高周波イ
ンバータtと中周波インバータ7から所定の周波数の電
流が供給される。すなわち、誘導子3にはその入口にお
ける管/のシーム部の平均温度が600℃から700℃
になるまでは700 H2から8000 Hzの高周波
電流を供給し、誘導子μにはその入口における管/のシ
ーム部の平均温度が700℃から750℃になるまでは
800B(zから700H2の中周波電流を供給し、誘
導子Sには700H2から8000Hz の高周波電流
を供給するように前記インバータ6.7を設定する。Inductors arranged as described above3. A current of a predetermined frequency is supplied to μ and S from a high frequency inverter t and a medium frequency inverter 7. That is, the average temperature of the seam of the tube at the inlet of the inductor 3 is 600°C to 700°C.
A high frequency current of 700 H2 to 8000 Hz is supplied to the inductor μ until the average temperature at the seam of the tube at its entrance reaches 700°C to 750°C. The inverter 6.7 is set so as to supply the inductor S with a high frequency current of 700H2 to 8000Hz.
次に、電縫管シーム部についての計針シミュレーション
結果と実」リシミュレーション結釆との突き合わせによ
って、シミュレーションの精度をあげることができるよ
うになったので、前記誘導子に加える電流の周波数、誘
導子の導体幅について利1々の1llQ、シミュレーシ
ョンを行った結果を表1゜表2に示す。Next, we were able to improve the accuracy of the simulation by comparing the needle simulation results for the ERW pipe seam with the actual re-simulation knots. Tables 1 and 2 show the results of simulations conducted with respect to the width of the conductor.
表 1
表2
上記の結果から、誘導子の導体幅を挾<シ、誘導子に加
える電流の周波数を高くシ、誘導子のスタンド数を減す
ることによシ、トータル効率を上げ、コストを下げ得る
見通しがついた。以上の評価をふまえ、誘導子の配列を
加味して実験を行った結果を示す。第2図ないし第4図
はその実験結果を示すものである。なお、第2図から第
4図では誘導子を4個と6個を用いた例で実験したもの
である。Table 1 Table 2 From the above results, it is possible to increase total efficiency and reduce costs by narrowing the conductor width of the inductor, increasing the frequency of the current applied to the inductor, and reducing the number of inductor stands. There are prospects for a decline. Based on the above evaluation, the results of experiments were conducted taking into account the arrangement of the inductor. Figures 2 to 4 show the experimental results. In addition, in FIGS. 2 to 4, experiments were conducted using examples using four and six inductors.
第2図は、外径406絡、肉厚15.9鵡の電縫管に、
長す900111B+7)44子J/ 〜、?弘を夫k
1800e 、 1250Mm 。Figure 2 shows an electric resistance welded tube with an outer diameter of 406 mm and a wall thickness of 15.9 mm.
Length 900111B+7) 44 children J/ ~,? Hiromu is my husband
1800e, 1250Mm.
1450Mの間隔を保って直列に配設すると共に、各誘
導子J/〜3弘と電縫管とのギャップを?6語に設定し
た際において、誘導子37〜3ψに供給する加熱電力P
G(1&)、加熱電流の周波数f (、Hi ) 、誘
導子の導体幅W (m )を表8のように選定する外に
、加熱時間488sec、冷却時間6(6)とした場合
において、誘導子の電縫管軸方向の配設位置と電縫管シ
ーム部の外l111と内面との温度の関係を示す。Arrange them in series with an interval of 1450M, and keep a gap between each inductor J/~3hiro and the electric resistance welded tube. When set to 6 words, heating power P supplied to inductors 37 to 3ψ
In addition to selecting G(1&), the frequency f (, Hi) of the heating current, and the conductor width W (m) of the inductor as shown in Table 8, when the heating time is 488 sec and the cooling time is 6 (6), The relationship between the arrangement position of the inductor in the axial direction of the ERW tube and the temperature between the outside l111 and the inner surface of the ERW tube seam portion is shown.
第8図は、第2図の場合と相違するのは、fiI導子I
更らに設けると共に、誘導子3弘と35との間隔を1.
500111 に保ち、II導子31〜35に供給する
電力1周波数、および誘導子の導体幅を表4に示すよう
に選定した場合において、誘導子の電縫管軸方向の配設
位置と電縫溶接部の外面と内面との温度の関係を示す。The difference between FIG. 8 and FIG. 2 is that the fiI conductor I
In addition, the distance between the inductors 3 and 35 is set to 1.
500111, the frequency of the power supplied to the II conductors 31 to 35, and the conductor width of the inductor are selected as shown in Table 4, the arrangement position of the inductor in the axial direction of the ERW tube and the ERW Shows the temperature relationship between the outer and inner surfaces of the weld.
