JPH0514367B2 - - Google Patents
Info
- Publication number
- JPH0514367B2 JPH0514367B2 JP61214375A JP21437586A JPH0514367B2 JP H0514367 B2 JPH0514367 B2 JP H0514367B2 JP 61214375 A JP61214375 A JP 61214375A JP 21437586 A JP21437586 A JP 21437586A JP H0514367 B2 JPH0514367 B2 JP H0514367B2
- Authority
- JP
- Japan
- Prior art keywords
- contact
- layer
- reed
- rhodium
- life
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010949 copper Substances 0.000 claims description 27
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 21
- 229910052802 copper Inorganic materials 0.000 claims description 15
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- 235000014676 Phragmites communis Nutrition 0.000 description 24
- 239000010948 rhodium Substances 0.000 description 15
- 229910052703 rhodium Inorganic materials 0.000 description 13
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 13
- 238000009792 diffusion process Methods 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910000889 permalloy Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910020598 Co Fe Inorganic materials 0.000 description 1
- 229910002519 Co-Fe Inorganic materials 0.000 description 1
- 229910001313 Cobalt-iron alloy Inorganic materials 0.000 description 1
- 244000089486 Phragmites australis subsp australis Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
Landscapes
- Contacts (AREA)
Description
【発明の詳細な説明】
〔概要〕
気密管の中に封入される接点が、銅とニツケル
を含みさらに鉄とコバルトの一方または双方を含
み形成されてなること、長寿命化と製造コストの
低減を実現したものである。[Detailed Description of the Invention] [Summary] A contact sealed in an airtight tube is formed containing copper and nickel, and further contains one or both of iron and cobalt, thereby extending life and reducing manufacturing costs. This has been realized.
本発明は、リードスイツチ等に利用する封入接
点に関する。
The present invention relates to encapsulated contacts for use in reed switches and the like.
一般に、一対のリード片にそれぞれ設けた接点
を不活性ガスと共にガラス管に封入し、該接点が
適宜の間隔で重なるように対向するリードスイツ
チは、大気中の塵埃や有害ガス、湿度等に影響さ
れないため信頼性が高く、リードスイツチに永久
磁石等の駆動手段を組み合わせたリードリレー
は、電磁リレーより小型、軽量であり、かつ、高
速動作する利点を有する。 Generally, a reed switch has a pair of reeds with contacts placed on each reed piece sealed in a glass tube together with an inert gas, and the reed switches face each other so that they overlap at appropriate intervals. Reed relays, which combine a reed switch with a driving means such as a permanent magnet, have the advantage of being smaller, lighter, and faster operating than electromagnetic relays.
かかるリードスイツチにおいて、従来の接点に
は接触抵抗を安定化し開離特性をシヤープにする
ためロジウムを使用していたが、製造コストを安
くするためにロジウムの層を薄くすると、ロジウ
ム特有の深さ方向への消耗によつて接点寿命が短
く、接点を長寿命化するためロジウムの層を厚く
すると、製造コストが高くなるという欠点があつ
た。 In conventional reed switches, rhodium is used in the contacts to stabilize the contact resistance and sharpen the opening characteristics, but when the rhodium layer is made thinner to reduce manufacturing costs, The contact life is short due to directional wear, and if the rhodium layer is made thicker to extend the life of the contact, the manufacturing cost increases.
そこで、安定な接触抵抗とシヤープな開離特性
が得られ、しかも長期化された接点の寿命と共
に、低価格化を実現したリードスイツチの実現が
望まれていた。 Therefore, it has been desired to create a reed switch that has stable contact resistance and sharp opening characteristics, has a longer contact life, and is lower in price.
第5図は従来の封入接点利用例であるリードス
イツチを示す側断面図イと、そのリード片の接点
部を示す拡大側断面図ロである。
FIG. 5 is a side sectional view (a) showing a reed switch, which is an example of the use of a conventional encapsulated contact, and an enlarged side sectional view (b) showing the contact portion of the lead piece.
第5図イにおいて、リードスイツチ1はガラス
管3の両端にそれぞれリード片2の中間部を封着
し、ガラス管3の中央に各リード片2の接点部4
が適宜の間隔で重なるように対向する。 In FIG. 5A, the reed switch 1 has the intermediate portions of the reed pieces 2 sealed to both ends of the glass tube 3, and the contact portions 4 of each reed piece 2 at the center of the glass tube 3.
face each other so that they overlap at appropriate intervals.
