JPH0514204Y2 - - Google Patents

Info

Publication number
JPH0514204Y2
JPH0514204Y2 JP1986101997U JP10199786U JPH0514204Y2 JP H0514204 Y2 JPH0514204 Y2 JP H0514204Y2 JP 1986101997 U JP1986101997 U JP 1986101997U JP 10199786 U JP10199786 U JP 10199786U JP H0514204 Y2 JPH0514204 Y2 JP H0514204Y2
Authority
JP
Japan
Prior art keywords
welding
signal
bead
comparator
defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986101997U
Other languages
Japanese (ja)
Other versions
JPS638650U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986101997U priority Critical patent/JPH0514204Y2/ja
Publication of JPS638650U publication Critical patent/JPS638650U/ja
Application granted granted Critical
Publication of JPH0514204Y2 publication Critical patent/JPH0514204Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Duplication Or Marking (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 この考案は溶接中の溶接欠陥を光線で捉えオン
ラインで検出し、その欠陥位置を自動的にマーキ
ング可能にした溶接欠陥検出マーキング装置に関
するものである。
[Detailed description of the invention] <Industrial field of application> This invention relates to a welding defect detection and marking device that captures welding defects during welding using a beam of light, detects them online, and is capable of automatically marking the defect location. be.

〈従来の技術及びその問題点〉 溶接後の欠陥検査手段として、従来は主として
溶接終了後の、X線検査、超音波探傷が採用され
ている。
<Prior art and its problems> Conventionally, X-ray inspection and ultrasonic flaw detection are mainly used after welding is completed as means for inspecting defects after welding.

第3図において溶接構造物1にMIG溶接を施
こし、この溶接ビード4の中に第4図に示すよう
なブローホール18や、融合不良19を検出する
場合、超音波センサ16,17を図3に示すよう
に位置し、溶接ビード4をまたいで45度の斜角探
傷が行なわれ、溶接ビード線に沿つて探傷が行な
われていた。
In FIG. 3, when performing MIG welding on the welded structure 1 and detecting a blowhole 18 or fusion failure 19 as shown in FIG. 4 in the weld bead 4, ultrasonic sensors 16 and 17 are 3, flaw detection was performed at a 45-degree angle across the weld bead 4, and flaw detection was performed along the weld bead line.

JISに定めた許容値以上の欠陥が認められれば、
ただちに削り取り再溶接の補修が行なわれてい
た。
If a defect exceeding the tolerance specified by JIS is found,
Repairs by scraping and rewelding were carried out immediately.

このために第4図に示すような箇所に欠陥が存
在するとドリリングやグラインダなどにより溶接
ビード部を切削し、欠陥を除去した後、補修溶接
を施こし、応力除去焼鈍を行なうなどの無駄作業
を伴うことにより不経済であり、かつ溶接補修箇
所の品質低下はある程度まぬがれなかつた。
For this reason, if a defect exists in a location as shown in Figure 4, the weld bead is cut using a drill or grinder, the defect is removed, repair welding is performed, and stress relief annealing is performed, which is unnecessary work. This is uneconomical, and a certain degree of quality deterioration at the welded repair area is unavoidable.

〈考案の目的〉 この考案の目的は、前記した従来技術の欠点を
なくすため、溶接中のオンライン欠陥検出を行な
おうとするものである。
<Purpose of the invention> The purpose of the invention is to perform on-line defect detection during welding in order to eliminate the drawbacks of the prior art described above.

厚板構造物へ溶接ビードをMIG溶接法により
多層盛溶接する際、1ビードを置く毎に溶接欠陥
探傷を赤外光を用いて監視し、溶接欠陥を内在さ
せることなく、溶接作業を行なう装置を提案する
ものである。
When performing multi-layer welding of weld beads on thick plate structures using the MIG welding method, this device uses infrared light to monitor welding defects every time a bead is placed, and performs welding work without introducing any welding defects. This is what we propose.

〈手段の概要〉 この考案は光フアイバーで可視光線と別に設け
た赤外線専用の光フアイバーにより溶接直後のビ
ードの放射光線を受け入れ、それを電気信号に変
え、記憶と指令を出す装置に送り欠陥あるビード
を検出し、電磁石を有するマーキング装置に送り
オンラインで欠陥部に沿うマーカライン上にテン
ピルでマークしておき以後の欠陥除去作用を容易
ならしめているいる装置である。
〈Summary of the means〉 This invention uses an optical fiber for infrared rays, which is separate from the visible rays, to receive radiation from the bead immediately after welding, converts it into an electrical signal, and sends it to a device that stores and issues commands. This device detects the bead, sends it to a marking device with an electromagnet, and marks the marker line along the defective part with a template online to facilitate subsequent defect removal.