表 4
またjI4図はs jlIW 困と相違するのは、誘導
子37〜3弘に供給する電力1局波数および誘導子の導
体幅を表5に示すように−キ遥定した場合に、≧いて、
誘導子の電縫管軸方向の配設位置と電縫溶接部の外面と
内面との温度の関係を示す。Table 4 Also, the difference between Figure 4 and s jlIW is that when the number of waves per station of power supplied to inductors 37 to 3 and the conductor width of the inductor are determined as shown in Table 5, ≧ There,
The relationship between the position of the inductor in the axial direction of the electric resistance welded tube and the temperature between the outer surface and the inner surface of the electric resistance welded part is shown.
以上、第1ないし第3実験例から、次のことが明かとな
った。As described above, the following has become clear from the first to third experimental examples.
(11電縫管の外・内面の熱処理温度をi 、 ooo
℃と900℃とするのに、誘導子の導電体の幅を85語
かC)24s+sにすることによって、誘導子に加える
電力は、約2,200調から約1620&に減少できる
。(11 The heat treatment temperature for the outside and inside of the ERW pipe is i, ooo
C) and 900 degrees Celsius, the power applied to the inductor can be reduced from about 2,200 degrees to about 1620 degrees by making the inductor conductor width 85 words or C) 24s+s.
(2) 最終加熱誘導子の加熱直後のシーム部における
内外面の温度差を100℃におさえるためには、各誘導
子に加える電流の周波数は%l、000&、 1.00
0Hz 、 500Hz 、 LOOOHzの順序とす
るのがよい。。(2) In order to suppress the temperature difference between the inner and outer surfaces at the seam portion of the final heating inductor to 100°C immediately after heating, the frequency of the current applied to each inductor should be %l, 000&, 1.00.
The order is preferably 0Hz, 500Hz, and LOOOOHz. .
(3) 各誘導子5の加熱パターン線、電力投入後の浸
透時間を6秒程度としてシー五部内面の温度を非磁性と
なるまで上げ、しかる後圧、最終位置の誘導子の加熱は
1 m 000Hzで行うのが好ましい。 、
(4) 肉厚15.9ms、外径406鵡の電縫管を熱
処理速度I J3 m1mとした場合に、s、ooom
のスペース内に誘導子を4個設け、これら誘導子に供給
する重力を従来の約2,000 ESVから、 1.6
20KWに減少することができる。(3) Using the heating pattern wire of each inductor 5, the temperature of the inner surface of the five seams is raised until it becomes non-magnetic, with a penetration time of about 6 seconds after power is turned on, and after applying the appropriate pressure, the heating of the inductor at the final position is 1 Preferably, it is carried out at m 000 Hz. , (4) When an electric resistance welded tube with a wall thickness of 15.9 ms and an outer diameter of 406 mm is heat treated at a speed of I J3 m1 m, s, ooom
Four inductors are installed in a space of
It can be reduced to 20KW.
以上要するに本発明は、厚肉パイプの電縫管溶接ライン
において、複数個の誘導子をその導体幅を所定値に形成
して間隔をおいて直列に設け、前記誘導子に力11える
電流の周波数を次段誘導子入口におけるシーム部の平均
温度が600〜700℃になるまでは700〜B、00
01Jzとし、次いで上記シーム部の温度が700〜7
50℃になるまでは800〜700H2とし、それ以後
は再び700〜8 、000Hzとなるように設定した
ので、本発明は前記電縫管シーム部の内外面の温度差を
大きい値に保持して焼純。In summary, the present invention provides an electrical resistance welding line for thick-walled pipes, in which a plurality of inductors are formed to have a predetermined conductor width and are arranged in series at intervals, and a current that exerts a force of 11 on the inductor is provided. The frequency is set to 700-B,00 until the average temperature of the seam at the inlet of the next stage inductor reaches 600-700℃.
01Jz, then the temperature of the seam part is 700-7
The temperature was set to 800 to 700 H2 until the temperature reached 50°C, and thereafter it was set to 700 to 8,000 Hz again, so the present invention maintains the temperature difference between the inner and outer surfaces of the ERW tube seam at a large value. Burnt pure.
簡単することができ、しかも消費電力を低減できる効果
を奏する。It can be simplified and has the effect of reducing power consumption.
第1図は本発明実施例の構成を示す斜視図、第2図、第
3図および第4図は夫々第1実験例、第2実験例および
第3実験例における誘導子の電縫管軸方向の配設位置と
電縫管溶接部の外面と内面との温度の関係を示す図であ
る。
/・・・肉厚、−2・・・電縫管の移動方向、3.≠、
S・・・誘導子、2・−・高周波インバータ、7・・・
中周波インバータ。
手続補正書(n1
1.事件の表示
昭和68年特許願第176785号
2、発明の名称
鋼管局部連続熱処理方法
3、補正をする者
事件との関係 出願人
(610)株式会社 明 電 舎
4、代理人〒104
東京都中央区明石町1番29号 液済会ビル明細書全文
a 補正の内容
明細書全文を別紙のように補正する。
6;\
明 細 書
1、発明の名称
鋼管局部連続熱処理方法
2、特許請求の範囲
(1) シーム部を局部焼純、規準する電縫管熱処理た
ことを特徴とする鋼管局部連続熱処理方法。
処理方法。
600℃から700℃、中周波数の場合には700°C
か続熱処理方法。
a発明の詳細な説明
本発明は鋼管局部連続熱処理方法に関する。
電縫管熱処理ライン内で電縫管シーム部を焼、純または
規準することは既に一般化されている。このような上記
ラインにおいて、図示しない溶接装置の電力を仮にeo
o i@ぐらいと仮定すると、この溶接能力にマツチン
グする焼純または焼準能力を上記焼純または焼準装置に
持たせるのに紘、約2000KW程度の電力が必要とな
る。この是め、上記ライン中における焼純または焼準装
置のための電力が非常に大きくなるという問題がある。
特に重要なこと紘電縫管の内外面の温度差が大きくなら
ないようにしなければならない。例えばシーム部を特定
温度以上に上げると、表面の金属特性が低下するのは周
知のことである。すなわち、前記シー4部を106σC
以上にすると、金属の結晶粒が粗大化して強度は低下す
る。また950℃以下にすると、靭性が回復しなくなる
という問題もあった。
本発明は上記問題点の解決のためになされたもので、電
縫管熱処理ライン中の焼純または焼準装置において、シ
ーム部の内外面の温度差を所定値内に保持させて該シー
ム部の金属特性の劣化を招かないようにするとともに省
電力化を可能とした鋼管局部連続熱処理方法を提供する
ことを目的とする。
以下、本発明の実施例を図面を参照して説明する。第1
図は本発明の実施例の構成を示す彎視図である。同図に
おいて、/紘肉厚が12勝以上の電縫管で、図示矢印一
方向に移送されている。31弘、3は焼純、簡単用の長
さ400鰺から1500mの誘導子で、これら誘導子j
、Q、jは所定の間隔を隔て直列に配列される。その配
列は電縫管/の所定部が誘導子関を通過するに要する時
間(熱浸透時間)が6秒以上となるように設定される。
前記熱浸透時間(T)は次式で決定される。
” > a5 x 10−’ x 1;4但し、tは管
の肉厚である。
前記のように配列された誘導子3.弘、jには高周波イ
ンバータぶと中周波インバータ7から所定の周波数の電
流が供給される。すなわち、誘導子3には700HMか
ら800011tsの高周波電流を供給し、次段の誘導
子弘の入口における管lのシーム部の平均温度が600
℃から700°CKなるまでの加熱を行う。次に誘導子
ダには800Hzから700Hffiの中周波電流を供
給し、次段の誘導子Sの入口における管lのシーム部の
平均温度が700°Cから750℃になるまでの加熱を
行う。次に誘導子Sには700H2から8000 Hz
の高周波電流を供給するように前記インバータ4,7を
設定する。
次に、電縫管シーム部についての計算シミュレーション
結果と実測シミュレーション結果トの突き合わせによっ
て、シミュレーションの精度をあげることができるよう
になったので、前記誘導子に加える電流の周波数、誘導
子の導体幅について種々の計算シミュレ−7ヨンを行っ
た結果を表1゜表2に示す。
表1
表2゜
上記の結果から、誘導子の導体1[1c挾く1誘導子に
加える電流の周波数を高くシ、誘導子のスタンド数を減
することによ)、トータル効率を上げ、コストを下げ得
る見通しがついた。以上の評価をふまえ、誘導子の配列
を加味して実験を行った結果を示す。第2図ないし第4
図はその実験結果を示すものである。なお、第2図から
第4図では誘導子を4個と5個を用いた例で実験したも
のである。
第2図は、外径406ss、肉厚15.911B (7
)電縫管に、長さ9oomo誘導子3/−3Gヲ夫k
13QQl11 、1250se+1450wkの間隔
を保って直列に配設すると共に、各誘導子31〜341
−と電縫管とのギャップを’Z5julに設定した際に
おいて、誘導子37〜3弘に供給する加熱電力PG(1
@)?加熱電流の周波数f(H2)、誘導子の導体幅w
(soi)を表3のように選定する外に、加熱時間48
8 sec +冷却時間6secとした場合において、
誘導子の電縫管軸方向の配設位置と電縫管シーム部の外
面と内面との温度の関係を示す。
〔以下余白y
表8
第8図は、第2図の場合と相違するのは、誘導子3Sを
更らに設けると共に、誘導子JIAと35との間隔をL
500 mに保ち、誘導子31〜35に供給する電力1
周波数、および誘導子の導体幅を表4に示すように選定
した場合において、誘導子の電縫管軸方向の配役位置と
電縫溶接部の外面と内面との温度の関係を示す。
〔以下余白〕
表4
また第4図は、第2図と相違するのは、誘導子31〜3
弘に供給する電力2周波数および誘導子の導体幅を表5
に示すように選定した場合において、誘導子の電縫管軸
方向の配設位置と電縫溶接部の外面と内面との温度の関
係を示す。
〔以下余白〕
表6
以上、第1ないし第8実験例から、次のことが明かとな
った。
(1) 電縫管の外・内面の熱処理温度を1.00σC
と900℃とするのに、誘導子の導電体の幅を85鰯か
ら24111にすることによって、誘導子に加える電力
は、約2200 Nから約1620 ff K減少でき
る。
(2) 最終加熱誘導子の加熱直後のシーム部における
内外面の温度差を100℃におさえるためには、各誘導
子に加える電流の周波数は、 1,000血。
1.000 Hz 、 500 H1l!、 1,00
0 HI3 の順序とするのがよい。
(3) 各誘導子への加熱パターン社、電力投入後の熱
浸透時間(誘導子関の通過時間)を5秒程度としてシー
ム部内面の温度を非磁性となるまで下げ、しかる後に、
最終位置の誘導子の加熱はLOOOHz で行うのが好
ましい。
(4) 肉厚15.9語、外径406−の電縫管を熱処