第5図ロにおいて、磁性材料(例えばNiを52
%含む52アロイ)からなるリード片2の接点部4
は、例えば板状に潰し形成したのち、Au層5を
下地としロジウム層6を被着してなる接点7を形
成する。ここでAu層5は、ロジウム層6が磁性
材料との密着性に劣るためであり、かつ、ロジウ
ム層6の被着に際し母材(磁性材料)が腐食され
ないように図示の如く、ロジウム層6の被着領域
より広い範囲に被着する必要がある。 In Figure 5B, magnetic material (for example, Ni is 52
Contact part 4 of lead piece 2 made of 52% alloy)
For example, after crushing into a plate shape, a contact 7 is formed by covering an Au layer 5 as a base and a rhodium layer 6. Here, the Au layer 5 is formed because the rhodium layer 6 has poor adhesion with the magnetic material, and in order to prevent the base material (magnetic material) from being corroded when the rhodium layer 6 is attached, the rhodium layer 6 is formed as shown in the figure. It is necessary to coat a wider area than the coating area of .
長寿命と低コストを目指した従来の封入接点
は、寿命とコストとが相反関係であり、コストを
安くするためロジウム層を薄くすると、ロジウム
特有の消耗によつて寿命が低下し、長寿命にする
ためロジウム層を厚くすると、高コストになると
いう問題点があつた。
Conventional encapsulated contacts, which aim for long life and low cost, have a trade-off between life and cost. If the rhodium layer is made thinner to reduce costs, the life will be reduced due to the wear and tear peculiar to rhodium, making it impossible to achieve long life. Therefore, if the rhodium layer was made thicker, there was a problem in that the cost would be high.
本発明は上記問題点の除去を目的とし、本発明
をリードスイツチに適用した第1図によれば、気
密管12の中に封入される接点15が、銅とニツ
ケルを含みさらに鉄とコバルトの一方または双方
を含み形成されてなることを特徴とし、
さらには、接点15が銅を20wt%〜70wt%含
んで形成されてなることを特徴とする。
The present invention aims to eliminate the above problems, and according to FIG. 1, in which the present invention is applied to a reed switch, the contact 15 sealed in the airtight tube 12 contains copper and nickel, and further contains iron and cobalt. The contact 15 is characterized by being formed containing one or both of them, and further characterized by being formed by containing 20wt% to 70wt% of copper.
上記手段によれば、接点が銅とニツケルとを含
み、さらに冷融着防止効果のある酸化物を作る鉄
とコバルトの少なくとも一方を含む構成であり、
そのことでインラツシユ開閉電流および通常の開
閉電流を改善し高電流値に起こるバウンス現象
(熱的バウンス)を抑制することにより、従来の
ものより安価、長寿命の封入接点が得られた。
According to the above means, the contact includes copper and nickel, and further includes at least one of iron and cobalt, which form an oxide having an effect of preventing cold fusion.
This improved the in-rush switching current and normal switching current and suppressed the bounce phenomenon (thermal bounce) that occurs at high current values, resulting in an encapsulated contact that is cheaper and has a longer life than conventional ones.
以下に、図面を用いて本発明の実施例による封
入接点を説明する。
Hereinafter, encapsulated contacts according to embodiments of the present invention will be explained with reference to the drawings.
第1図は本発明による接点を具えたリードスイ
ツチの側断面図イと、そのリード片の接点部を示
す拡大側断面図ロである。 FIG. 1 is a side sectional view (A) of a reed switch equipped with a contact according to the present invention, and an enlarged side sectional view (B) showing a contact portion of a reed piece thereof.
第1図において、リードスイツチ11はガラス
管12の両端にそれぞれリード片13の中間部を
封着し、ガラス管12の中央に各リード片13の
接点部14が適宜の間隔で重なるように対向して
なる。 In FIG. 1, the reed switch 11 has the intermediate parts of the reed pieces 13 sealed to both ends of the glass tube 12, and the contact parts 14 of each reed piece 13 facing the center of the glass tube 12 so as to overlap at appropriate intervals. It will be done.
磁性材料(パーマロイやコバルト−鉄合金)か
らなるリード片13の接点部14は、例えば板状
に潰し形成したのち、接点15を形成してなる。 The contact portion 14 of the lead piece 13 made of a magnetic material (permalloy or cobalt-iron alloy) is formed by crushing it into a plate shape, for example, and then forming the contact point 15 thereon.
接点15は、銅(Cu)とニツケル(Ni)と鉄
(Fe)または、CuとNiとコバルト(Co)或いは、
CuとNiとFeとCoからなる合金層または拡散層で
ある。 The contact 15 is made of copper (Cu), nickel (Ni), and iron (Fe), or Cu, Ni, and cobalt (Co), or
It is an alloy layer or a diffusion layer consisting of Cu, Ni, Fe, and Co.