要するにこの考案は、加熱された被検物の欠陥
を幅射光線を使用し検出し処置する装置におい
て、進行中の溶接ビードの発する可視光線を光電
変換し基準のA信号として比較器に送る装置と、
前記ビードの発する赤外線のみを検知するサーモ
ビジヨンにより前記比較器にB信号として送る装
置と、前記A信号とB信号の電圧差が規定値を越
えるときその位置をマーキングするマーキング装
置に信号を発する装置とを溶接装置に接続して設
けることを特徴とする溶接欠陥検出マーキング装
置である。
In short, this device is a device that uses beams of light to detect and treat defects in a heated test object.It is a device that photoelectrically converts visible light emitted by a welding bead in progress and sends it to a comparator as a reference A signal. and,
a device that uses thermovision to detect only infrared rays emitted by the bead and sends it to the comparator as a B signal; and a device that sends a signal to a marking device that marks the position when the voltage difference between the A signal and the B signal exceeds a specified value. This is a welding defect detection and marking device characterized in that it is connected to a welding device.

〈作用〉 赤外波長域(波長800nm以上)で減衰の少ない
赤外専用の多芯光フアイバー群で溶接ビード全面
を探傷し、ビード表層の微小温度変化をサーモビ
ジヨンで(例えばAGEMAサーモビジヨン82。
ナツク株式会社製)逐次測定し、アーク点の基準
温度と比較し、比較器で設定した欠陥評価温度範
囲をはずれた時点で、マーカ信号を発生し、ビー
ド側面にマーキングする機能を持たせた溶接のオ
ンライン欠陥検出装置に関するものである。
<Operation> The entire surface of the weld bead is detected using a group of infrared-specific multicore optical fibers with low attenuation in the infrared wavelength region (wavelengths of 800 nm or more), and minute temperature changes on the bead surface are detected using thermovision (for example, AGEMA Thermovision 82).
Natsuku Co., Ltd.) Welding with a function that measures the temperature one after another, compares it with the reference temperature at the arc point, and generates a marker signal to mark the side of the bead when the temperature exceeds the defect evaluation temperature range set by the comparator. The present invention relates to an online defect detection device.

〈実施例〉 この考案の一実施例を第1図に示す。溶接構造
物1にMIG溶接法で多層盛溶接する状況を模式
的に示している。
<Example> An example of this invention is shown in FIG. A situation in which multilayer welding is performed on welded structure 1 using the MIG welding method is schematically shown.

溶接ヘツド2に取付けられた溶接ノズル3先端
部の溶接ワイヤ10に溶接電源から電流を通電し
溶接構造物1との間にアークを発生させながら
MIG溶接がなされる。
A current is applied from the welding power source to the welding wire 10 at the tip of the welding nozzle 3 attached to the welding head 2 while generating an arc between it and the welding structure 1.
MIG welding is done.

アーク発生時に水素、窒素ガスや、錆などが混
入すると溶接ビード4において溶融金属冷却過程
で逃げ遅れた空気が気泡を形成し固化する、いわ
ゆるブローホールが発生する。このブローホール
18は第4図に示すようにビード置きする毎に層
間(通常4〜6m/m)の間に生じる。また開先
側面には融合不良19も発生することがあり、い
ずれも、溶接構造物に、この種の欠陥が内在する
と重大事故につながる溶接欠陥として恐れられて
いる。
When hydrogen, nitrogen gas, rust, etc. are mixed in when an arc occurs, a so-called blowhole occurs in the weld bead 4, where air that has not escaped during the molten metal cooling process forms bubbles and solidifies. As shown in FIG. 4, this blowhole 18 occurs between layers (usually 4 to 6 m/m) each time a bead is placed. In addition, fusion defects 19 may also occur on the side surfaces of the groove, and these are feared as welding defects that can lead to serious accidents if such defects are present in the welded structure.

この考案は、上記した欠陥を1ビードを置くた
びにオンライン監視する装置に関するもので、以
下第1図、第2図により詳細に説明する。
This invention relates to a device for online monitoring of the above-mentioned defects every time one bead is placed, and will be explained in detail below with reference to FIGS. 1 and 2.

第2図において、溶接ヘツド2のアームに取付
けた光フアイバー8でアーク点直後のビード表面
可視光を検知し光電変換器11に伝送する。光電
変換器11では光量の強さに比例した電圧に変換
するもので、光電変換し比較器14への入力信号
とする。このアーク発生点直後のビード表面温度
は、適正溶接条件で溶接される場合、電極先端部
と光フアイバー8の距離間が一定であれば、ほと
んど変化することがなく、常に一定の可視光が得
られ、これを基準温度に相当する電圧として比較
器14のA信号とする。
In FIG. 2, an optical fiber 8 attached to the arm of the welding head 2 detects visible light on the bead surface immediately after the arc point and transmits it to a photoelectric converter 11. The photoelectric converter 11 converts the light into a voltage proportional to the intensity of the amount of light.The photoelectric converter 11 converts the light into a voltage proportional to the intensity of the amount of light, and outputs the photoelectric conversion as an input signal to the comparator 14. When welding is performed under appropriate welding conditions, the bead surface temperature immediately after the arc generation point will hardly change as long as the distance between the electrode tip and the optical fiber 8 is constant, and a constant visible light can always be obtained. This is used as the A signal of the comparator 14 as a voltage corresponding to the reference temperature.

一方、溶接ヘツドから100m/m隔てた位置に
赤外専用フアイバ(多芯3〜5芯)でビード4の
全面をカバーする範囲で赤外域波長(800nm〜
1μm)の成分のみ検知しサーモビジヨン13に入
力する、多芯フアイバーを用いるため、例えば3
芯で3視野測光する場合は3セツトのサーモビジ
ヨンが必要(安価にする場合は3信号を高速スキ
ヤニングする機構を内蔵させることによりサーモ
ビジヨンを1台にすることも技術的に可能)であ
る。
On the other hand, at a position 100m/m away from the welding head, a dedicated infrared fiber (3 to 5 multi-core fibers) is installed to cover the entire surface of the bead 4.
Since a multicore fiber is used that detects only components with a diameter of 1μm and inputs it to the thermovision 13, e.g.
Three sets of thermovisions are required to perform photometry in three fields with a core (to reduce the cost, it is technically possible to use only one thermovision unit by incorporating a mechanism for high-speed scanning of three signals).

サーモビジヨン13は800nm〜1μmの波長範囲
をカバーでき、波長分解能5nmで計測することが
可能である。
The thermovision 13 can cover a wavelength range of 800 nm to 1 μm and can perform measurements with a wavelength resolution of 5 nm.

サーモビジヨンからの出力は次の比較器14の
B信号として入力し、先に述べた基準温度A信号
と逐次比較し、正常溶接条件で求められた基準温
度設定値を上下にはずれた場合にのみ、C信号を
発生し、このC信号により、電磁ソレノイド7が
駆動される。この電磁ソレノイドはバネ系で通常
は上側へ引上げられた状態にあるが、C信号が入
力されると電磁力により下方へ引下げる動作が可
能である。
The output from the thermovision is input as the B signal of the next comparator 14, and it is successively compared with the reference temperature A signal mentioned above, and only if the reference temperature set value determined under normal welding conditions is higher or lower than the reference temperature set value, A C signal is generated, and the electromagnetic solenoid 7 is driven by this C signal. This electromagnetic solenoid is a spring type and is normally pulled upward, but when a C signal is input, it can be pulled downward by electromagnetic force.

この電磁ソレノイドの先端に溶接時の予熱温度
管理に使われるテンピル(商品名:着色塑材30℃
ピツチで約30種 70℃〜800℃範囲のものがある)
を取付け、ビード側面に着色させるようにした。
The tip of this electromagnetic solenoid is TEMPIL (product name: colored plastic material 30℃) used for preheating temperature control during welding.
Approximately 30 types of pituchi (with temperatures ranging from 70℃ to 800℃)
I installed it and colored the side of the bead.

このようにして、欠陥発生と同時に、溶接構造
物1のビード側面にオンラインで欠陥位置を自動
的にマーキングすることが可能である。
In this way, it is possible to automatically mark the defect position online on the bead side surface of the welded structure 1 at the same time as the defect occurs.

上記した装置を、実際の狭開先MIG溶接に適
用すると、従来手段では、最終溶接終了後に非破
壊検査を行ない、溶接欠陥が見つかると、グライ
ンダあるいはドリルで切削し、補修溶接を施こす
ことになる。ボイラヘツダ、原子炉圧力容器等の
極厚構造物にこのような溶接欠陥が一旦発生する
と、その補修作業は数十日におよび、補修溶接箇
所の品質低下はまぬがれない。また、補修に伴う
熱処理(焼戻し作業、非破壊検査のやり直し)作
業等の無駄作業が伴う。
When the above-mentioned device is applied to actual narrow-gap MIG welding, with conventional means, a non-destructive inspection is performed after the final welding is completed, and if a welding defect is found, it is cut with a grinder or drill and repair welding is performed. Become. Once such a welding defect occurs in an extremely thick structure such as a boiler header or a reactor pressure vessel, the repair work will take several tens of days, and the quality of the repaired welded area will inevitably deteriorate. In addition, repairs involve wasteful work such as heat treatment (tempering work, redoing non-destructive testing).

この考案を実施することにより、狭開先MIG
溶接法による極厚構造物の多層盛溶接を施こす
際、初層ビードから最終ビードの全溶接工程を連
続監視することにより、溶接欠陥が全く無いこと
を確認しながら多層盛溶接を施こすことができる
ため、従来法のような、補修に伴う後戻り作業が
皆無になるなどの利点がある。
By implementing this idea, narrow gap MIG
When carrying out multi-layer welding of extremely thick structures using the welding method, by continuously monitoring the entire welding process from the initial bead to the final bead, we can perform multi-layer welding while confirming that there are no welding defects. This method has the advantage of eliminating the need for back-up work associated with repairs, which is required with conventional methods.

〈効果〉 この考案を実施することにより従来技術では溶
接終了後でなければ非破壊検査が実施できなかつ
たが、本発明を適用すると、溶接作業と併行して
逐次非破壊検査が行なわれ、溶接欠陥を各層間溶
接段階で検知できるため、高品質な溶接が可能と
なり、製作工数の低減、溶接構造物の信頼向上、
消エネルギ化が計れるなどの効果がある。
<Effects> By implementing this invention, in the conventional technology, non-destructive inspection could not be performed until after welding was completed, but by applying the present invention, non-destructive inspection can be carried out sequentially in parallel with welding work, and welding Since defects can be detected at each interlayer welding stage, high-quality welding is possible, reducing manufacturing man-hours, improving the reliability of welded structures,
It has the effect of being able to measure energy consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案にかかる装置の斜視図、第2
図はその制御回路を示す装置の側面図、第3図は
従来の超音波利用の欠陥検出を示す斜視図、第4
図は溶接欠陥のブローホール、融合不良の模式に
示す溶接部の部分断面斜視図である。 2……溶接ヘツド、3……溶接ノズル、4……
溶接ビード、5……マーカライン、6……テンピ
ル、7……電磁ソレノイド、8……光フアイバ
ー、9……赤外線専用フアイバー、14……比較
器(記憶と指令信号を出す装置)。
Figure 1 is a perspective view of the device according to this invention, Figure 2 is a perspective view of the device according to this invention;
The figure is a side view of the device showing its control circuit, Figure 3 is a perspective view showing conventional defect detection using ultrasonic waves, and Figure 4 is a side view of the device showing its control circuit.
The figure is a partial cross-sectional perspective view of a welded part schematically showing welding defects such as blowholes and poor fusion. 2... Welding head, 3... Welding nozzle, 4...
Welding bead, 5... Marker line, 6... Tenpil, 7... Electromagnetic solenoid, 8... Optical fiber, 9... Infrared dedicated fiber, 14... Comparator (device for storing and issuing command signals).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 加熱された被検物の欠陥を輻射光線を使用し検
出し処置する装置において、進行中の溶接ビード
の発する可視光線を光電変換し基準のA信号とし
て比較器に送る装置と、前記ビードの発する赤外
線のみを検知するサーモビジヨンにより前記比較
器にB信号として送る装置と、前記A信号とB信
号の電圧差が規定値を越えるときその位置をマー
キングするマーキング装置に信号を発する装置と
を溶接装置に接続して設けることを特徴とする溶
接欠陥検出マーキング装置。
A device for detecting and treating defects in a heated test object using radiant light, comprising: a device for photoelectrically converting visible light emitted by a welding bead in progress and sending it to a comparator as a reference A signal; A welding device includes a device that sends a B signal to the comparator using thermovision that detects only infrared rays, and a device that sends a signal to a marking device that marks the position when the voltage difference between the A signal and the B signal exceeds a specified value. A welding defect detection marking device characterized in that it is connected and provided.
JP1986101997U 1986-07-04 1986-07-04 Expired - Lifetime JPH0514204Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986101997U JPH0514204Y2 (en) 1986-07-04 1986-07-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986101997U JPH0514204Y2 (en) 1986-07-04 1986-07-04

Publications (2)

Publication Number Publication Date
JPS638650U JPS638650U (en) 1988-01-20
JPH0514204Y2 true JPH0514204Y2 (en) 1993-04-15

Family

ID=30973243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986101997U Expired - Lifetime JPH0514204Y2 (en) 1986-07-04 1986-07-04

Country Status (1)

Country Link
JP (1) JPH0514204Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359993U (en) * 1989-10-13 1991-06-12
JP4526281B2 (en) * 2004-03-03 2010-08-18 恒 奥原 ERW weld defect detection device
JP6484695B1 (en) * 2017-12-27 2019-03-13 株式会社新来島どっく Ship block joint welding defect marking method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182692A (en) * 1974-10-29 1976-07-20 Sumitomo Metal Ind Kohanno netsukankizutanchisochi
JPS5227551A (en) * 1975-08-27 1977-03-01 Kogyosha Tsushin Kiki Seisak Polarized solenoid
JPS58124938A (en) * 1982-01-22 1983-07-25 Ebara Corp Flaw detector by infrared ray detection
JPS60211344A (en) * 1984-04-05 1985-10-23 Japan Sensaa Corp:Kk Peeling detecting device of sticking body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568045U (en) * 1978-11-01 1980-05-10

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182692A (en) * 1974-10-29 1976-07-20 Sumitomo Metal Ind Kohanno netsukankizutanchisochi
JPS5227551A (en) * 1975-08-27 1977-03-01 Kogyosha Tsushin Kiki Seisak Polarized solenoid
JPS58124938A (en) * 1982-01-22 1983-07-25 Ebara Corp Flaw detector by infrared ray detection
JPS60211344A (en) * 1984-04-05 1985-10-23 Japan Sensaa Corp:Kk Peeling detecting device of sticking body

Also Published As

Publication number Publication date
JPS638650U (en) 1988-01-20

Similar Documents

Publication Publication Date Title
Sun et al. Sensor systems for real-time monitoring of laser weld quality
JP5743711B2 (en) Welding system and welding method
JP3603843B2 (en) Laser welding quality monitoring method and apparatus
JP3560135B2 (en) Quality monitoring method for YAG laser welds
US4663513A (en) Method and apparatus for monitoring laser processes
US6060685A (en) Method for monitoring laser weld quality via plasma light intensity measurements
CN106404835B (en) A kind of infrared relevant thermal wave imaging system and the detection method based on the system
Park et al. Analysis of mechanism of plasma and spatter in CO2 laser welding of galvanized steel
JP2006510490A (en) Laser spot welding method and apparatus
Zhang et al. Relationship between weld quality and optical emissions in underwater Nd: YAG laser welding
JPH0514204Y2 (en)
WO2018185973A1 (en) Laser processing monitoring method and laser processing monitoring device
CN115041811A (en) Water-guided laser penetration recognition device and method based on spectrum recognition
Valdiande et al. On-line monitoring and defect detection of arc-welding via plasma optical spectroscopy and LIBS
TWI836145B (en) Method for detecting the operating condition of an optical element arranged along a propagation path of a laser beam of a machine for processing a material and a laser processing machine provided with system for carrying out said method
JP6385763B2 (en) Laser welding apparatus and laser welding method
JP4210560B2 (en) Laser welding monitoring method and laser welding monitoring apparatus
JP2000135583A (en) Laser light collector
JPH01181989A (en) Laser welding equipment
JPS59151046A (en) Inside defect detecting method
JPS62118994A (en) Quality inspecting instrument for laser butt welding
GB2185816A (en) Ultrasonic weld monitoring
Miyamoto et al. Properties of the plasma plume in CO2 laser welding of thin sheets: an analytical approach to laser welding (Report 1)
CN218036420U (en) Melt immersion probe and online detection device based on LIBS technology
Valdiande Gutiérrez et al. On-line monitoring and defect detection of arc-welding via plasma optical spectroscopy and LIBS