理速度13 m/m とした場合に、8ρ00mBのス
ペース内に誘導子を4個設け、これら誘導子に供給する
電力を従来の約2000KWから、 162師に減少す
ることができる。
なお、シーム部に配列される誘導子の数は3ケ所に限定
されるものではない。
以上要するに本発明拡、肉厚パイプの電縫管軸方向ライ
ンにおいて、複数個の誘導子をその導体幅を所定値に形
成して間隔をおいて直列に設け、前記誘導子に加える電
流の周波数を次段誘導子入口におけるシーム部の平均温
度が600〜700℃になるまではTOO〜8000
Hzとし、次iで次段誘導子入口における上記シーム部
のi!lltが700〜750°Cになるまでは800
〜700Hgとし、それ以後は再び700〜8000
Hzとなるように設定したので、本発BA娘前記電縫管
シーム部の内外面の温度差を小さい値に保持して焼純、
焼準することができ、しかも消費電力を低減できる効果
を奏する。
生図面の簡単な説明
第1図は本発嘔譬−成を示す斜視図、IK2図第8図お
よび#I4図は夫々第1実験例、第2実験例および第8
実験例における誘導子の電縫管軸方向の配設位置と電縫
管溶接部の外面と内面との温度の関係を示す図である。
/・・・電縫管、2・・・電縫管の移動方向、3.ダ。
S・・・誘導子、6・・・高周波インバータ、7・・・
中周波インバータ。
焼鈍」と補正する。
(7) 同省第5頁第4行目に記載の「600°Cから
700°C」を「600℃〜700°C」と補正する。
(8) 同書同頁第7行目に記載の[700″Cから7
50 Jを「700°C〜760」と補正する。
(9) 回書第9頁の表4に記載の「((社)2200
Jを「(計)2,200−Jと補正する。
αQ 同書第10頁の表6に記載の「(株)2,0OO
Jを「(計) 2,000 Jと補正する。
aυ 同書第10頁第6行目に記載の「下げ」を「上げ
」と補正する。
(2) 同書同頁第14行目に記載の「所に」を「また
は4ケに」と補正する。
(至)同書第12頁に記載の「焼純」を「焼鈍」と補正
する。
〔別 紙〕
(1) シーム部を局部焼鈍、簡単する電縫管熱処理ラ
インにおいて、複数個の誘導子を前記シーム部位に配設
してシーム部位を所定温度に加熱し、これら誘導子に供
給する周波数を高周波、中周波及び高周波の順に電縫管
の移送方向に沿って設定したことを特徴とする鋼管局部
連続熱処理方法。
(2)高周波数は700Hgから8000 Hzに、中
周波数は800 Hzから700 Hzに設定したこと
を特徴とする特許請求の範囲第1項に記載の鋼管局部連
続熱処理方法。
口におけるシーム部位の平均温度が700’0〜範囲第
1項に記載の鋼管局部連続熱処理方法。
(4)誘導子はその導体幅を24116から85111
に設定した特許請求の範囲第1項に記載の鋼管局部連続
熱処理方法。
手続補正書(方式)
%式%
2、発明の名称
鋼管局部連続熱処理方法
3、補正をする者
事件との関係 出願人
(610)株式会社 明 電 舎
4、代理人〒104
東京都中央区明イコ町1番29−J 拾済会ビル電話0
3(545)2251(代表)
昭和59年1−2月18日
幣補正の対象
昭和59年11月8日付提出の手続補正書の補正の内容
の欄。
7補正の内容
(1) 昭和59年11月8日付提出の手続補正書の第
8頁第14行目から第15行目に記載のr (/3)同
書第12頁に記載の・・・補正する。」t−r(/J)
同書第12頁第10行目に記載の「焼純Jt−r焼鈍」
と補正する。」と靜正する0
以上FIG. 1 is a perspective view showing the configuration of an embodiment of the present invention, and FIGS. 2, 3, and 4 are ERW tube axes of inductors in the first, second, and third experimental examples, respectively. FIG. 3 is a diagram showing the relationship between the arrangement position in the direction and the temperature between the outer surface and the inner surface of the welded portion of the electric resistance welded pipe. /...wall thickness, -2...movement direction of the ERW tube, 3. ≠,
S...Inductor, 2...High frequency inverter, 7...
Medium frequency inverter. Procedural amendment (n1 1. Indication of the case Patent Application No. 176785 of 1988 2, Name of the invention Localized continuous heat treatment method for steel pipes 3, Person making the amendment Relationship to the case Applicant (610) Meidensha Co., Ltd. 4, Agent Address: 1-29 Akashi-cho, Chuo-ku, Tokyo, 104 Full text of the specification a Contents of amendment Amend the full text of the specification as shown in the attached sheet. 6; Heat Treatment Method 2, Claims (1) A continuous local heat treatment method for a steel pipe, characterized in that the seam portion is locally sintered and subjected to standard electric resistance welded pipe heat treatment. Treatment method: 600°C to 700°C, medium frequency. is 700°C
Continuous heat treatment method. a Detailed Description of the Invention The present invention relates to a method for local continuous heat treatment of steel pipes. It has already become common to burn, clean, or standardize the ERW tube seam in the ERW tube heat treatment line. In such the above-mentioned line, it is assumed that the electric power of the welding device (not shown) is
Assuming that the welding capacity is approximately 2,000 kW, approximately 2000 kW of power is required to make the sintering or normalizing device have a sintering or normalizing capacity that matches this welding capacity. The problem with this is that the electric power required for the sintering or normalizing device in the line becomes very large. It is particularly important to ensure that the temperature difference between the inner and outer surfaces of the ERW pipe does not become large. For example, it is well known that when a seam portion is heated above a certain temperature, the metallic properties of the surface deteriorate. That is, the 4th part of the sea is 106σC
If the temperature exceeds the limit, the crystal grains of the metal become coarse and the strength decreases. There was also a problem that if the temperature was lower than 950°C, the toughness would not recover. The present invention has been made to solve the above-mentioned problems, and is used in a sintering or normalizing device in an ERW pipe heat treatment line to maintain the temperature difference between the inner and outer surfaces of the seam within a predetermined value. The purpose of the present invention is to provide a method for localized continuous heat treatment of steel pipes that does not cause deterioration of the metal properties of steel pipes and enables power saving. Embodiments of the present invention will be described below with reference to the drawings. 1st
The figure is a curvature view showing the configuration of an embodiment of the present invention. In the figure, an electric resistance welded pipe with a wall thickness of 12 or more is being transported in one direction indicated by the arrow. 31 Hiroshi, 3 is a pure inductor with a length of 400 m to 1500 m for simple use, and these inductors J
, Q, j are arranged in series at predetermined intervals. The arrangement is set so that the time required for a predetermined portion of the electric resistance welded pipe to pass through the inductor barrier (heat penetration time) is 6 seconds or more. The heat penetration time (T) is determined by the following equation. `` > a5 x 10-' x 1; 4, where t is the wall thickness of the tube. In other words, a high frequency current of 700HM to 800011ts is supplied to the inductor 3, and the average temperature of the seam part of the tube l at the entrance of the next stage inductor is 600HM.
Heating is performed from ℃ to 700℃. Next, a medium frequency current of 800 Hz to 700 Hffi is supplied to the inductor DA, and heating is performed until the average temperature of the seam portion of the tube 1 at the entrance of the next stage inductor S becomes 700° C. to 750° C. Next, the inductor S has a frequency of 700H2 to 8000Hz.
The inverters 4 and 7 are set to supply a high frequency current of . Next, by comparing the calculation simulation results and the actual measurement simulation results for the ERW tube seam, we were able to improve the accuracy of the simulation. The results of various calculation simulations are shown in Tables 1 and 2. Table 1 Table 2゜From the above results, it can be seen that inductor conductor 1 [by increasing the frequency of the current applied to 1 inductor per inductor and reducing the number of inductor stands], the total efficiency can be increased and the cost can be increased. There are prospects for a decline in the Based on the above evaluation, the results of experiments were conducted taking into account the arrangement of the inductor. Figures 2 to 4
The figure shows the experimental results. In addition, in FIGS. 2 to 4, experiments were conducted using examples using four and five inductors. Figure 2 shows an outer diameter of 406ss and a wall thickness of 15.911B (7
) In the ERW tube, length 9oomo inductor 3/-3G
13QQl11, arranged in series with an interval of 1250se+1450wk, and each inductor 31 to 341
When the gap between the
@)? Heating current frequency f (H2), inductor conductor width w
(soi) as shown in Table 3, heating time 48
In the case of 8 sec + cooling time 6 sec,
The relationship between the position of the inductor in the axial direction of the ERW tube and the temperature between the outer surface and the inner surface of the ERW tube seam portion is shown. [Margin below y Table 8 Figure 8 is different from Figure 2 in that an additional inductor 3S is provided and the distance between the inductors JIA and 35 is set to L.
Power 1 maintained at 500 m and supplied to inductors 31 to 35
When the frequency and the conductor width of the inductor are selected as shown in Table 4, the relationship between the position of the inductor in the axial direction of the electric resistance welded tube and the temperature between the outer surface and the inner surface of the electric resistance welded part is shown. [Margins below] Table 4 Also, Fig. 4 differs from Fig. 2 in the inductors 31 to 3.
Table 5 shows the two frequencies of power supplied to Hiro and the conductor width of the inductor.
The relationship between the position of the inductor in the axial direction of the electric resistance welded tube and the temperature of the outer and inner surfaces of the electric resistance welded part is shown in the following figure. [Margins below] Table 6 The following has become clear from the first to eighth experimental examples. (1) The heat treatment temperature for the outside and inside of the ERW pipe is 1.00σC.
and 900° C., the power applied to the inductor can be reduced from about 2200 N to about 1620 ff K by changing the width of the conductor of the inductor from 85 mm to 24111 mm. (2) In order to suppress the temperature difference between the inner and outer surfaces of the final heating inductor at the seam immediately after heating to 100°C, the frequency of the current applied to each inductor must be 1,000°C. 1.000 Hz, 500 H1l! , 1,00
The order is preferably 0 HI3. (3) Heating pattern for each inductor After power is turned on, the heat penetration time (passage time through the inductor barrier) is set to about 5 seconds to lower the temperature of the inner surface of the seam until it becomes non-magnetic.
Preferably, heating of the inductor in the final position is performed at LOOOOHz. (4) When an electric resistance welded tube with a wall thickness of 15.9 mm and an outer diameter of 406 mm is heat treated at a speed of 13 m/m, four inductors are installed in a space of 8 ρ00 mB, and the power supplied to these inductors is The power consumption can be reduced from the conventional approximately 2000KW to 162KW. Note that the number of inductors arranged in the seam portion is not limited to three. In summary, in the axial direction line of the electric resistance welded pipe of the present invention, a plurality of inductors are formed in a predetermined conductor width and are arranged in series at intervals, and the frequency of the current applied to the inductors is TOO~8000℃ until the average temperature of the seam at the inlet of the next stage inductor reaches 600~700℃.
Hz, then i of the seam at the inlet of the next stage inductor at i! 800 until llt reaches 700-750°C
~700Hg, then again 700~8000
Hz, so the temperature difference between the inner and outer surfaces of the ERW tube seam section was kept at a small value and the sintering was carried out.
It is possible to standardize and also has the effect of reducing power consumption. Brief explanation of the raw drawings Figure 1 is a perspective view showing the actual production, and Figure IK2, Figure 8, and Figure #I4 are the first experimental example, the second experimental example, and the eighth experimental example.
FIG. 7 is a diagram showing the relationship between the arrangement position of the inductor in the axial direction of the electric resistance welded tube and the temperature between the outer surface and the inner surface of the welded portion of the electric resistance welded tube in an experimental example. /... ERW pipe, 2... Movement direction of the ERW pipe, 3. Da. S...Inductor, 6...High frequency inverter, 7...
Medium frequency inverter. Corrected as "annealing". (7) "600°C to 700°C" stated in the 4th line of page 5 of the same Ministry is corrected to "600°C to 700°C." (8) [700″C to 7 stated in the 7th line of the same page of the same book]
50 J is corrected to "700°C to 760". (9) “(Company) 2200” listed in Table 4 on page 9 of the circular
Correct J to 2,200-J (total). αQ 2,000-J
J is corrected to 2,000 J (total). (2) "Where" written on the 14th line of the same page of the same book is amended to read "or in four places." (To) "Hardened pure" described on page 12 of the same book is corrected to "annealed". [Attachment] (1) In an electric resistance welded tube heat treatment line where the seam is locally annealed and simplified, a plurality of inductors are placed at the seam, the seam is heated to a predetermined temperature, and the seam is supplied to the inductors. 1. A method for localized continuous heat treatment of steel pipes, characterized in that the frequencies for heating are set in the order of high frequency, medium frequency and high frequency along the transport direction of the ERW pipe. (2) The method for local continuous heat treatment of steel pipes according to claim 1, characterized in that the high frequency is set from 700 Hg to 8000 Hz, and the medium frequency is set from 800 Hz to 700 Hz. 2. The method for localized continuous heat treatment of a steel pipe according to item 1, wherein the average temperature of the seam portion at the mouth is in the range of 700'0 to 700'0. (4) The conductor width of the inductor is from 24116 to 85111
A method for localized continuous heat treatment of a steel pipe according to claim 1 set forth in claim 1. Procedural amendment form (method) % formula % 2. Name of the invention Steel pipe local continuous heat treatment method 3. Person making the amendment Relationship to the case Applicant (610) Meidensha Co., Ltd. 4, Agent address: 104 Akira, Chuo-ku, Tokyo Ikocho 1-29-J Jusaikai Building Telephone 0
3 (545) 2251 (Representative) Subject of January-February 18, 1980 amendments Column for the content of amendments to the procedural amendment submitted on November 8, 1980. 7. Contents of the amendment (1) r stated in page 8, lines 14 to 15 of the procedural amendment submitted on November 8, 1980 (/3) As stated in page 12 of the same document... to correct. "tr(/J)
"Annealed pure Jt-r" described in page 12, line 10 of the same book
and correct it. ” and calmly corrected 0 or more
Claims (1)
て、複数個の誘導子を直列に所定の間隔をおいて前記シ
ーム部位に配設する□と共に、これら各誘導子の導体幅
を所定値に形成し、かつこれら誘導子に供給する周波数
を、第1段誘導千人口におけるシーム部位の平均温度が
600℃から700℃になるまでは700 IIL5か
ら8000 *w とし、次いで。 第2段誘導千人口におけるシーム部位の平均温度が70
0℃から750℃になるまでは800 Hzから700
Hzとし、以後誘導子の周波数を再び700〜8000
Hmとなるように設定したことを特徴とする鋼管局部連
続熱処理方法。[Claims] In an electric resistance welding pipe welding line for locally sintering and standardizing a seam part, a plurality of inductors are arranged in series at a predetermined interval at the seam part, and each of these inductors is The conductor width of is formed to a predetermined value, and the frequency supplied to these inductors is set from 700 IIL5 to 8000 *w until the average temperature of the seam part in the first stage induction population reaches from 600°C to 700°C, Next. The average temperature of the seam part in the 2nd stage induction 1,000 population is 70
From 800 Hz to 700 from 0℃ to 750℃
Hz, and then set the inductor frequency to 700-8000 again.
1. A method for localized continuous heat treatment of steel pipes, characterized by setting the temperature so that Hm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58176765A JPS60116725A (en) | 1983-09-24 | 1983-09-24 | Continuous local heat treatment of steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58176765A JPS60116725A (en) | 1983-09-24 | 1983-09-24 | Continuous local heat treatment of steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60116725A true JPS60116725A (en) | 1985-06-24 |
JPS6345445B2 JPS6345445B2 (en) | 1988-09-09 |
Family
ID=16019422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58176765A Granted JPS60116725A (en) | 1983-09-24 | 1983-09-24 | Continuous local heat treatment of steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60116725A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62149190U (en) * | 1986-03-12 | 1987-09-21 | ||
EP1365035A1 (en) * | 2002-05-07 | 2003-11-26 | SAG Energieversorgungslösungen GmBH | Method of maintaining the steel lattice work of high tension masts |
JP2009097059A (en) * | 2007-10-19 | 2009-05-07 | Jfe Steel Corp | High-efficiency heat treatment method for electric resistance welded steel pipe |
WO2010002269A1 (en) * | 2008-06-30 | 2010-01-07 | Efd Induction As | In-line weld seam heat treatment method and apparatus with internal selective heating of the welded joint |
WO2011021396A1 (en) | 2009-08-21 | 2011-02-24 | 住友金属工業株式会社 | Method for manufacturing thick-walled seamless steel pipe |
CN105886748A (en) * | 2016-05-27 | 2016-08-24 | 燕山大学 | Online induction annealing device applied to super thick steel pipe subjected to weld joint submerged arc welding |
CN113263070A (en) * | 2021-05-21 | 2021-08-17 | 上海飞挺管业制造有限公司 | Tee branch port heating forming process and heating device for tee pipe fitting |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4860037A (en) * | 1971-12-02 | 1973-08-23 | ||
JPS5652974A (en) * | 1979-10-05 | 1981-05-12 | Nec Corp | Special reproducing device |
-
1983
- 1983-09-24 JP JP58176765A patent/JPS60116725A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4860037A (en) * | 1971-12-02 | 1973-08-23 | ||
JPS5652974A (en) * | 1979-10-05 | 1981-05-12 | Nec Corp | Special reproducing device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62149190U (en) * | 1986-03-12 | 1987-09-21 | ||
JPH0514472Y2 (en) * | 1986-03-12 | 1993-04-16 | ||
EP1365035A1 (en) * | 2002-05-07 | 2003-11-26 | SAG Energieversorgungslösungen GmBH | Method of maintaining the steel lattice work of high tension masts |
JP2009097059A (en) * | 2007-10-19 | 2009-05-07 | Jfe Steel Corp | High-efficiency heat treatment method for electric resistance welded steel pipe |
WO2010002269A1 (en) * | 2008-06-30 | 2010-01-07 | Efd Induction As | In-line weld seam heat treatment method and apparatus with internal selective heating of the welded joint |
WO2011021396A1 (en) | 2009-08-21 | 2011-02-24 | 住友金属工業株式会社 | Method for manufacturing thick-walled seamless steel pipe |
US8845830B2 (en) | 2009-08-21 | 2014-09-30 | Nippon Steel & Sumitomo Metal Corporation | Method of manufacturing heavy-wall seamless steel pipe |
CN105886748A (en) * | 2016-05-27 | 2016-08-24 | 燕山大学 | Online induction annealing device applied to super thick steel pipe subjected to weld joint submerged arc welding |
CN113263070A (en) * | 2021-05-21 | 2021-08-17 | 上海飞挺管业制造有限公司 | Tee branch port heating forming process and heating device for tee pipe fitting |
Also Published As
Publication number | Publication date |
---|---|
JPS6345445B2 (en) | 1988-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60116725A (en) | Continuous local heat treatment of steel pipe | |
EP3051539A1 (en) | High-frequency wire and high-frequency coil | |
JPH11233247A (en) | Induction heating coil and induction heating device using the induction heating coil | |
US2349569A (en) | Processing of metal strip | |
EP2900036B1 (en) | High-frequency induction heating device and processing device | |
JP5861831B2 (en) | Steel plate heating device | |
KR100362814B1 (en) | An induction heater with a unit for preventing generation of sparks | |
US2437776A (en) | Electric induction furnace for continuously heating metal strip | |
JPH04147596A (en) | Induction heating of metallic thin plate | |
JP2002043042A (en) | Single-turn induction heating coil | |
JP3045007B2 (en) | Method and apparatus for induction heating of metal plate | |
JP2000042610A (en) | Plate stock rolling device | |
JPS6033315A (en) | Heat treatment of pipe line | |
JPS59222525A (en) | Method for annealing iron core material for electric apparatus | |
KR830005378A (en) | Manufacturing method of ferritic stainless steel sheet or strip and product manufactured by the above method | |
JP2007324009A (en) | Heating arrangement of metal strip excellent in uniformity of temperature in strip width direction | |
SU998537A1 (en) | Method for local induction heating of products | |
JPS6046321A (en) | Manufacture of seam welded pipe | |
JP6135876B2 (en) | Steel plate heating method and heating apparatus | |
JPS6147884B2 (en) | ||
GB2064582A (en) | Low-carbon electrical sheet steel | |
JPS62287019A (en) | Method and apparatus for applying oscillation to traveling metallic sheet without contact | |
JPH1076372A (en) | Device for preheating open tube edge | |
JPH08302431A (en) | Electric heating device | |
JPS60200910A (en) | Continuous heat treatment of metallic bar |