そこで、合金層の接点15は合金薄板のクラツ
ドまたは、スパツタリングで形成可能であり、拡
散層の接点15は所要の合金層を被着または、所
要の金属層をめつき、スパツタリング、等で積層
したのち拡散処理、例えば不活性雰囲気中で、
900℃、15分間加熱する拡散処理により形成可能
である。 Therefore, the contact point 15 of the alloy layer can be formed by cladding a thin alloy plate or by sputtering, and the contact point 15 of the diffusion layer can be formed by depositing a desired alloy layer or by laminating a desired metal layer by plating, sputtering, etc. Afterwards, a diffusion treatment, e.g. in an inert atmosphere,
It can be formed by a diffusion process of heating at 900°C for 15 minutes.
なお、拡散処理を利用した接点15において、
リード片13にCo−Fe合金を使用したときは、
CuとNiの合金層またはCuとNiの積層(例えば厚
さ1.8μmのCu層と厚さ1.3μmのNi層)を形成し拡
散処理すると、接点15はCu、Ni、Fe、Coの拡
散層であり、リード片13にパーマロイの一種で
ある52アロイを使用したときは、CuとNiの合金
層またはCuとNiの積層を形成し拡散処理すると、
接点15はCu、Ni、Feの拡散層になる。 In addition, at the contact point 15 using diffusion processing,
When using Co-Fe alloy for the lead piece 13,
When an alloy layer of Cu and Ni or a laminated layer of Cu and Ni (for example, a 1.8 μm thick Cu layer and a 1.3 μm thick Ni layer) is formed and diffused, the contact 15 is formed by a diffusion layer of Cu, Ni, Fe, and Co. When 52 alloy, a type of permalloy, is used for the lead piece 13, if an alloy layer of Cu and Ni or a stacked layer of Cu and Ni is formed and diffused,
The contact point 15 becomes a diffusion layer of Cu, Ni, and Fe.
次いで、本発明をリードスイツチに適用した接
触抵抗特性と粘着特性および寿命特性につき、第
2図〜第4図を用いて説明する。 Next, the contact resistance characteristics, adhesive characteristics, and life characteristics of a reed switch to which the present invention is applied will be explained using FIGS. 2 to 4.
第2図は本発明の実施例に係わる拡散接点の
Cu濃度と接触抵抗との関係を示す図、第3図は
該拡散接点のCu濃度と磁歪粘着との関係を示す
図、第4図は該拡散接点と従来のロジウム(Rh)
接点の寿命を比較した図である。 FIG. 2 shows a diffusion contact according to an embodiment of the present invention.
Figure 3 shows the relationship between Cu concentration and contact resistance. Figure 4 shows the relationship between Cu concentration and magnetostrictive adhesion of the diffusion contact. Figure 4 shows the relationship between the diffusion contact and conventional rhodium (Rh).
FIG. 3 is a diagram comparing the lifespan of contacts.
第2図において、横軸はCu濃度(wt%)、縦軸
は接触抵抗(mΩ)であり、接点接触抵抗特性A
はCu濃度が減少すると上昇し、Cu濃度が20wt%
以下では急激に増大する。 In Figure 2, the horizontal axis is the Cu concentration (wt%), the vertical axis is the contact resistance (mΩ), and the contact resistance characteristic A
increases as the Cu concentration decreases, and when the Cu concentration is 20wt%
It increases rapidly below.
第3図において、横軸はCu濃度(wt%)、縦軸
は開放値の変化率(%)であり、接点磁歪粘着特
性BはCu濃度が70wt%以下で比較的安定してい
るが、Cu濃度が80wt%以上で急激に悪化する。 In Figure 3, the horizontal axis is the Cu concentration (wt%), and the vertical axis is the rate of change in the open value (%), and the contact magnetostrictive adhesive property B is relatively stable when the Cu concentration is below 70 wt%. It deteriorates rapidly when the Cu concentration exceeds 80wt%.
第4図において、横軸は接点開閉動作回数、縦
軸は累積故障率(%)であり、接点の負荷条件は
12Vdc−5mA抵抗負荷である。そして、本発明
による拡散接点の特性Cは、従来のRh接点の特
性Dの10倍以上の長寿命になつている。 In Figure 4, the horizontal axis is the number of contact opening/closing operations, the vertical axis is the cumulative failure rate (%), and the contact load conditions are
It is a 12Vdc-5mA resistive load. Characteristic C of the diffusion contact according to the present invention has a lifespan more than 10 times longer than characteristic D of the conventional Rh contact.
以上説明したように本発明による封入接点は、
貴金属を使用しないことで安価となり、かつ、消
耗がフラツトになつて長寿命であるため、リード
スイツチ等に利用し低価格化と長寿命化を実現し
得た効果がある。
As explained above, the encapsulated contact according to the present invention is
Because it does not use precious metals, it is inexpensive, and wears out evenly and has a long life, so it can be used in reed switches, etc., resulting in lower prices and longer life.
第1図は本発明による接点を具えたリードスイ
ツチと該接点の側断面図、第2図は本発明の実施
例に係わる接点のCu濃度と接触抵抗との関係図、
第3図は本発明の実施例に係わる接点のCu濃度
と磁歪粘着との関係図、第4図は本発明の実施例
に係わる接点と従来のロジウム接点の寿命比較
図、第5図は従来の封入接点利用例であるリード
スイツチと該接点の側断面図、である。
図中において、11はリードスイツチ、12は
ガラス(気密)管、14は接点部、15は接点、
を示す。
FIG. 1 is a side sectional view of a reed switch equipped with a contact according to the present invention and the contact; FIG. 2 is a relationship between Cu concentration and contact resistance of a contact according to an embodiment of the present invention;
Fig. 3 is a relationship diagram between Cu concentration and magnetostrictive adhesion of the contact according to the embodiment of the present invention, Fig. 4 is a life comparison diagram of the contact according to the embodiment of the present invention and a conventional rhodium contact, and Fig. 5 is a diagram of the conventional rhodium contact. 2 is a side sectional view of a reed switch and the contact, which is an example of the use of an encapsulated contact. In the figure, 11 is a reed switch, 12 is a glass (airtight) tube, 14 is a contact part, 15 is a contact,
shows.
Claims (1)
とニツケルを含みさらに鉄とコバルトの一方また
は双方を含み形成されてなること、を特徴とする
封入接点。 2 前記接点15が銅を20wt%〜70wt%含んで
形成されてなることを特徴とする、前記特許請求
の範囲第1項記載の封入接点。[Scope of Claims] 1. An enclosed contact characterized in that the contact 15 enclosed in the hermetic tube 12 is formed of copper and nickel, and further contains one or both of iron and cobalt. 2. The encapsulated contact according to claim 1, wherein the contact 15 is formed containing 20 wt% to 70 wt% copper.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61214375A JPS6369111A (en) | 1986-09-11 | 1986-09-11 | Sealed contact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61214375A JPS6369111A (en) | 1986-09-11 | 1986-09-11 | Sealed contact |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6369111A JPS6369111A (en) | 1988-03-29 |
JPH0514367B2 true JPH0514367B2 (en) | 1993-02-24 |
Family
ID=16654744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61214375A Granted JPS6369111A (en) | 1986-09-11 | 1986-09-11 | Sealed contact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6369111A (en) |
-
1986
- 1986-09-11 JP JP61214375A patent/JPS6369111A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6369111A (en) | 1988-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5981090A (en) | Pins for electronic assemblies | |
US4161403A (en) | Composite electrical contact material of Ag-alloy matrix and internally oxidized dispersed phase | |
JPH0514367B2 (en) | ||
JPS607328B2 (en) | Composite electrical contact using Ag-SnO alloy | |
US5846655A (en) | Electrical layer contact element and method for manufacturing same | |
JPS58745B2 (en) | electrical contact materials | |
CN220138212U (en) | Reed relay and reed structure thereof | |
JPH0748329B2 (en) | Electrical contact | |
JPS625522A (en) | Metal material for switch | |
US3177329A (en) | Unitary magnetizable electric contacts | |
JPS6326908A (en) | Lead switch | |
JPH0340455B2 (en) | ||
JPH0570247B2 (en) | ||
JPH01130431A (en) | Electric contact point | |
JPH0548333Y2 (en) | ||
JPH06325650A (en) | Combination electric contact and relay and switch | |
JPH01128320A (en) | Manufacture of electric contact | |
JPH05159656A (en) | Reed switch | |
JPS5871513A (en) | Reed switch | |
JPH01260726A (en) | Manufacture of lead switch | |
JPS595659B2 (en) | Fukugoden Kisetsu Tenzairiyou | |
JPH02216721A (en) | Manufacture of electric contact point | |
JPS5810338A (en) | Method of producing lead piece for lead switch | |
JPH0371522A (en) | Electric contact material and manufacture thereof | |
JPS5885224A (en) | Lead switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |