WO2018185973A1 - Laser processing monitoring method and laser processing monitoring device - Google Patents

Laser processing monitoring method and laser processing monitoring device Download PDF

Info

Publication number
WO2018185973A1
WO2018185973A1 PCT/JP2017/042882 JP2017042882W WO2018185973A1 WO 2018185973 A1 WO2018185973 A1 WO 2018185973A1 JP 2017042882 W JP2017042882 W JP 2017042882W WO 2018185973 A1 WO2018185973 A1 WO 2018185973A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
output signal
sensor output
laser
light
Prior art date
Application number
PCT/JP2017/042882
Other languages
French (fr)
Japanese (ja)
Inventor
淳 梁瀬
雄祐 西崎
Original Assignee
株式会社アマダミヤチ
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダミヤチ, 株式会社アマダホールディングス filed Critical 株式会社アマダミヤチ
Priority to JP2019511061A priority Critical patent/JPWO2018185973A1/en
Publication of WO2018185973A1 publication Critical patent/WO2018185973A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/22Spot welding

Definitions

  • the present invention relates to a laser processing monitoring method and a monitoring apparatus used for monitoring laser processing performed by irradiating a workpiece with pulsed laser light and melting the workpiece with laser energy. More specifically, the present invention relates to a laser processing monitoring method and a monitoring apparatus that enable simple and appropriate monitoring of the influence of various factors related to the processing characteristics of laser processing.
  • Monitoring at the time of laser processing can be broadly divided into a method for monitoring the output of laser light before being incident on the workpiece, and the state of the processing location after the laser light is incident on the workpiece. There is a way to do it.
  • a method for monitoring the state of the latter processing part there are a method of directly observing the processing part itself by a method such as continuous imaging of the processing part, image analysis and monitoring, and heat and light generated at the processing part.
  • a method of monitoring the amount of infrared rays from the workpiece a method of monitoring the temperature of the surface of the workpiece, a method of monitoring the sound during processing of the workpiece, and the like.
  • the homogeneity and strength of the welded joint line (seam), groove gap, bead shape, weld pool and keyhole shape, weld surface temperature, bead surface defects, penetration depth It is an object to recognize or predict the processing characteristics related to the welding quality such as.
  • the monitoring method based on image analysis using an image sensor directly observes the shape of the weld pool as an image, and thus has an advantage of easily grasping the quality of welding quality at a glance, but is expensive in hardware and software.
  • the monitoring method that performs signal processing of plasma light generated in the vicinity of the machining location is strongly influenced by the shielding gas that is injected into the workpiece location, and accurately reflects the machining effect on the workpiece. There is a problem that it is difficult to say.
  • the monitoring method that processes the reflected light from the workpiece using a photoelectric conversion element can make hardware and software relatively simple, but the reflected light from the workpiece is processed into the workpiece. In principle, it includes simple reflected light of the laser beam before the influence occurs, that is, the laser beam before the workpiece is melted. Therefore, the influence of various factors related to the processing characteristics of laser processing is appropriately monitored. There is a problem that it is difficult.
  • Infrared radiation from the weld bead is signal-processed by converting the radiation energy into a temperature correlation value by an infrared radiation thermometer incorporating a photoelectric conversion element and displaying the intensity, but converted into a temperature correlation value.
  • the method of monitoring the sound during welding is a method of detecting and displaying the sound generated from the work site by an acoustic element, but there is a problem that external noise can be detected.
  • Patent Document 2 It has also been proposed to detect the emission intensity of a specific wavelength in the visible light from the molten pool and determine the welding state based on the detected emission intensity.
  • the method of monitoring radiated light including infrared light is a method of displaying radiant thermometer by converting the radiated light generated near the processing point into a temperature correlation value in signal processing using photoelectric conversion elements. Yes, it can be determined whether the workpiece has melted by comparing the measured temperature with the melting point, but it is impossible to capture even the subtle behavior or dynamic change of the melted part, which affects the processing effect on the workpiece. When trying to monitor closely, accuracy and reliability are low.
  • the intensity of the detected radiated light is converted into temperature on the device side and displayed.
  • the method of converting the temperature of synchrotron radiation has the merit that it is easy for the user to intuitively grasp the state of the processed part, but the energy amount actually related to the processed part increases exponentially with respect to the temperature. It is difficult for the user to grasp the fluctuation of energy related to the workpiece near the melting point of the workpiece, and it is difficult to monitor the influence of various factors related to the machining characteristics in a simple and accurate manner, especially in micro laser machining. Met.
  • the infrared light emitted from the part to be processed will generate a lot of noise components, especially when the metal melts.
  • the present invention solves the above-described problems of the prior art, and provides a laser processing monitoring method and a laser monitoring apparatus that enable simple and accurate monitoring of laser processing involving melting of a metal workpiece.
  • the laser processing monitoring method of the present invention is a laser processing monitoring method that involves irradiating a metal workpiece with a laser beam and causing the workpiece to melt, wherein the workpiece is irradiated during the laser beam irradiation.
  • a first step of receiving radiated light generated from near the processing point and photoelectrically converting radiated light in a predetermined wavelength band included in the radiated light to generate an analog sensor output signal representing the intensity of the radiated light A second step, a third step of converting the waveform of the sensor output signal into digital waveform data without impairing the intensity change, and visualizing and displaying the waveform of the sensor output signal based on the waveform data.
  • a fourth step is a laser processing monitoring method that involves irradiating a metal workpiece with a laser beam and causing the workpiece to melt, wherein the workpiece is irradiated during the laser beam irradiation.
  • the laser processing monitoring device of the present invention is a laser monitoring device for irradiating a metal workpiece with laser light to monitor laser processing accompanied by melting of the workpiece, and during the irradiation of the laser light Receiving the radiated light generated near the processing point of the workpiece, photoelectrically converting the radiated light in a predetermined wavelength band included in the radiated light, and outputting an analog sensor output signal representing the intensity of the radiated light.
  • the waveform of the sensor signal representing the intensity of the radiated light in a predetermined wavelength band included in the radiated light generated from the vicinity of the processing point of the metal workpiece during laser processing is visualized without losing the intensity change. Since it is displayed, it is possible to perform simple and accurate monitoring of the processing state of laser processing, the quality of processing, and the like from the displayed waveform itself.
  • the laser processing monitoring method or the laser processing monitoring apparatus of the present invention it is possible to easily and accurately monitor laser processing that involves melting of a metal workpiece to be welded by the configuration and operation as described above. .
  • FIG. 1 shows the overall configuration of a laser processing apparatus incorporating a laser processing monitoring apparatus according to an embodiment of the present invention.
  • This laser processing apparatus irradiates a given workpiece W with CW laser light or pulsed laser light LB, and melts the workpiece W with laser energy to perform desired laser processing or laser melting processing.
  • And includes a laser oscillator 10, a laser power source 12, a control unit 14, a guide light generation unit 15, transmission optical fibers 16 and 17, a head 18, an operation panel 20, and a monitor unit 25.
  • the monitor unit 25 is a laser monitoring apparatus in this embodiment, and mainly includes the control unit 14, the operation panel 20, the sensor signal processing unit 22, the sensor unit 26 of the head 18, and the like.
  • the laser oscillator 10 is composed of, for example, a YAG laser, a fiber laser, or a semiconductor laser.
  • power or an excitation signal is supplied from the laser power source 12 under the control of the control unit 14.
  • the supplied laser beam oscillates and outputs a laser beam LB having a wavelength specific to the medium.
  • the laser beam LB oscillated and output by the laser oscillator 10 is transmitted to the head 18 through the optical fiber 16.
  • the head 18 has two cylindrical units, that is, a lower emission unit 24 and an upper sensor unit 26 that are coaxially connected in two vertical stages, and is installed or arranged, for example, directly above the workpiece W. Is done.
  • the emission unit 24 is optically connected to the laser oscillator 10 via the transmission optical fiber 16, and a collimator lens 28, a dichroic mirror 30, an optical lens 32, and a protective glass 34 are provided at predetermined positions in the unit. ing.
  • the laser beam LB propagating through the optical fiber 16 exits in the horizontal direction with a certain spread angle from the end surface of the optical fiber 16 in the emission unit 24, passes through the collimating lens 28, and becomes parallel light.
  • the optical path is bent vertically downward by the dichroic mirror 30, passes through the optical lens 32, and converges and enters the vicinity of the processing point P of the metal workpiece W. Then, the vicinity of the processing point P is melted and solidified by the laser energy of the laser beam LB, and a weld nugget and a weld joint is formed there.
  • the weld joint is optional, such as a butt joint, a T-shaped joint, an L-shaped joint, or a lap joint, and is selected by the user.
  • the sensor unit 26 is optically connected to the guide light generating unit 15 via the transmission optical fiber 17, and a dichroic mirror 36, an optical lens 38, an infrared sensor 40, and an amplifier 42 are provided in the unit.
  • a wavelength filter or a band-pass filter 44 that transmits only light LM having a wavelength in a specific band and blocks other light is disposed in the preceding stage, and a photoelectric conversion element is disposed in the subsequent stage.
  • a photodiode 46 is arranged.
  • the visible light guide light MB propagating through the optical fiber 17 from the guide light generating unit 15 is emitted vertically by the dichroic mirror 36 when the sensor unit 26 exits in the horizontal direction with a certain spread angle from the end face of the optical fiber 17.
  • the optical path is bent downward, and the vicinity of the processing point P of the workpiece W is irradiated through the optical lens 38, the dichroic mirror 30 in the emission unit 24, the optical lens 32, and the like.
  • electromagnetic waves (light) having a broadband wavelength are emitted from the vicinity of the processing point P of the workpiece W.
  • the light that has passed through the optical lens 32 and dichroic mirror 30 in the output unit 24 further passes through the optical lens 38 and dichroic mirror 36 in the sensor unit 26.
  • the light LM having a wavelength component in a predetermined band selected by the band pass filter 44 is incident on the light receiving surface of the photodiode 46.
  • the photodiode 46 photoelectrically converts the received light LM and generates a sensor output signal CS as a current output.
  • the sensor output signal CS of this current output is converted into a voltage signal by the current-voltage conversion circuit 100 (FIG. 13), and then amplified by the amplifier 42 with a gain designated by the control unit 14.
  • the voltage sensor output signal CS output from the amplifier 42 is converted into a current signal by the voltage-current conversion circuit 102 (FIG. 13), and is transmitted to the sensor signal processing unit 22 via the sensor cable 48.
  • the transmission wavelength band set in the band-pass filter 44 of the infrared sensor 40 is comprehensively taken into consideration in terms of sensitivity, versatility, cost, etc. in the monitoring method using a single photodiode 46.
  • a plurality of types of materials that can be selected for the workpiece W and a wide variety of processing forms are selected as the most suitable band for capturing the influence of predetermined factors on the welding characteristics near the processing point as the intensity or change of the radiant energy. .
  • a well-known black body radiation spectrum distribution as shown in FIG. 2 can be suitably used.
  • the graph of FIG. 2 there is a certain relationship between the spectrum of the electromagnetic wave radiated by the black body and the surface temperature.
  • the peak of the radiant energy shifts to a short wavelength, and when the temperature is low, It shifts to wavelength and the peak radiant energy changes exponentially with changes in temperature.
  • the wavelength of the peak point of the energy density emitted from a black body at a temperature of 1500 ° C. is about 1800 nm.
  • FIG. 3 shows the results of measurement from various angular positions and analysis of the spectrum distribution using a spectrum analyzer.
  • the display waveform of the spectrum analyzer shows each peak value as a relative intensity without distinguishing with time the detected light intensity of 1000 nm or more. Although the waveform shown showed different intensity depending on the angular position at the time of measurement, a certain characteristic was obtained.
  • the intensity (radiant energy density) of infrared rays emitted from the melted portion of the stainless steel is characterized by a sharp mountain shape over a band of about 1000 nm to 1100 nm and a broad mountain shape over a band of about 1200 nm to 2500 nm. It has. Paying attention to the characteristics of the latter broad mountain shape, the wavelength of the peak point is about 1800 nm, which is approximately approximate to the wavelength (about 1800 nm) of the peak point of the energy density emitted from the black body at a temperature of 1500 ° C.
  • the melting point of each of the metals is used as an index, so that the single photodiode 46 is used with reference to the graph of FIG. A practically optimal transmission wavelength band in the monitoring method can be determined.
  • the melting points of iron-based metal, copper-based metal, and aluminum-based metal, which are main materials for laser melting are approximately 1500 ° C., 1000 ° C., and 600 ° C., respectively.
  • the band of 1.3 ⁇ m (1300 nm) to 2.5 ⁇ m (2500 nm) is the transmission wavelength band of the infrared sensor 40.
  • a photodiode whose sensitivity corresponds fully to the selected transmission wavelength band may be used (in this case no separate filter is required), but a photodiode 46 that detects a wider transmission wavelength band is used. May be.
  • a band-pass filter 44 that transmits only the radiated light in the band of 1300 nm or more may be provided on the front side of the photodiode 46, and the radiated light in the band longer than 2500 nm is similarly 2500 nm or less.
  • a band-pass filter 44 that transmits only the radiated light in the band may be provided.
  • the monitor unit (laser processing monitoring device) 25 in this embodiment detects all the emitted light generated in the band of 1300 nm to 2500 nm as the wavelength band suitable for the metal workpiece, and displays the detected intensity of the emitted light as it is. Therefore, it is possible to detect with high sensitivity the amount of energy that exponentially increases in relation to the processed part.
  • monitoring of synchrotron radiation from the processing point for differences in the material of the welded material, the presence or absence of fine gaps in the welded part, and differences in the tens of watts or 10 millisecond units on the laser machine side Can be grasped by the waveform.
  • the width of the radiated light band to be detected is referred to the radiation spectrum distribution from the black body in FIG. It is also possible to detect all radiation emitted from an arbitrary width. For example, the entire width of the wavelength band of at least 300 nm may be detected from the light generated at the processing site.
  • a wavelength bandwidth of 1800 to 2100 nm is selected and detected as a wavelength bandwidth of at least 300 nm, from FIG. 2, the peak of the emitted light generated from the black body at 1500 ° C. and the radiation generated from the black body at 700 ° C.
  • the intensity of light on the left side of the spot that falls to the left of the light peak is monitored.
  • a problem of detection accuracy may occur because the radiation light in a region falling from the peak value of the radiation light generated from the black spot at 700 ° C. may occur, but the wavelength band to be detected has a predetermined width, It is possible to monitor the synchrotron radiation region including the temperature near the melting point of aluminum and the temperature near the melting point of stainless steel.
  • the sensor output signal CS transmitted from the sensor unit 26 to the sensor signal processing unit 22 via the sensor cable 48 is subjected to current-voltage conversion by the first-stage current-voltage converter 104 (FIG. 13) in the sensor signal processing unit 22.
  • the sensor output signal CS converted into a voltage signal is converted into a digital signal by the A / D converter 50.
  • the arithmetic processing unit 52 provided in the sensor signal processing unit 22 includes a hardware or middleware arithmetic processing device, preferably an FPGA (Feed Programmable Gate Array), which can perform specific arithmetic processing at high speed.
  • the instantaneous voltage value of the sensor output signal CS is converted into a count value (relative value) representing the intensity of the emitted light, and the converted value is generated as digital waveform data DCS .
  • the generated waveform data DCS is stored in the data memory 54.
  • Arithmetic processing unit 52 based on the waveform data D CS, via the control unit 14 displays a waveform of the sensor output signal CS on the display of the monitoring panel 20, or the determination also perform processing quality determination to be described later The result is displayed together with the waveform of the sensor output signal CS.
  • the control unit 14 converts the waveform data DCS and determination result data supplied from the arithmetic processing unit 52 into video signals, and displays the waveform of the sensor output signal CS, determination result information, etc. on the display (display unit 20a) of the monitoring panel 20. The image of is displayed.
  • the monitor unit (laser processing monitoring device) 25 in this embodiment is not the return light (reflected light) of the laser light irradiated during laser processing, but the emitted light when the workpiece itself reaches the molten state.
  • the change in the amount of radiated light during processing is converted into a unique count value for the instantaneous integrated value in a specific band, and It is possible to visualize the influence of machining on the workpiece by converting various changes into count values and displaying them.
  • the operation panel 20 includes, for example, a display unit 20a formed of a liquid crystal display and a keyboard type or touch panel type input unit 20b, and displays various setting screens and monitor screens under display control of the control unit 14. .
  • a display unit 20a formed of a liquid crystal display and a keyboard type or touch panel type input unit 20b
  • a laser output waveform corresponding to the setting condition of the pulsed laser beam LB can be displayed on the display of the display unit 20a.
  • monitor screens as shown in FIG. 4 to FIG. 6 and FIG. 8 to FIG. Visualize and display fine sensor output signal waveforms.
  • the control unit 14 turns on the guide light generation unit 15 to collect the guide light MB on the workpiece W. Irradiate with light.
  • the processing point P can be accurately positioned and the optical axes of the monitoring system and the laser processing system can be accurately adjusted.
  • the pulse laser beam LB When the pulse laser beam LB is oscillated and output from the laser oscillator 10 under predetermined conditions under the control of the control unit 14, the pulse laser beam LB is transmitted to the emission unit 24 of the head 18 via the optical fiber 16. Then, the output unit 24 collects and irradiates near the processing point P of the workpiece W. Thereby, the vicinity of the processing point P absorbs the laser energy of the pulse laser beam LB and melts instantaneously, and electromagnetic waves (mainly infrared rays) of thermal radiation are emitted from the melted portion.
  • electromagnetic waves mainly infrared rays
  • the light passing through the optical lens 32 in the emission unit 24, the dichroic mirror 30 and the optical lens 38 in the sensor unit 26, and the dichroic mirror 36 as described above is the band pass filter 44 of the infrared sensor 40. Is incident on.
  • the light LM in a specific wavelength band (1300 to 2500 nm) that has passed through the band pass filter 44 is photoelectrically converted by the photodiode 46, and a sensor output signal CS of current output is generated.
  • the sensor output signal CS is subjected to the analog signal processing (current-voltage conversion, amplification, voltage-current conversion, current transmission) as described above and is taken into the sensor signal processing unit 22.
  • the sensor output signal CS is subjected to the digital signal processing (current-voltage conversion, analog-digital conversion, voltage-count value conversion) as described above, and the waveform data of the sensor output signal CS.
  • D CS is generated, and the waveform data D CS for one pulse is stored in the data memory 54.
  • the value of the waveform data D CS on the time axis corresponds to the instantaneous value of the radiant energy density of the photoelectric conversion emission light LM (intensity).
  • a photodiode with high light receiving sensitivity such as an InGaAs photodiode with electronic cooling
  • the advantage of using an InGaAs photodiode with electronic cooling is that the thermal effect on the detection element (photodiode itself) due to radiation detection is very small due to electron cooling, and is proportional to the light intensity of the received radiation LM.
  • the sensor output signal CS of current output can be suitably generated.
  • the sensor output signal CS is also output as a weak small signal. Therefore, as described above, the sensor output signal CS is converted into a voltage signal by the current-voltage conversion circuit 100 and then converted into a signal having a magnitude that can sufficiently reduce the influence of noise by the amplifier 42.
  • this analog sensor output signal CS is transmitted as a voltage signal from the sensor unit 26 to the sensor signal processing unit 22 separated by several meters or more via the sensor cable 48 (voltage transmission),
  • the signal level is greatly attenuated by the voltage drop, and the waveform is distorted or susceptible to noise. Therefore, the sensor output signal CS is converted into a current signal by the voltage-current conversion circuit 102 in the sensor unit 26 and then transmitted to the sensor signal processing unit 22 via the sensor cable 48. Attenuation, waveform distortion, noise influence, and the like can be suppressed.
  • the laser apparatus used in this example is AMADA MIYACHI pulse fiber laser welder ML-3030AS.
  • the workpiece W was formed by arranging two stainless steel plates (SUS304) W 1 and W 2 having a thickness of 1.0 mm side by side, and butt welding was performed using a pulsed laser beam. In this butt welding, when the spot diameter of the laser beam is 0.3 mm, the laser output is 500 W, the pulse width is 45 milliseconds, and there is no gap between the workpieces W 1 and W 2 (a) And 0.
  • FIG. 4 shows a monitoring display waveform of the sensor output signal obtained in this example.
  • the portion where the waveform is drawn in a zigzag indicates that the metal melted at the portion to be processed and that the turbulence of the radiation from the wave front of the molten pool was detected.
  • the point in time when the waveform that rises to the right on the time axis reaches the apex (the point just before the fall) is the point at which the irradiation of the laser beam is stopped.
  • the former (a) has a higher detection start point immediately after the start of the waveform rise, and the waveform fall is lower. It has a characteristic that it is gentle.
  • the latter (b) has a characteristic that the detection start point immediately after the start of the rise of the waveform is low and the fall of the waveform is quick.
  • a phenomenon occurs in which the amount of molten metal that forms the molten pool decreases, and the difference in the amount of molten metal appears as a difference in the amount of radiated light in the radiation detected from the vicinity of the molten pool, and the detection start point immediately after the rise of the waveform
  • the amount of molten metal decreases due to the phenomenon that the evaporated metal stops together with the transmitted light that passes through the gap, so that the falling edge of the waveform is detected quickly when there is a gap. ing.
  • the laser apparatus used in this example is AMADA MIYACHI pulse fiber laser welder ML-3030AS.
  • the workpiece W was formed by stacking two stainless steel plates (SUS304) W 1 and W 2 having a thickness of 0.3 mm, and lap welding was performed using a pulsed laser beam. In this lap welding, the spot diameter of the laser beam is 0.3 mm, the laser output is 500 W, the pulse width is 45 milliseconds, and there is no gap between the workpieces (W 1 , W 2 ) (a) and the workpiece.
  • FIG. 5 shows a monitoring display waveform of the sensor output signal obtained in this example.
  • the portion where the waveform is drawn in a zigzag indicates that the metal melted in the processed portion and that the radiated light disturbance from the wave front of the molten pool was detected.
  • the point in time when the waveform that rises to the right on the time axis reaches the apex (the point just before the fall) is the point at which the irradiation of the laser beam is stopped.
  • the laser apparatus used in this example is AMADA MIYACHI pulse fiber laser welder ML-3030AS.
  • the workpiece W was formed by stacking two sheet materials W 1 and W 2 of stainless steel SUS304 having a thickness of 0.3 mm without gaps, and lap welding was performed using a pulsed laser beam of a rectangular wave.
  • the laser beam spot diameter was 0.3 mm
  • the laser output and pulse width were parameters. That is, for the laser output, values in six steps were selected in increments of 50 W from 300 W to 550 W, and values in three steps of 25 ms, 35 ms, and 45 ms were selected for the pulse width.
  • a monitoring display waveform of the sensor output signal obtained in this embodiment is shown in FIG.
  • the radiated light intensity indicated by the waveform of the sensor output signal increases proportionally as the laser output set value of the laser light increases, and the waveform of the sensor output signal increases as the laser output set value increases. It is shown that the start of the fall is delayed, and further, as the pulse width is increased, the radiation light intensity (particularly the maximum peak value immediately before the fall) displayed by the waveform of the sensor output signal becomes higher. I can take it. This indicates that the emitted light from the workpiece in laser processing is accurately detected in units of tens of watts and in units of 10 milliseconds.
  • the laser apparatus used in this example is AMADA MIYACHI fiber laser welder ML-6811C.
  • a typical workpiece W assumes a case where a recess (notch) is formed by laminating and welding a plate material having a notch and a flat material, and the depth of the recess (notch) is defined as a gap. It was.
  • Sample (1) is for showing a basic waveform when CW laser irradiation is monitored by the processing monitoring apparatus according to this embodiment, and in FIG. This indicates that the metal is melted at the processing location, and that the radiation turbulence from the molten pool wavefront is detected.
  • Sample (2) is obtained by assuming that there is a 3.0mm gap on the back side of a portion (middle portion of the x-direction) of the stainless steel plate W 1 of the front side in the seam welding.
  • a hollow or protruding portion in the middle of the waveform seen for each of the three stages of laser output (200 W, 400 W, 600 W) is monitoring laser irradiation to a place where there is a space on the back side of the workpiece. The detection signal at the time is shown.
  • the reason why the protrusion is generated at 200 W while the recess is generated between 600 W and 400 W can be explained by the relationship between the energy of the irradiation laser and the heat drawing at the processing site. That is, in the case of 200 W, since the laser irradiation energy is generally low, the radiant light is weakened due to the influence of heat drawn toward the metal material on the back side in the lap welding, but the back side metal material in the middle part. It is difficult to draw heat because it is an air layer, and the emitted light is strongly generated by the heat.
  • Sample (3) the sample (4) is, 2.0 mm each on the back of a portion of the stainless steel plate W 1 of the front side in the seam welding (intermediate portion in the x direction), a case where there is a gap of 1.0mm It is assumed. As shown in FIGS. 10 and 11, both sample (3) and sample (4) did not change much when compared with sample (2) at 200 W, but at 400 W and 600 W. In contrast, when the air layer was reduced to 2.0 mm and 1.0 mm, the intensity of the detected indentation, that is, the intensity of the detected radiated light, tended to increase conversely. . This is considered to be because it becomes more difficult for heat to be drawn from the metal layer because the gap of the air layer becomes shorter.
  • the radiation light generated from the vicinity of the processing point of the workpiece (metal) in laser welding is received by the infrared sensor 40 in the sensor unit 24, and the predetermined light included in the radiation light is received.
  • Signal processing system provided in the sensor unit 24 and the sensor signal processing unit 22 connected via the sensor cable 48 to generate an analog sensor output signal CS by photoelectrically converting the radiated light component (LM) in the wavelength band of ( Figure 13) into a digital waveform data D CS waveforms of the sensor output signal CS without impairing the intensity change by monitoring panel 20 the waveform of the sensor output signal CS on the basis of the waveform data D CS display (20a ) Visualized and displayed above, and the displayed waveform (for example, FIGS.
  • Laser welding processing can be monitored, monitoring of the influence of certain factors related to the processing state or processing quality of the laser welding process, monitoring of the quality of the laser welding process, etc. Simple and accurate monitoring can be made possible.
  • the sensor unit 26 is connected to the emission unit 24 in the above-described embodiment, it is possible to adopt a configuration in which the sensor unit 26 is separated from the emission unit 24 and is arranged in the vicinity of the emission unit 24 as an independent unit. It is.
  • the laser processing method and laser processing apparatus of the present invention are not limited to laser spot welding, but can also be applied to other laser processing that involves melting, such as laser cutting, laser brazing, laser hardening, and laser surface modification.

Abstract

This laser processing monitoring device is a monitoring device of a laser processing machine which performs desired laser processing by radiating a laser beam LB onto a given metal workpiece W and melting the workpiece W by means of laser energy, wherein the laser processing monitoring device comprises: a laser oscillator 10; a laser power source 12; a control unit 14; a guide light generating unit 15; transmission optical fibers 16, 17; a head 18 (emitting unit 24, sensor unit 26); an operating panel 20; and a monitoring unit 25. The monitoring unit 25 is a laser monitoring device in a mode of embodiment of the present invention, and is configured to include mainly the control unit 14, the operating panel 20, a sensor signal processing unit 22 and the sensor unit 26, for example.

Description

レーザ加工監視方法及びレーザ加工監視装置Laser processing monitoring method and laser processing monitoring device
 本発明は、被加工物にパルスレーザ光を照射し、被加工物をレーザエネルギーにより溶かして行われるレーザ加工のモニタリングに用いるレーザ加工監視方法および監視装置に関する。より詳細には、レーザ加工の加工特性に関係する種々の要因の影響について簡明かつ適切なモニタリングを可能とするレーザ加工監視方法および監視装置に関する。 The present invention relates to a laser processing monitoring method and a monitoring apparatus used for monitoring laser processing performed by irradiating a workpiece with pulsed laser light and melting the workpiece with laser energy. More specifically, the present invention relates to a laser processing monitoring method and a monitoring apparatus that enable simple and appropriate monitoring of the influence of various factors related to the processing characteristics of laser processing.
 レーザ加工時の監視は、大別すると、被加工物に対して入射する前のレーザ光の出力をモニタリングする方法と、被加工物に対してレーザ光が入射した後の加工箇所の状態をモニタリングする方法がある。後者の加工箇所の状態をモニタリングする方法としては、加工箇所を連続的に撮像して画像解析して監視する等の方法により加工箇所自体を直接観察する方法と、加工箇所で発生する熱や光を観察する方法に分けられる。このうち、加工箇所で発生する熱や光を観察する方法は、さらに、加工箇所近傍で生じるプラズマ光を監視する方法、被加工物からの反射光や被加工物からの貫通ビーム光量などを光学的に監視する方法、被加工物からの赤外線量を監視する方法、被加工物の表面の温度を監視する方法、及び被加工物の加工中の音響を監視する方法等が考えられる。いずれも、これらを検出することで、溶接継手線(シーム)の均質性や強度、開先ギャップ、ビード形状、溶融池およびキーホールの形状、溶接部表面温度、ビード表面の欠陥、溶け込み深さ等の溶接品質に係る加工特性を認識又は予測することが目的である。 Monitoring at the time of laser processing can be broadly divided into a method for monitoring the output of laser light before being incident on the workpiece, and the state of the processing location after the laser light is incident on the workpiece. There is a way to do it. As a method for monitoring the state of the latter processing part, there are a method of directly observing the processing part itself by a method such as continuous imaging of the processing part, image analysis and monitoring, and heat and light generated at the processing part. Can be divided into methods of observing. Among them, the method of observing the heat and light generated at the processing location is further monitored by the method of monitoring the plasma light generated near the processing location, the reflected light from the workpiece and the amount of penetrating beam from the workpiece. A method of monitoring the amount of infrared rays from the workpiece, a method of monitoring the temperature of the surface of the workpiece, a method of monitoring the sound during processing of the workpiece, and the like. In any case, by detecting these, the homogeneity and strength of the welded joint line (seam), groove gap, bead shape, weld pool and keyhole shape, weld surface temperature, bead surface defects, penetration depth It is an object to recognize or predict the processing characteristics related to the welding quality such as.
 撮像素子を用いる画像解析によるモニタリング方法は、溶融池の形状を画像として直接観察するため、溶接品質の良否を一目瞭然と把握しやすい利点はあるが、ハードウェアおよびソフトウェアが高くつく。加工箇所近傍で生じるプラズマ光を信号処理するモニタリング方法は、プラズマ光が被加工箇所に向けて噴射されるシールドガスによる影響が強く、被加工物への加工影響を正確に反映しているとは言い難いという問題がある。被加工物からの反射光を光電変換素子を用いて信号処理するモニタリング法は、ハードウェアおよびソフトウェアを比較的簡便に済ますことができるが、被加工物からの反射光には被加工物に加工影響が生じる前の光、すなわち、被加工物に溶融が生じる前のレーザ光の単純反射光を原理的に含むものであるため、レーザ加工の加工特性に関係する種々の要因の影響を適切に監視しにくいという問題がある。 The monitoring method based on image analysis using an image sensor directly observes the shape of the weld pool as an image, and thus has an advantage of easily grasping the quality of welding quality at a glance, but is expensive in hardware and software. The monitoring method that performs signal processing of plasma light generated in the vicinity of the machining location is strongly influenced by the shielding gas that is injected into the workpiece location, and accurately reflects the machining effect on the workpiece. There is a problem that it is difficult to say. The monitoring method that processes the reflected light from the workpiece using a photoelectric conversion element can make hardware and software relatively simple, but the reflected light from the workpiece is processed into the workpiece. In principle, it includes simple reflected light of the laser beam before the influence occurs, that is, the laser beam before the workpiece is melted. Therefore, the influence of various factors related to the processing characteristics of laser processing is appropriately monitored. There is a problem that it is difficult.
 溶接ビードからの赤外線量を信号処理する方法は、光電変換素子を組み込まれた赤外線放射温度計により放射エネルギーを温度相関値に換算して強度表示するものであるが、温度相関値に換算された強度を表示する場合、とりわけ微細レーザ加工においては被加工物への加工影響が評価できないという問題がある。溶接中の音響を監視する方法は、被加工箇所から生じる音を音響素子により検出して表示する方法であるが、外部の雑音が検出され得るという問題がある。 Infrared radiation from the weld bead is signal-processed by converting the radiation energy into a temperature correlation value by an infrared radiation thermometer incorporating a photoelectric conversion element and displaying the intensity, but converted into a temperature correlation value. When displaying the intensity, there is a problem that the processing influence on the workpiece cannot be evaluated especially in the case of fine laser processing. The method of monitoring the sound during welding is a method of detecting and displaying the sound generated from the work site by an acoustic element, but there is a problem that external noise can be detected.
 また、パルスレーザによってキーホール溶接を行う方法であって、溶接部分から放出される赤外線のうち、溶融池に形成されるキーホールを検出可能な波長を有する単一波長の赤外線を選択して第一受光装置で計測すると共に、反射光強度を第二受光装置で計測して、両者の値に基いて溶接部分の良否を判定することも提案されている。(特許文献1) In addition, a method of performing keyhole welding with a pulsed laser, wherein a single wavelength infrared ray having a wavelength capable of detecting a keyhole formed in a molten pool is selected from infrared rays emitted from a welded portion. It has also been proposed to measure the reflected light intensity with a second light receiving device and determine the quality of a welded part based on both values while measuring with one light receiving device. (Patent Document 1)
 また、溶融池からの可視光内の特定の一波長の発光強度を検出し、検出した発光強度に基づいて溶接状態を判定することも提案されている。(特許文献2) It has also been proposed to detect the emission intensity of a specific wavelength in the visible light from the molten pool and determine the welding state based on the detected emission intensity. (Patent Document 2)
国際公開第2013/171848号International Publication No. 2013/171848 特開2017-24046号公報JP 2017-24046 A
 被加工物からの赤外線量を監視する取り組みは従来から試みられていたものの、これらのいずれも、レーザ加工時に被加工物から放出される放射光のみを検出して高精度に表示することが実現されたものではなかった。 Although efforts have been made to monitor the amount of infrared rays from the workpiece, all of them have been able to detect and display only the radiation emitted from the workpiece during laser processing and display it with high accuracy. It was not what was done.
 赤外光を含む放射光をモニタリングする方式は、一般的には、光電変換素子を用いる信号処理において、加工点付近から生じる放射光を温度相関値に変換して放射温度計により表示する方式であり、測定温度と融点との比較から被加工物が溶けたかどうかを判断できるが、溶融部の微妙な挙動または動的な変化まで捉えることは不可能であり、被加工箇所への加工影響を緻密にモニタリングすることを試みた場合には精度および信頼性が低い。 In general, the method of monitoring radiated light including infrared light is a method of displaying radiant thermometer by converting the radiated light generated near the processing point into a temperature correlation value in signal processing using photoelectric conversion elements. Yes, it can be determined whether the workpiece has melted by comparing the measured temperature with the melting point, but it is impossible to capture even the subtle behavior or dynamic change of the melted part, which affects the processing effect on the workpiece. When trying to monitor closely, accuracy and reliability are low.
 従来のレーザ加工監視装置において、放射光としての赤外光をモニタリングする場合、検出された放射光の強度は装置側で温度換算されて表示される。放射光を温度換算する方式は、ユーザが直感的に加工部の状態を把握しやすいメリットがある反面、実際に加工部に係るエネルギー量は温度に対して指数関数的に増加するので、金属系の被加工物の融点近傍での被加工物に係るエネルギーの変動をユーザが把握しにくく、とりわけ微細レーザ加工において加工特性に関係する種々の要因の影響を簡明かつ適確にモニタリングすることは困難であった。 In the conventional laser processing monitoring device, when monitoring infrared light as radiated light, the intensity of the detected radiated light is converted into temperature on the device side and displayed. The method of converting the temperature of synchrotron radiation has the merit that it is easy for the user to intuitively grasp the state of the processed part, but the energy amount actually related to the processed part increases exponentially with respect to the temperature. It is difficult for the user to grasp the fluctuation of energy related to the workpiece near the melting point of the workpiece, and it is difficult to monitor the influence of various factors related to the machining characteristics in a simple and accurate manner, especially in micro laser machining. Met.
 赤外光の検出により被加工箇所の実際の加工状況を可視化しようとすると、被加工箇所から放出される赤外光には、とりわけ金属の溶融時にノイズ成分が多く生じてしまうので、指数関数的に増加するエネルギー量を赤外光から検出して表示する過程で、適切な信号処理をする必要がある。 If you try to visualize the actual machining status of the part to be processed by detecting infrared light, the infrared light emitted from the part to be processed will generate a lot of noise components, especially when the metal melts. In the process of detecting and displaying the increasing energy amount from infrared light, it is necessary to perform appropriate signal processing.
 本発明は、上記従来技術の課題を解決するものであり、金属の被溶接材の溶融を伴うレーザ加工について簡明かつ適確なモニタリングを可能とするレーザ加工監視方法およびレーザ監視装置を提供する。 The present invention solves the above-described problems of the prior art, and provides a laser processing monitoring method and a laser monitoring apparatus that enable simple and accurate monitoring of laser processing involving melting of a metal workpiece.
 本発明のレーザ加工監視方法は、金属系の被加工物にレーザ光を照射し前記被加工物の溶融を伴うレーザ加工の監視方法であって、前記レーザ光の照射中に前記被加工物の加工点付近から生じる放射光を受光する第1の工程と、前記放射光に含まれる所定の波長帯域の放射光を光電変換して、前記放射光の強度を表すアナログのセンサ出力信号を生成する第2の工程と、前記センサ出力信号の波形を強度変化を損なわずにディジタルの波形データに変換する第3の工程と、前記波形データに基づいて前記センサ出力信号の波形を可視化して表示する第4の工程とを有する。 The laser processing monitoring method of the present invention is a laser processing monitoring method that involves irradiating a metal workpiece with a laser beam and causing the workpiece to melt, wherein the workpiece is irradiated during the laser beam irradiation. A first step of receiving radiated light generated from near the processing point and photoelectrically converting radiated light in a predetermined wavelength band included in the radiated light to generate an analog sensor output signal representing the intensity of the radiated light A second step, a third step of converting the waveform of the sensor output signal into digital waveform data without impairing the intensity change, and visualizing and displaying the waveform of the sensor output signal based on the waveform data. And a fourth step.
 本発明のレーザ加工監視装置は、金属系の被加工物にレーザ光を照射し前記被加工物の溶融を伴うレーザ加工の監視を行うためのレーザ監視装置であって、前記レーザ光の照射中に前記被加工物の加工点付近から生じる放射光を受光して、前記放射光に含まれる所定の波長帯域の放射光を光電変換して、前記放射光の強度を表すアナログのセンサ出力信号を生成する受光部と、前記センサ出力信号の波形を強度変化を損なわずにディジタルの波形データに変換する信号処理部と、前記波形データに基づいて前記センサ出力信号の波形を可視化して表示する表示部とを有する。 The laser processing monitoring device of the present invention is a laser monitoring device for irradiating a metal workpiece with laser light to monitor laser processing accompanied by melting of the workpiece, and during the irradiation of the laser light Receiving the radiated light generated near the processing point of the workpiece, photoelectrically converting the radiated light in a predetermined wavelength band included in the radiated light, and outputting an analog sensor output signal representing the intensity of the radiated light. A light receiving unit for generating, a signal processing unit for converting the waveform of the sensor output signal into digital waveform data without losing an intensity change, and a display for visualizing and displaying the waveform of the sensor output signal based on the waveform data Part.
 本発明においては、レーザ加工中に金属の被加工物の加工点付近から生じる放射光に含まれる所定の波長帯域の放射光の強度を表すセンサ信号の波形を強度変化を損なわずに可視化して表示するようにしたので、表示された波形自体からレーザ加工の加工状態、加工の良否等について簡明かつ適確なモニタリングを行うことができる。 In the present invention, the waveform of the sensor signal representing the intensity of the radiated light in a predetermined wavelength band included in the radiated light generated from the vicinity of the processing point of the metal workpiece during laser processing is visualized without losing the intensity change. Since it is displayed, it is possible to perform simple and accurate monitoring of the processing state of laser processing, the quality of processing, and the like from the displayed waveform itself.
 本発明のレーザ加工監視方法またはレーザ加工監視装置によれば、上記のような構成および作用により、金属の被溶接材の溶融を伴うレーザ加工について簡明かつ適確なモニタリングを可能とすることができる。 According to the laser processing monitoring method or the laser processing monitoring apparatus of the present invention, it is possible to easily and accurately monitor laser processing that involves melting of a metal workpiece to be welded by the configuration and operation as described above. .
本発明の一実施形態におけるレーザ加工監視装置を含むレーザ加工装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the laser processing apparatus containing the laser processing monitoring apparatus in one Embodiment of this invention. 黒体の放射スペクトル分布を示すグラフ図である。It is a graph which shows the radiation spectrum distribution of a black body. ステンレス鋼にパルスレーザ光を照射してその溶融部から発せられた赤外線強度のスペクトル分布を示す図である。It is a figure which shows the spectral distribution of the infrared intensity emitted from the fusion | melting part by irradiating a pulsed laser beam to stainless steel. 第1の実施例について実施形態のレーザ加工監視装置により得られたセンサ出力信号のモニタリング表示波形を示す図である。It is a figure which shows the monitoring display waveform of the sensor output signal obtained by the laser processing monitoring apparatus of the embodiment for the first example. 第2の実施例について実施形態のレーザ加工監視装置により得られたセンサ出力信号のモニタリング表示波形を示す図である。It is a figure which shows the monitoring display waveform of the sensor output signal obtained by the laser processing monitoring apparatus of embodiment about 2nd Example. 第3の実施例について実施形態のレーザ加工監視装置により得られたセンサ出力信号のモニタリング表示波形を示す図である。It is a figure which shows the monitoring display waveform of the sensor output signal obtained by the laser processing monitoring apparatus of embodiment about the 3rd Example. 第4の実施例のサンプルを模式的に説明するための図である。It is a figure for demonstrating the sample of a 4th Example typically. 第4の実施例のサンプルを模式的に説明するための図である。It is a figure for demonstrating the sample of a 4th Example typically. 第4の実施例の第1のサンプルについて実施形態のレーザ加工監視装置により得られたセンサ出力信号のモニタリング表示波形を示す図である。It is a figure which shows the monitoring display waveform of the sensor output signal obtained by the laser processing monitoring apparatus of the embodiment for the first sample of the fourth example. 第4の実施例の第2のサンプルについて実施形態のレーザ加工監視装置により得られたセンサ出力信号のモニタリング表示波形を示す図である。It is a figure which shows the monitoring display waveform of the sensor output signal obtained by the laser processing monitoring apparatus of the embodiment for the second sample of the fourth example. 第4の実施例の第3のサンプルについて実施形態のレーザ加工監視装置により得られたセンサ出力信号のモニタリング表示波形を示す図である。It is a figure which shows the monitoring display waveform of the sensor output signal obtained by the laser processing monitoring apparatus of the embodiment for the third sample of the fourth example. 第4の実施例の第4のサンプルについて実施形態のレーザ加工監視装置により得られたセンサ出力信号のモニタリング表示波形を示す図である。It is a figure which shows the monitoring display waveform of the sensor output signal obtained by the laser processing monitoring apparatus of the embodiment for the fourth sample of the fourth example. 第5の実施例について実施形態のレーザ加工監視装置により得られたセンサ出力信号のモニタリング表示波形を示す図である。It is a figure which shows the monitoring display waveform of the sensor output signal obtained by the laser processing monitoring apparatus of embodiment about the 5th Example. 実施形態のレーザ加工監視装置における信号処理系の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing system in the laser processing monitoring apparatus of embodiment.
以下、添付図を参照して本発明の好適な実施の形態を説明する。
[装置全体の構成および作用]
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
[Configuration and operation of the entire device]
 図1に、本発明の一実施形態におけるレーザ加工監視装置が組み込まれたレーザ加工装置全体の構成を示す。このレーザ加工装置は、所与の被加工物WにCWレーザ光又はパルスレーザ光LBを照射し、その被加工物Wをレーザエネルギーにより溶かして所望のレーザ加工またはレーザ溶融加工を行うレーザ加工機として構成されており、レーザ発振器10、レーザ電源12、制御部14、ガイド光発生部15、伝送用光ファイバ16、17、ヘッド18、操作パネル20およびモニタ部25を有している。モニタ部25は、この実施形態におけるレーザ監視装置であり、主に制御部14、操作パネル20、センサ信号処理ユニット22およびヘッド18のセンサユニット26等を含んで構成される。 FIG. 1 shows the overall configuration of a laser processing apparatus incorporating a laser processing monitoring apparatus according to an embodiment of the present invention. This laser processing apparatus irradiates a given workpiece W with CW laser light or pulsed laser light LB, and melts the workpiece W with laser energy to perform desired laser processing or laser melting processing. And includes a laser oscillator 10, a laser power source 12, a control unit 14, a guide light generation unit 15, transmission optical fibers 16 and 17, a head 18, an operation panel 20, and a monitor unit 25. The monitor unit 25 is a laser monitoring apparatus in this embodiment, and mainly includes the control unit 14, the operation panel 20, the sensor signal processing unit 22, the sensor unit 26 of the head 18, and the like.
 レーザ発振器10は、たとえばYAGレーザ、ファイバレーザあるいは半導体レーザからなり、被加工物Wに対してたとえばレーザスポット溶接を施すときは、制御部14の制御の下でレーザ電源12より電力または励起信号を供給され、その媒体に固有の波長を有するレーザ光LBを発振出力する。レーザ発振器10で発振出力されたレーザ光LBは、光ファイバ16を介してヘッド18に伝送される。 The laser oscillator 10 is composed of, for example, a YAG laser, a fiber laser, or a semiconductor laser. When performing laser spot welding on the workpiece W, for example, power or an excitation signal is supplied from the laser power source 12 under the control of the control unit 14. The supplied laser beam oscillates and outputs a laser beam LB having a wavelength specific to the medium. The laser beam LB oscillated and output by the laser oscillator 10 is transmitted to the head 18 through the optical fiber 16.
 ヘッド18は、2つの筒状ユニットすなわち下部の出射ユニット24と上部のセンサユニット26とを同軸で縦2段に連結しており、被加工物Wに対向して、たとえばその直上に設置または配置される。出射ユニット24は、伝送用光ファイバ16を介してレーザ発振器10に光学的に接続されており、ユニット内にコリメートレンズ28、ダイクロイックミラー30、光学レンズ32および保護ガラス34をそれぞれ所定の位置に設けている。レーザ加工時は、光ファイバ16の中を伝搬してきたレーザ光LBが、出射ユニット24内で光ファイバ16の終端面より一定の広がり角で水平方向に出て、コリメートレンズ28を通り抜けて平行光となり、ダイクロイックミラー30で垂直下方に光路を折り曲げ、光学レンズ32を通って金属系の被加工物Wの加工点P付近に集光入射する。そうすると、レーザ光LBのレーザエネルギーにより加工点P付近が溶融・凝固して、そこに溶接ナゲットひいては溶接継手が形成される。溶接継手は、たとえば突き合せ継手、T型継手、L字継手、重ね継手など任意であり、ユーザにより選択される。 The head 18 has two cylindrical units, that is, a lower emission unit 24 and an upper sensor unit 26 that are coaxially connected in two vertical stages, and is installed or arranged, for example, directly above the workpiece W. Is done. The emission unit 24 is optically connected to the laser oscillator 10 via the transmission optical fiber 16, and a collimator lens 28, a dichroic mirror 30, an optical lens 32, and a protective glass 34 are provided at predetermined positions in the unit. ing. At the time of laser processing, the laser beam LB propagating through the optical fiber 16 exits in the horizontal direction with a certain spread angle from the end surface of the optical fiber 16 in the emission unit 24, passes through the collimating lens 28, and becomes parallel light. Then, the optical path is bent vertically downward by the dichroic mirror 30, passes through the optical lens 32, and converges and enters the vicinity of the processing point P of the metal workpiece W. Then, the vicinity of the processing point P is melted and solidified by the laser energy of the laser beam LB, and a weld nugget and a weld joint is formed there. The weld joint is optional, such as a butt joint, a T-shaped joint, an L-shaped joint, or a lap joint, and is selected by the user.
 センサユニット26は、伝送用光ファイバ17を介してガイド光発生部15に光学的に接続されており、ユニット内にダイクロイックミラー36、光学レンズ38、赤外線センサ40および増幅器42を設けている。この実施形態における赤外線センサ40は、特定帯域の波長を有する光LMのみを透過してそれ以外の光を遮断する波長フィルタまたはバンド・パス・フィルタ44を前段に配置し、その後段に光電変換素子としてたとえばフォトダイオード46を配置している。 The sensor unit 26 is optically connected to the guide light generating unit 15 via the transmission optical fiber 17, and a dichroic mirror 36, an optical lens 38, an infrared sensor 40, and an amplifier 42 are provided in the unit. In the infrared sensor 40 in this embodiment, a wavelength filter or a band-pass filter 44 that transmits only light LM having a wavelength in a specific band and blocks other light is disposed in the preceding stage, and a photoelectric conversion element is disposed in the subsequent stage. For example, a photodiode 46 is arranged.
 ガイド光発生部15より光ファイバ17の中を伝搬してきた可視光のガイド光MBは、センサユニット26で光ファイバ17の終端面より一定の広がり角で水平方向に出ると、ダイクロイックミラー36で垂直下方に光路を折り曲げ、光学レンズ38および出射ユニット24内のダイクロイックミラー30、光学レンズ32等を通って被加工物Wの加工点P付近を照射するようになっている。 The visible light guide light MB propagating through the optical fiber 17 from the guide light generating unit 15 is emitted vertically by the dichroic mirror 36 when the sensor unit 26 exits in the horizontal direction with a certain spread angle from the end face of the optical fiber 17. The optical path is bent downward, and the vicinity of the processing point P of the workpiece W is irradiated through the optical lens 38, the dichroic mirror 30 in the emission unit 24, the optical lens 32, and the like.
 一方、レーザ加工時には、被加工物Wの加工点P付近から広帯域の波長を有する電磁波(光)が放射される。被加工物Wから放射される電磁波の中で垂直上方に向かうもののうち、出射ユニット24内の光学レンズ32、ダイクロイックミラー30を通り抜けた光がさらにセンサユニット26内の光学レンズ38、ダイクロイックミラー36を通ってバンド・パス・フィルタ44に入射し、バンド・パス・フィルタ44によって選択された所定帯域の波長成分を有する光LMがフォトダイオード46の受光面に入射するようになっている。 On the other hand, at the time of laser processing, electromagnetic waves (light) having a broadband wavelength are emitted from the vicinity of the processing point P of the workpiece W. Of the electromagnetic waves radiated from the workpiece W that travel vertically upward, the light that has passed through the optical lens 32 and dichroic mirror 30 in the output unit 24 further passes through the optical lens 38 and dichroic mirror 36 in the sensor unit 26. The light LM having a wavelength component in a predetermined band selected by the band pass filter 44 is incident on the light receiving surface of the photodiode 46.
 フォトダイオード46は、受光した光LMを光電変換し、電流出力のセンサ出力信号CSを発生する。この電流出力のセンサ出力信号CSは、電流-電圧変換回路100(図13)によって電圧信号に変換された後、増幅器42により制御部14の指定したゲインで増幅される。増幅器42より出力された電圧出力のセンサ出力信号CSは、電圧-電流変換回路102(図13)によって電流信号に変換され、センサケーブル48を介してセンサ信号処理ユニット22に電流伝送される。 The photodiode 46 photoelectrically converts the received light LM and generates a sensor output signal CS as a current output. The sensor output signal CS of this current output is converted into a voltage signal by the current-voltage conversion circuit 100 (FIG. 13), and then amplified by the amplifier 42 with a gain designated by the control unit 14. The voltage sensor output signal CS output from the amplifier 42 is converted into a current signal by the voltage-current conversion circuit 102 (FIG. 13), and is transmitted to the sensor signal processing unit 22 via the sensor cable 48.
 この実施形態において赤外線センサ40のバンド・パス・フィルタ44に設定される上記透過波長帯域は、単一のフォトダイオード46を用いるモニタリング法において、感度、汎用性、コスト性等を総合的に勘案し、被加工物Wについて選択され得る複数種類の材料および多種多様な加工形態について加工点付近の溶接特性に対する所定の要因の影響を放射エネルギーの強度ないし変化として捉えるのに最も適した帯域に選ばれる。 In this embodiment, the transmission wavelength band set in the band-pass filter 44 of the infrared sensor 40 is comprehensively taken into consideration in terms of sensitivity, versatility, cost, etc. in the monitoring method using a single photodiode 46. A plurality of types of materials that can be selected for the workpiece W and a wide variety of processing forms are selected as the most suitable band for capturing the influence of predetermined factors on the welding characteristics near the processing point as the intensity or change of the radiant energy. .
 この点に関しては、図2に示すような周知の黒体放射スペクトル分布を好適に用いることができる。図2のグラフのように、黒体が放射する電磁波のスペクトルと表面温度との間には一定の関係があり、物体の温度が高いと放射エネルギーのピークは短波長へシフトし、低いと長波長にシフトし、かつ温度の変化に対してピークの放射エネルギーが指数関数的に変化する。このグラフによれば、温度1500℃の黒体から放射されるエネルギー密度のピーク点の波長は約1800nmである。 In this regard, a well-known black body radiation spectrum distribution as shown in FIG. 2 can be suitably used. As shown in the graph of FIG. 2, there is a certain relationship between the spectrum of the electromagnetic wave radiated by the black body and the surface temperature. When the temperature of the object is high, the peak of the radiant energy shifts to a short wavelength, and when the temperature is low, It shifts to wavelength and the peak radiant energy changes exponentially with changes in temperature. According to this graph, the wavelength of the peak point of the energy density emitted from a black body at a temperature of 1500 ° C. is about 1800 nm.
 一方で、本発明者が、鉄系のステンレス鋼(融点が約1500℃)にレーザ光を照射した際に検出される1000nm以上の光の強度(相対的カウント値)を加工点に対して様々な角度位置から測定し、スペクトル分布をスペクトラム・アナライザにより分析した結果を図3に示す。スペクトラム・アナライザの表示波形は、検出された1000nm以上の光の強度について経時的な区別をせずに、それぞれのピーク値を相対強度として示すものである。示された波形は、測定時の角度位置に応じて波形全体が示す強度が異なっていたものの、一定の特性が得られた。これによれば、当該ステンレス鋼の溶融部から発せられる赤外線の強度(放射エネルギー密度)は、約1000nm~1100nmの帯域にわたる急峻な山形の特性と、約1200nm~2500nmの帯域にわたるブロードな山形の特性をもつ。後者のブロードな山形の特性に着目すると、ピーク点の波長は約1800nmであり、温度1500℃の黒体から放射されるエネルギー密度のピーク点の波長(約1800nm)と概ね近似している。 On the other hand, the inventor has various intensities (relative count values) of light of 1000 nm or more detected when laser light is irradiated on ferrous stainless steel (melting point is about 1500 ° C.) with respect to the processing point. FIG. 3 shows the results of measurement from various angular positions and analysis of the spectrum distribution using a spectrum analyzer. The display waveform of the spectrum analyzer shows each peak value as a relative intensity without distinguishing with time the detected light intensity of 1000 nm or more. Although the waveform shown showed different intensity depending on the angular position at the time of measurement, a certain characteristic was obtained. According to this, the intensity (radiant energy density) of infrared rays emitted from the melted portion of the stainless steel is characterized by a sharp mountain shape over a band of about 1000 nm to 1100 nm and a broad mountain shape over a band of about 1200 nm to 2500 nm. It has. Paying attention to the characteristics of the latter broad mountain shape, the wavelength of the peak point is about 1800 nm, which is approximately approximate to the wavelength (about 1800 nm) of the peak point of the energy density emitted from the black body at a temperature of 1500 ° C.
 このことから、被加工物Wの材質として想定され得る複数種類の金属について、それぞれの融点を指標とすることにより、図2のグラフを参照して、単一のフォトダイオード46を用いる本発明のモニタリング法における実用上の最適な透過波長帯域を決定することができる。 From this, with respect to a plurality of types of metals that can be assumed as the material of the workpiece W, the melting point of each of the metals is used as an index, so that the single photodiode 46 is used with reference to the graph of FIG. A practically optimal transmission wavelength band in the monitoring method can be determined.
 この実施形態では、レーザ溶融加工の主な材料である鉄系金属、銅系金属、アルミ系金属の融点がそれぞれ概ね1500℃前後、1000℃前後、600℃前後であることから、図2に示すように1.3μm(1300nm)~2.5μm(2500nm)の帯域を赤外線センサ40の透過波長帯域としている。感度が選択された透過波長帯域に完全に対応するフォトダイオードを用いてもよい(この場合は独立したフィルタは不要である)が、それよりも広範な透過波長帯域を検出するフォトダイオード46を用いてもよい。後者の場合は、例えば1300nm以上の帯域の放射光のみを透過するバンド・パス・フィルタ44をフォトダイオード46の手前側に設けるとよく、また、2500nmより長い帯域の放射光についても同様に2500nm以下の帯域の放射光のみを透過するバンド・パス・フィルタ44を設けてもよい。これにより、図2に示される黒体放射スペクトル分布と分光放射エネルギー密度との相関があると考えられる金属系被溶接材からの放射光のうち、図3に示される金属系被溶接材の1300nm~2500nmの帯域にわたるブロードな山形の部分を特定波長として全て監視することができる。 In this embodiment, the melting points of iron-based metal, copper-based metal, and aluminum-based metal, which are main materials for laser melting, are approximately 1500 ° C., 1000 ° C., and 600 ° C., respectively. Thus, the band of 1.3 μm (1300 nm) to 2.5 μm (2500 nm) is the transmission wavelength band of the infrared sensor 40. A photodiode whose sensitivity corresponds fully to the selected transmission wavelength band may be used (in this case no separate filter is required), but a photodiode 46 that detects a wider transmission wavelength band is used. May be. In the latter case, for example, a band-pass filter 44 that transmits only the radiated light in the band of 1300 nm or more may be provided on the front side of the photodiode 46, and the radiated light in the band longer than 2500 nm is similarly 2500 nm or less. A band-pass filter 44 that transmits only the radiated light in the band may be provided. Thereby, 1300 nm of the metal welding material shown in FIG. 3 among the radiated light from the metal welding material considered to have a correlation between the black body radiation spectrum distribution shown in FIG. 2 and the spectral radiant energy density. It is possible to monitor all broad chevron portions over a band of ˜2500 nm as specific wavelengths.
 この実施形態におけるモニタ部(レーザ加工監視装置)25は、金属系被加工材に適応する波長帯域として1300nm~2500nmの帯域に生じる放射光をすべて検出し、検出された放射光の強度をそのまま表示するので、実際に加工部に係る指数対数的に増加するエネルギー量を高感度に検出することができる。さらに、被溶接材の材料の相異や被溶接箇所の微細な隙間の有無、さらに、レーザ加工機側での数十W単位や10ミリ秒単位の相異を加工点からの放射光のモニタリングによる波形によって把握することができる。 The monitor unit (laser processing monitoring device) 25 in this embodiment detects all the emitted light generated in the band of 1300 nm to 2500 nm as the wavelength band suitable for the metal workpiece, and displays the detected intensity of the emitted light as it is. Therefore, it is possible to detect with high sensitivity the amount of energy that exponentially increases in relation to the processed part. In addition, monitoring of synchrotron radiation from the processing point for differences in the material of the welded material, the presence or absence of fine gaps in the welded part, and differences in the tens of watts or 10 millisecond units on the laser machine side Can be grasped by the waveform.
 なお、上述の実施例では、1300~2500nmの波長帯域に生じる放射光をすべて検出する例として説明したが、検出する放射光の帯域の幅は、図2の黒体からの放射スペクトル分布を参考とし、任意の幅から生じる放射光をすべて検出するように構成してもよい。例えば、被加工箇所で生じる光から、少なくとも300nmの波長帯域の幅をすべて検出してもよい。少なくとも300nmの波長帯域幅として、1800~2100nmの波長帯域幅を選択して検出する場合には、図2より、1500℃の黒体から生じる放射光のピークと、700℃の黒体から生じる放射光のピークより左側に落ち込んだ箇所より左側の光の強度をモニタリングすることになる。この場合、700℃の黒点から生じる放射光のピーク値より落ち込んだ領域の放射光をモニタリングするので検出精度の問題が生じる可能性はあるものの、検出する波長帯域に所定の幅があることにより、アルミの融点付近の温度とステンレス鋼の融点付近の温度を含む放射光領域をモニタリングすることが可能である。 In the above-described embodiment, an example has been described in which all radiated light generated in the wavelength band of 1300 to 2500 nm is detected. However, the width of the radiated light band to be detected is referred to the radiation spectrum distribution from the black body in FIG. It is also possible to detect all radiation emitted from an arbitrary width. For example, the entire width of the wavelength band of at least 300 nm may be detected from the light generated at the processing site. When a wavelength bandwidth of 1800 to 2100 nm is selected and detected as a wavelength bandwidth of at least 300 nm, from FIG. 2, the peak of the emitted light generated from the black body at 1500 ° C. and the radiation generated from the black body at 700 ° C. The intensity of light on the left side of the spot that falls to the left of the light peak is monitored. In this case, there is a possibility that a problem of detection accuracy may occur because the radiation light in a region falling from the peak value of the radiation light generated from the black spot at 700 ° C. may occur, but the wavelength band to be detected has a predetermined width, It is possible to monitor the synchrotron radiation region including the temperature near the melting point of aluminum and the temperature near the melting point of stainless steel.
 センサユニット26よりセンサケーブル48を介してセンサ信号処理ユニット22に電流伝送されたセンサ出力信号CSは、センサ信号処理ユニット22において初段の電流-電圧変換器104(図13)によって電流-電圧変換される。そして、電圧信号に変換されたセンサ出力信号CSがA/D変換器50によりディジタル信号に変換される。 The sensor output signal CS transmitted from the sensor unit 26 to the sensor signal processing unit 22 via the sensor cable 48 is subjected to current-voltage conversion by the first-stage current-voltage converter 104 (FIG. 13) in the sensor signal processing unit 22. The The sensor output signal CS converted into a voltage signal is converted into a digital signal by the A / D converter 50.
 センサ信号処理ユニット22内に設けられる演算処理部52は、特定の演算処理を高速に行えるハードウェアまたはミドルウェアの演算処理装置、好ましくはFPGA(フィード・プログラマブル・ゲートアレイ)からなり、データメモリ54を用いてセンサ出力信号CSの瞬時的な電圧値を放射光の強度を表すカウント値(相対値)に換算し、その換算値をディジタルの波形データDCSとして生成する。生成された波形データDCSは、データメモリ54に保存される。演算処理部52は、波形データDCSに基づいて、制御部14を介して監視パネル20のディスプレイ上にセンサ出力信号CSの波形を表示し、あるいは後述する良否判定の処理も実行してその判定結果をセンサ出力信号CSの波形と一緒に表示するようになっている。制御部14は、演算処理部52から与えれた波形データDCSおよび判定結果のデータを映像信号に変換して監視パネル20のディスプレイ(表示部20a)にセンサ出力信号CSの波形や判定結果情報等の画像を表示する。 The arithmetic processing unit 52 provided in the sensor signal processing unit 22 includes a hardware or middleware arithmetic processing device, preferably an FPGA (Feed Programmable Gate Array), which can perform specific arithmetic processing at high speed. The instantaneous voltage value of the sensor output signal CS is converted into a count value (relative value) representing the intensity of the emitted light, and the converted value is generated as digital waveform data DCS . The generated waveform data DCS is stored in the data memory 54. Arithmetic processing unit 52, based on the waveform data D CS, via the control unit 14 displays a waveform of the sensor output signal CS on the display of the monitoring panel 20, or the determination also perform processing quality determination to be described later The result is displayed together with the waveform of the sensor output signal CS. The control unit 14 converts the waveform data DCS and determination result data supplied from the arithmetic processing unit 52 into video signals, and displays the waveform of the sensor output signal CS, determination result information, etc. on the display (display unit 20a) of the monitoring panel 20. The image of is displayed.
 このように、この実施形態におけるモニタ部(レーザ加工監視装置)25は、レーザ加工時に照射されるレーザ光の戻り光(反射光)ではなく、被加工物自身が溶融状態に達する際の放射光をモニタリングの対象として、放射光を温度換算せずに、加工時の放射光量の変化を特定の帯域における瞬時的な積分値を一義的なカウント値に換算した上で、該カウント値の経時的な変化をカウント値に換算して表示することにより被加工物への加工影響を可視化するものである。 As described above, the monitor unit (laser processing monitoring device) 25 in this embodiment is not the return light (reflected light) of the laser light irradiated during laser processing, but the emitted light when the workpiece itself reaches the molten state. As a monitoring target, without changing the temperature of the radiated light, the change in the amount of radiated light during processing is converted into a unique count value for the instantaneous integrated value in a specific band, and It is possible to visualize the influence of machining on the workpiece by converting various changes into count values and displaying them.
 操作パネル20は、たとえば、液晶ディスプレイからなる表示部20aと、キーボード式あるいはタッチパネル式の入力部20bとを含んでおり、制御部14の表示制御の下で種々の設定画面やモニタ画面を表示する。この実施形態では、設定画面の一つとして、パルスレーザ光LBの設定条件に対応するレーザ出力波形を表示部20aのディスプレイ上に表示することも可能となっている。また、モニタ画面の一つとして、表示部20aのディスプレイ上に、たとえば後述する図4~図6、図8~図12に示すように、モニタ部25において強度変化を損なわずに取得した非常に精細なセンサ出力信号の波形を可視化して表示する。 The operation panel 20 includes, for example, a display unit 20a formed of a liquid crystal display and a keyboard type or touch panel type input unit 20b, and displays various setting screens and monitor screens under display control of the control unit 14. . In this embodiment, as one of the setting screens, a laser output waveform corresponding to the setting condition of the pulsed laser beam LB can be displayed on the display of the display unit 20a. Further, as one of the monitor screens, as shown in FIG. 4 to FIG. 6 and FIG. 8 to FIG. Visualize and display fine sensor output signal waveforms.
 被加工物W上に設定された複数の加工点Pについて、たとえばレーザスポット溶接が行われる場合、制御部14は、ガイド光発生部15をオンにして、被加工物Wにガイド光MBを集光照射する。ガイド光MBのスポットを加工点Pに合わせることで、加工点Pの位置決めを正確に行えるとともに、モニタリング系とレーザ加工系の光軸合わせを正確に行うことができる。 For example, when laser spot welding is performed on a plurality of processing points P set on the workpiece W, the control unit 14 turns on the guide light generation unit 15 to collect the guide light MB on the workpiece W. Irradiate with light. By aligning the spot of the guide light MB with the processing point P, the processing point P can be accurately positioned and the optical axes of the monitoring system and the laser processing system can be accurately adjusted.
 そして、制御部14の制御の下でレーザ発振器10より所定の条件でパルスレーザ光LBが発振出力されると、このパルスレーザ光LBは、光ファイバ16を介してヘッド18の出射ユニット24に伝送され、出射ユニット24より被加工物Wの当該加工点P付近に集光照射される。これによって、当該加工点P付近がパルスレーザ光LBのレーザエネルギーを吸収して瞬時に溶け、その溶融部分から熱放射の電磁波(主に赤外線)が発せられる。 When the pulse laser beam LB is oscillated and output from the laser oscillator 10 under predetermined conditions under the control of the control unit 14, the pulse laser beam LB is transmitted to the emission unit 24 of the head 18 via the optical fiber 16. Then, the output unit 24 collects and irradiates near the processing point P of the workpiece W. Thereby, the vicinity of the processing point P absorbs the laser energy of the pulse laser beam LB and melts instantaneously, and electromagnetic waves (mainly infrared rays) of thermal radiation are emitted from the melted portion.
 この熱放射のなかで上記のように出射ユニット24内の光学レンズ32、ダイクロイックミラー30およびセンサユニット26内の光学レンズ38、ダイクロイックミラー36を通り抜けた光が赤外線センサ40のバンド・パス・フィルタ44に入射する。そして、バンド・パス・フィルタ44を通過した特定波長帯域(1300~2500nm)の光LMがフォトダイオード46で光電変換され、電流出力のセンサ出力信号CSが生成される。このセンサ出力信号CSが上記のようなアナログ信号処理(電流-電圧変換、増幅、電圧-電流変換、電流伝送)を受けてセンサ信号処理ユニット22に取り込まれる。そして、センサ信号処理ユニット22内で、センサ出力信号CSが上記のようなディジタル信号処理(電流-電圧変換、アナログ-ディジタル変換、電圧-カウント値変換)を受けて、センサ出力信号CSの波形データDCSが生成され、この1パルス分の波形データDCSがデータメモリ54に保存される。上記したように、時間軸上でこの波形データDCSの各値(瞬時値)は、光電変換された放射光LMの放射エネルギー密度(強度)の瞬時値に対応している。 Of the thermal radiation, the light passing through the optical lens 32 in the emission unit 24, the dichroic mirror 30 and the optical lens 38 in the sensor unit 26, and the dichroic mirror 36 as described above is the band pass filter 44 of the infrared sensor 40. Is incident on. The light LM in a specific wavelength band (1300 to 2500 nm) that has passed through the band pass filter 44 is photoelectrically converted by the photodiode 46, and a sensor output signal CS of current output is generated. The sensor output signal CS is subjected to the analog signal processing (current-voltage conversion, amplification, voltage-current conversion, current transmission) as described above and is taken into the sensor signal processing unit 22. In the sensor signal processing unit 22, the sensor output signal CS is subjected to the digital signal processing (current-voltage conversion, analog-digital conversion, voltage-count value conversion) as described above, and the waveform data of the sensor output signal CS. D CS is generated, and the waveform data D CS for one pulse is stored in the data memory 54. As described above, the value of the waveform data D CS on the time axis (the instantaneous value) corresponds to the instantaneous value of the radiant energy density of the photoelectric conversion emission light LM (intensity).
 こうして取得したセンサ出力信号CSの波形を可視化して表示するときは、演算処理部52がデータメモリ54より当該センサ出力信号CSの波形データDCSを読み出して制御部14に送り、制御部14が受け取った波形データDCSを映像信号に変換して表示部20aにセンサ出力信号CSの波形を画像で表示させる。 Thus when displaying waveforms of the acquired sensor output signal CS and visualization processing unit 52 sends to the sensor output signal control section 14 reads the waveform data D CS of CS from the data memory 54, the control unit 14 The received waveform data DCS is converted into a video signal, and the waveform of the sensor output signal CS is displayed as an image on the display unit 20a.
 この実施形態において、センサユニット26内に設けられるフォトダイオード46には、受光感度の高いフォトダイオードたとえば電子冷却付InGaAsフォトダイオードが用いられる。電子冷却付InGaAsフォトダイオードを用いる利点は、電子冷却により放射光検出に起因する検出素子(フォトダイオード自身)への熱影響が非常に少ないことであり、受光した放射光LMの光強度に比例する電流出力のセンサ出力信号CSを好適に生成することができる。ただし、放射光LMが微弱な光であるため、センサ出力信号CSも微弱な小信号として出力される。そこで、上記のように、電流-電圧変換回路100によってセンサ出力信号CSを電圧信号に変換したうえで増幅器42によりノイズの影響を十分低減できる大きさの信号に変換している。 In this embodiment, a photodiode with high light receiving sensitivity, such as an InGaAs photodiode with electronic cooling, is used as the photodiode 46 provided in the sensor unit 26. The advantage of using an InGaAs photodiode with electronic cooling is that the thermal effect on the detection element (photodiode itself) due to radiation detection is very small due to electron cooling, and is proportional to the light intensity of the received radiation LM. The sensor output signal CS of current output can be suitably generated. However, since the emitted light LM is weak light, the sensor output signal CS is also output as a weak small signal. Therefore, as described above, the sensor output signal CS is converted into a voltage signal by the current-voltage conversion circuit 100 and then converted into a signal having a magnitude that can sufficiently reduce the influence of noise by the amplifier 42.
 しかし、このアナログのセンサ出力信号CSを電圧信号のままでセンサユニット26からセンサケーブル48を介してたとえば数m以上離れたセンサ信号処理ユニット22まで伝送(電圧伝送)したならば、センサケーブル48上の電圧降下によって信号レベルが大幅に減衰し、波形の歪みを生じたりノイズの影響も受けやすい。そこで、センサユニット26内で電圧-電流変換回路102によりセンサ出力信号CSを電流信号に変換してからセンサケーブル48を介してセンサ信号処理ユニット22に伝送するようにしており、かかる電流伝送により信号の減衰、波形歪、ノイズ影響等を抑制することができる。このことにより、放射光LMの光強度を表すアナログのセンサ出力信号CSを忠実にセンサユニット26から遠隔のセンサ信号処理ユニット22まで伝送することが可能であり、さらにセンサ信号処理ユニット22内で上記のようなディジタル信号処理にかけることによって、フォトダイオード46で生成したセンサ出力信号CSの波形を強度変化を損なわずにディジタルの波形データDCSに変換することができる。
[実施例]
However, if this analog sensor output signal CS is transmitted as a voltage signal from the sensor unit 26 to the sensor signal processing unit 22 separated by several meters or more via the sensor cable 48 (voltage transmission), The signal level is greatly attenuated by the voltage drop, and the waveform is distorted or susceptible to noise. Therefore, the sensor output signal CS is converted into a current signal by the voltage-current conversion circuit 102 in the sensor unit 26 and then transmitted to the sensor signal processing unit 22 via the sensor cable 48. Attenuation, waveform distortion, noise influence, and the like can be suppressed. As a result, it is possible to faithfully transmit the analog sensor output signal CS representing the light intensity of the emitted light LM from the sensor unit 26 to the remote sensor signal processing unit 22, and further within the sensor signal processing unit 22 described above. by subjecting the digital signal processing, such as, you can convert the waveform of the sensor output signal CS generated by the photodiode 46 without compromising the strength change in the digital waveform data D CS.
[Example]
 以下、図4~図12を参照して、この実施形態のレーザ加工監視装置を用いて得られた幾つかの実施例を示す。 Hereinafter, some examples obtained by using the laser processing monitoring apparatus of this embodiment will be described with reference to FIGS.
 この実施例において用いられたレーザ装置は、アマダミヤチ製パルスファイバレーザ溶接機ML-3030ASである。被加工物Wは、厚さ1.0mmのステンレス鋼板(SUS304)W,Wを横に2枚並べたものとし、パルスレーザ光を用いて突き合せ溶接を行った。この突き合せ溶接においては、レーザビームのスポット径を0.3mm、レーザ出力を500W、パルス幅を45ミリ秒とし、被加工物W,W間にギャップ(隙間)がない場合(a)と0.スポット径3mmの30%である0.09mmのギャップがある場合(b)とで、被加工物(W,W)の突き合せ溶接の加工特性に対するギャップ(特定要因)の影響を本実施形態のレーザ加工監視装置においてどのように監視できるかを検証した。この実施例において得られたセンサ出力信号のモニタリング表示波形を図4に示す。 The laser apparatus used in this example is AMADA MIYACHI pulse fiber laser welder ML-3030AS. The workpiece W was formed by arranging two stainless steel plates (SUS304) W 1 and W 2 having a thickness of 1.0 mm side by side, and butt welding was performed using a pulsed laser beam. In this butt welding, when the spot diameter of the laser beam is 0.3 mm, the laser output is 500 W, the pulse width is 45 milliseconds, and there is no gap between the workpieces W 1 and W 2 (a) And 0. If there is a gap of 0.09mm is 30% of the spot diameter 3mm out with (b), this embodiment the influence of the gap (specific factors) for the processing properties of the butt welding of the workpiece (W 1, W 2) It was verified how it can be monitored by the laser processing monitoring device of the form. FIG. 4 shows a monitoring display waveform of the sensor output signal obtained in this example.
 図4において、波形が細かなジグザグを描いている箇所は、被加工箇所で金属の溶融が生じ、溶融池の波面からの放射光乱れが検出されていることを示している。時間軸上で右肩上がりに増大する波形が頂点に達する時点(立下り直前の時点)は、レーザ光の照射を止めた時点である。 In FIG. 4, the portion where the waveform is drawn in a zigzag indicates that the metal melted at the portion to be processed and that the turbulence of the radiation from the wave front of the molten pool was detected. The point in time when the waveform that rises to the right on the time axis reaches the apex (the point just before the fall) is the point at which the irradiation of the laser beam is stopped.
 突き合せ部にギャップがない場合(a)の波形とギャップがある場合(b)の波形とを比較すると、前者(a)は波形の立上がり開始直後の検出開始点が高く、波形の立下りが緩やかである特性を有している。一方、後者(b)は波形の立ち上がり開始直後の検出開始点が低く、波形の立下りが速やかである特性を有している。この現象は、突き合せ部にギャップがある場合(b)には、金属のない場所(ギャップ)にもレーザ光が入射されるので、照射点でのスポット径に対してギャップが存在することにより溶融池を形成する溶融金属量が少なくなる現象が生じ、溶融池付近から検出される放射光にも溶融金属量の差が放射光量の差になって現れて、波形の立上がり直後の検出開始点が低くなること、また、ギャップを透過する透過光と共に蒸発金属がとんでしまう現象により、溶融金属量が少なくなるので、ギャップがある場合には、波形の立下りが速く検出されることを示している。 Comparing the waveform of (a) when there is no gap at the butt portion with the waveform of (b) when there is a gap, the former (a) has a higher detection start point immediately after the start of the waveform rise, and the waveform fall is lower. It has a characteristic that it is gentle. On the other hand, the latter (b) has a characteristic that the detection start point immediately after the start of the rise of the waveform is low and the fall of the waveform is quick. When there is a gap in the butt portion (b), this phenomenon is caused by the presence of a gap with respect to the spot diameter at the irradiation point because the laser beam is also incident on a place where there is no metal (gap). A phenomenon occurs in which the amount of molten metal that forms the molten pool decreases, and the difference in the amount of molten metal appears as a difference in the amount of radiated light in the radiation detected from the vicinity of the molten pool, and the detection start point immediately after the rise of the waveform The amount of molten metal decreases due to the phenomenon that the evaporated metal stops together with the transmitted light that passes through the gap, so that the falling edge of the waveform is detected quickly when there is a gap. ing.
 この実施例において用いられたレーザ装置は、アマダミヤチ製パルスファイバレーザ溶接機ML-3030ASである。被加工物Wは、厚さ0.3mmのステンレス鋼板(SUS304)W,Wを2枚重ねたものとし、パルスレーザ光を用いて重ね溶接を行った。この重ね溶接においては、レーザビームのスポット径を0.3mm、レーザ出力を500W、パルス幅を45ミリ秒とし、被加工物(W,W)間にギャップがない場合(a)と被加工材(W,W)間にスポット径0.3mmの20%である0.06mmのギャップがある場合(b)とで、被加工物(W,W)の重ね溶接の加工特性に対するギャップ(特定要因)の影響の有無ないし程度がどのように監視できるかを検証した。この実施例において得られたセンサ出力信号のモニタリング表示波形を図5に示す。 The laser apparatus used in this example is AMADA MIYACHI pulse fiber laser welder ML-3030AS. The workpiece W was formed by stacking two stainless steel plates (SUS304) W 1 and W 2 having a thickness of 0.3 mm, and lap welding was performed using a pulsed laser beam. In this lap welding, the spot diameter of the laser beam is 0.3 mm, the laser output is 500 W, the pulse width is 45 milliseconds, and there is no gap between the workpieces (W 1 , W 2 ) (a) and the workpiece. workpiece (W 1, W 2) If there is a gap of 0.06mm is 20% of the spot diameter 0.3mm between de and (b), processing of the lap welding of the workpiece (W 1, W 2) We verified how the presence or extent of the effect of a gap (specific factor) on characteristics can be monitored. FIG. 5 shows a monitoring display waveform of the sensor output signal obtained in this example.
 図5において、波形が細かなジグザグを描いている箇所は、被加工箇所で金属の溶融が生じ、溶融池の波面からの放射光乱れが検出されていることを示している。時間軸上で右肩上がりに増大する波形が頂点に達する時点(立下り直前の時点)は、レーザ光の照射を止めた時点である。 In FIG. 5, the portion where the waveform is drawn in a zigzag indicates that the metal melted in the processed portion and that the radiated light disturbance from the wave front of the molten pool was detected. The point in time when the waveform that rises to the right on the time axis reaches the apex (the point just before the fall) is the point at which the irradiation of the laser beam is stopped.
 この重ね溶接において0.06mmのギャップがある場合(b)とない場合(a)とを比較すると、波形の右肩上り部分においては放射光の強度変化を識別しにくいものであったが、波形の立下り部分、すなわちパルスレーザの照射を止めた後においては、ギャップがある場合(b)の方が、ギャップがない場合(a)よりも、波形の立下りがゆるやかであった。この現象は、重ね溶接において、被加工材にギャップがない場合(a)は、照射レーザ光が1枚目の金属W1を溶融して貫通した後にそのまま2枚目の金属W2を溶融に移行するように作用すると考えられるが、一方で、被加工材に微小なギャップがある場合(b)には、ギャップに存在する空気層の影響により被加工材における熱引きが金属層間にギャップがない場合(a)と比べて遅れることにより波形の立下りが緩やかに検出されることを示している。 In this lap welding, when there is a gap of 0.06 mm (b) and when there is no gap (a), it is difficult to identify the intensity change of the radiated light at the right shoulder rising portion of the waveform. In the falling part of the waveform, that is, after the irradiation of the pulse laser was stopped, the waveform falling (b) was gentler in the case where there was a gap than in the case (a) where there was no gap. In the lap welding, when there is no gap in the workpiece (a), the irradiation laser beam melts and penetrates the first metal W1, and then the second metal W2 is shifted to melting. On the other hand, when there is a minute gap in the workpiece (b), there is no gap between the metal layers due to the influence of the air layer existing in the gap. It shows that the falling edge of the waveform is gently detected by being delayed compared to (a).
 この実施例において用いられたレーザ装置は、アマダミヤチ製パルスファイバレーザ溶接機ML-3030ASである。被加工物Wは、厚さ0.3mmのステンレス鋼SUS304の板材W,Wを隙間なく2枚重ねたものとし、矩形波のパルスレーザ光を用いて重ね溶接を行った。この重ね溶接においては、レーザビームのスポット径を0.3mmとし、レーザ出力およびパルス幅をバラメータとした。すなわち、レーザ出力については、300W~550Wまで50W刻みで6段階の値を選択し、パルス幅について25ミリ秒、35ミリ秒、45ミリ秒の3段階の値を選択した。そして、被加工物(W,W)の重ね溶接の加工特性に対するレーザ出力(第1の特定要因)およびパルス幅(第2の特定要因)の影響がどのように監視できるかを検証した。この実施例において得られたセンサ出力信号のモニタリング表示波形を図6に示す。 The laser apparatus used in this example is AMADA MIYACHI pulse fiber laser welder ML-3030AS. The workpiece W was formed by stacking two sheet materials W 1 and W 2 of stainless steel SUS304 having a thickness of 0.3 mm without gaps, and lap welding was performed using a pulsed laser beam of a rectangular wave. In this lap welding, the laser beam spot diameter was 0.3 mm, and the laser output and pulse width were parameters. That is, for the laser output, values in six steps were selected in increments of 50 W from 300 W to 550 W, and values in three steps of 25 ms, 35 ms, and 45 ms were selected for the pulse width. Then, it was verified how the influence of the laser output (first specific factor) and the pulse width (second specific factor) on the processing characteristics of the lap welding of the workpieces (W 1 , W 2 ) can be monitored. . A monitoring display waveform of the sensor output signal obtained in this embodiment is shown in FIG.
 図6において、レーザ光のレーザ出力設定値を大きくするほどセンサ出力信号の波形により示される放射光強度も比例して増大し、かつ、レーザ出力の設定値を大きくするほどセンサ出力信号の波形の立下りの開始が遅れることが示され、さらに、パルス幅を大きくするほどセンサ出力信号の波形により表示される放射光強度(特に立下り直前の最大ピーク値)がより高くなるという相関性が看取できる。これにより、レーザ加工における被加工物からの放射光が、数十W単位、10ミリ秒単位で、正確に検出されることを示している。 In FIG. 6, the radiated light intensity indicated by the waveform of the sensor output signal increases proportionally as the laser output set value of the laser light increases, and the waveform of the sensor output signal increases as the laser output set value increases. It is shown that the start of the fall is delayed, and further, as the pulse width is increased, the radiation light intensity (particularly the maximum peak value immediately before the fall) displayed by the waveform of the sensor output signal becomes higher. I can take it. This indicates that the emitted light from the workpiece in laser processing is accurately detected in units of tens of watts and in units of 10 milliseconds.
 この実施例において用いられたレーザ装置は、アマダミヤチ製ファイバレーザ溶接機ML-6811Cである。この実施例では、上述した実施例1~3のようなパルスーザ光ではなくCWのレーザ光を用いるレーザ溶接加工において溶接特性に対するレーザ出力(第1の特定要因)およびギャップ(第2の特定要因)の影響が本実施形態のレーザ加工監視装置においてどのように監視できるかを検証した。 The laser apparatus used in this example is AMADA MIYACHI fiber laser welder ML-6811C. In this embodiment, the laser output (first specific factor) and the gap (second specific factor) with respect to the welding characteristics in the laser welding processing using the CW laser beam instead of the pulse laser beam as in the first to third embodiments described above. It has been verified how the influence of the above can be monitored by the laser processing monitoring apparatus of the present embodiment.
 典型的な被加工物Wは、切欠部のある板材と平材とを重ね溶接して窪み部(切欠部)を形成する場合を想定したもので、窪み部(切欠部)の深さをギャップとした。 A typical workpiece W assumes a case where a recess (notch) is formed by laminating and welding a plate material having a notch and a flat material, and the depth of the recess (notch) is defined as a gap. It was.
 具体的には、図7Aの(a)に示すように、厚さ0.3mmのステンレス鋼板Wと厚さ3.0mmのステンレス鋼板Wとを上下に重ね合わせたものをサンプル(1)とした。一方、図7Aの(b)に示すように、一定の間隔を置いて配置された厚さ3.0mmの2枚のステンレス鋼板W2L,W2Rの上に厚さ0.3mmのステンレス鋼板Wを架橋形態で重ね、ステンレス鋼板W2L,W2Rの間でステンレス鋼板Wの下に3mmのギャップを形成するように薄いステンレス鋼板W2Mを配置したものをサンプル(2)とした。同様に、図7Aの(c)、図7Bの(d)に示すように、ギャップ調整用のステンレス鋼板W2Mの厚さを変えて、ステンレス鋼板Wの直下に2mm、1mmのギャップを形成したものをそれぞれサンプル(3),(4)とした。各サンプル(1)~(4)のいずれも、被加工物Wを載置するXYテーブルを一定方向(x方向)に掃引して、被加工物W上にライン状の溶接ビードを形成する重ね溶接を行った。各サンプル(1)~(4)についてレーザ出力は200W、400W、600Wの3通りを選んだ。各サンプル(1)~(4)について得られたセンサ出力信号のモニタリング表示波形を図8~図11にそれぞれ示す。 Specifically, as shown in (a) of FIG. 7A, a superposition of a stainless steel plate W 2 of stainless steel plate W 1 and the thickness 3.0mm thick 0.3mm vertically Sample (1) It was. On the other hand, as shown in (b) of FIG. 7A, a stainless steel plate W having a thickness of 0.3 mm is placed on two stainless steel plates W 2L and W 2R having a thickness of 3.0 mm arranged at regular intervals. repeated 1 in crosslinked form, and a stainless steel plate W 2L, those arranged thin stainless steel plate W 2M so as to form a gap of 3mm below the stainless steel plate W 1 between W 2R and sample (2). Similarly, as shown in (c), (d) in Figure 7B of FIG. 7A, by changing the thickness of the stainless steel plate W 2M for gap adjustment, form 2 mm, a gap of 1mm immediately below the stainless steel plate W 1 These were used as samples (3) and (4), respectively. In each of the samples (1) to (4), an XY table on which the workpiece W is placed is swept in a certain direction (x direction) to form a line-shaped weld bead on the workpiece W Welding was performed. For each sample (1) to (4), three laser outputs of 200 W, 400 W, and 600 W were selected. The monitoring display waveforms of the sensor output signals obtained for the samples (1) to (4) are shown in FIGS.
 サンプル(1)は、この実施形態による加工監視装置によりCW方式のレーザ照射を監視した場合の基本的な波形を示すためのもので、監視結果を示す図8において上下にノイズ状に表れる信号は、被加工箇所で金属に溶融が生じ、溶融池波面からの放射光乱れが検出されていることを示している。 Sample (1) is for showing a basic waveform when CW laser irradiation is monitored by the processing monitoring apparatus according to this embodiment, and in FIG. This indicates that the metal is melted at the processing location, and that the radiation turbulence from the molten pool wavefront is detected.
 サンプル(2)は、シーム溶接においておもて側のステンレス鋼板Wの裏側の一部(x方向の中間部)に3.0mmのギャップがある場合を想定したものである。図9において、3段階のレーザ出力(200W、400W、600W)の各々について見られる波形の中間の窪み又は突出部分は、被加工材の裏側に空間がある箇所へのレーザ照射をモニタリングしている際の検出信号を示すものである。 Sample (2) is obtained by assuming that there is a 3.0mm gap on the back side of a portion (middle portion of the x-direction) of the stainless steel plate W 1 of the front side in the seam welding. In FIG. 9, a hollow or protruding portion in the middle of the waveform seen for each of the three stages of laser output (200 W, 400 W, 600 W) is monitoring laser irradiation to a place where there is a space on the back side of the workpiece. The detection signal at the time is shown.
 600Wと400Wの中間で窪みが生じているのに対して200Wでは突出が生じる理由は、照射レーザのエネルギーと加工箇所での熱引きの関係で説明できる。すなわち、200Wの場合は、レーザ照射エネルギーが全体的に低いため、重ね溶接となる箇所では裏側の金属材へ向かって熱が引けていく影響から放射光も弱く生じるものの、中間部では裏側金属材がなく空気層であるために熱が引き難く、熱が籠ることにより放射光が強く生じるものである。400W及び600Wの場合は、中間部で裏側金属層がなく空気層であるために熱が引き難い状況は200Wの場合と同様であるものの、レーザ照射エネルギーが全体的に高いため、重ね溶接となる箇所で生じる放射光が強いためである。 The reason why the protrusion is generated at 200 W while the recess is generated between 600 W and 400 W can be explained by the relationship between the energy of the irradiation laser and the heat drawing at the processing site. That is, in the case of 200 W, since the laser irradiation energy is generally low, the radiant light is weakened due to the influence of heat drawn toward the metal material on the back side in the lap welding, but the back side metal material in the middle part. It is difficult to draw heat because it is an air layer, and the emitted light is strongly generated by the heat. In the case of 400W and 600W, the situation where heat is difficult to draw because there is no back side metal layer in the middle part is the same as in the case of 200W, but the laser irradiation energy is high overall, so lap welding is performed. This is because the radiated light generated at the location is strong.
 サンプル(3)、サンプル(4)は、シーム溶接においておもて側のステンレス鋼板Wの裏側の一部(x方向の中間部)にそれぞれ2.0mm、1.0mmのギャップがある場合を想定したものである。図10,図11に示すように、サンプル(3)、サンプル(4)のいずれも、サンプル(2)と比べると、200Wの場合はあまり変化が見られなかったが、400W、600Wの場合には、中間部の窪み、すなわち検出される放射光の強度は、3.0mmの場合と比べて、2.0mm、1.0mmと空気層を減少させると、逆に高くなる傾向が見られた。これは、空気層の隙間が短くなることにより金属層からさらに熱が引き難くなるためであると考えられる。 Sample (3), the sample (4) is, 2.0 mm each on the back of a portion of the stainless steel plate W 1 of the front side in the seam welding (intermediate portion in the x direction), a case where there is a gap of 1.0mm It is assumed. As shown in FIGS. 10 and 11, both sample (3) and sample (4) did not change much when compared with sample (2) at 200 W, but at 400 W and 600 W. In contrast, when the air layer was reduced to 2.0 mm and 1.0 mm, the intensity of the detected indentation, that is, the intensity of the detected radiated light, tended to increase conversely. . This is considered to be because it becomes more difficult for heat to be drawn from the metal layer because the gap of the air layer becomes shorter.
 サンプル(5)は、図7Bの(e)に示すように、おもて側の厚さ0.3mmのステンレス鋼板Wの裏側の一部(x方向の中間部)に形成される空気層(ギャップ)を0.8mmとしたもので、図12に示すように、ギャップ3mmのサンプル(2)と比較すると、レーザ出力200Wのときは波形の特性に殆ど違いがなく、レーザ出力400Wのときはギャップ部分の波形レベルが若干高くなっている。 Samples (5), as shown in (e) in FIG. 7B, an air layer formed on the back side of a portion of the stainless steel plate W 1 of thickness 0.3mm Table side (intermediate portion in the x-direction) Compared with the sample (2) having a gap of 3 mm as shown in FIG. 12, there is almost no difference in waveform characteristics when the laser output is 200 W, and when the laser output is 400 W, as shown in FIG. The waveform level of the gap is slightly higher.
 上述したように、この実施形態においては、レーザ溶接加工において被加工物(金属)の加工点付近から生じる放射光をセンサユニット24内の赤外線センサ40で受光して、その放射光に含まれる所定の波長帯域の放射光成分(LM)を光電変換してアナログのセンサ出力信号CSを生成し、センサケーブル48を介して接続されるセンサユニット24およびセンサ信号処理ユニット22内に設けた信号処理系(図13)によってセンサ出力信号CSの波形を強度変化を損なわずにディジタルの波形データDCSに変換し、この波形データDCSに基づいてセンサ出力信号CSの波形を監視パネル20のディスプレイ(20a)上に可視化して表示し、表示された波形(たとえば図4~図6、図8~12)自体から当該レーザ溶接加工におけるレーザ光の作用の監視、当該レーザ溶接加工の加工状態または加工品質に関係する所定の要因の影響度の監視、当該レーザ溶接加工の良否についての監視等を行えるようにしたので、レーザ溶接加工について簡明かつ適確なモニタリングを可能とすることができる。
[他の実施形態又は変形例]
As described above, in this embodiment, the radiation light generated from the vicinity of the processing point of the workpiece (metal) in laser welding is received by the infrared sensor 40 in the sensor unit 24, and the predetermined light included in the radiation light is received. Signal processing system provided in the sensor unit 24 and the sensor signal processing unit 22 connected via the sensor cable 48 to generate an analog sensor output signal CS by photoelectrically converting the radiated light component (LM) in the wavelength band of (Figure 13) into a digital waveform data D CS waveforms of the sensor output signal CS without impairing the intensity change by monitoring panel 20 the waveform of the sensor output signal CS on the basis of the waveform data D CS display (20a ) Visualized and displayed above, and the displayed waveform (for example, FIGS. 4 to 6 and FIGS. 8 to 12) is used for the laser welding process. Laser welding processing can be monitored, monitoring of the influence of certain factors related to the processing state or processing quality of the laser welding process, monitoring of the quality of the laser welding process, etc. Simple and accurate monitoring can be made possible.
[Other Embodiments or Modifications]
 以上、本発明の好適な実施形態について説明したが、上述した実施形態は本発明を限定するものではない。当業者にあっては、具体的な実施態様において本発明の技術思想および技術範囲から逸脱せずに種々の変形・変更を加えることが可能である。 The preferred embodiments of the present invention have been described above, but the above-described embodiments do not limit the present invention. Those skilled in the art can make various modifications and changes in specific embodiments without departing from the technical idea and technical scope of the present invention.
 たとえば、上述した実施形態ではセンサユニット26を出射ユニット24に連結しているが、センサユニット26を出射ユニット24から分離して独立のユニットとして出射ユニット24の近傍に配置する構成を採ることも可能である。 For example, although the sensor unit 26 is connected to the emission unit 24 in the above-described embodiment, it is possible to adopt a configuration in which the sensor unit 26 is separated from the emission unit 24 and is arranged in the vicinity of the emission unit 24 as an independent unit. It is.
 本発明のレーザ加工方法およびレーザ加工装置はレーザスポット溶接に限定されず、溶融を伴う他のレーザ加工たとえばレーザ切断、レーザろう付け、レーザ焼入れ、レーザ表面改質等にも適用可能である。 The laser processing method and laser processing apparatus of the present invention are not limited to laser spot welding, but can also be applied to other laser processing that involves melting, such as laser cutting, laser brazing, laser hardening, and laser surface modification.
  10  レーザ発振器
  12  レーザ電源
  14  制御部
  15  ガイド光発生部
  18  ヘッド
  20  監視パネル
  22  センサ信号処理ユニット
  25  モニタ部(レーザ監視装置)
  40  赤外線センサ
  44  バンド・パス・フィルタ(波長フィルタ)
  46  フォトダイオード(光電変換素子)
  42  増幅器
  48  センサケーブル
  50  A/D変換器
  52  演算処理部
  54  データメモリ
DESCRIPTION OF SYMBOLS 10 Laser oscillator 12 Laser power supply 14 Control part 15 Guide light generation part 18 Head 20 Monitoring panel 22 Sensor signal processing unit 25 Monitor part (laser monitoring apparatus)
40 Infrared sensor 44 Band pass filter (wavelength filter)
46 Photodiode (photoelectric conversion element)
42 Amplifier 48 Sensor Cable 50 A / D Converter 52 Arithmetic Processing Unit 54 Data Memory

Claims (11)

  1.  金属系の被加工物にレーザ光を照射し前記被加工物の溶融を伴うレーザ加工の監視方法であって、
     前記レーザ光の照射中に前記被加工物の加工点付近から生じる放射光を受光する第1の工程と、
     前記放射光に含まれる所定の波長帯域の放射光を光電変換して、前記放射光の強度を表すアナログのセンサ出力信号を生成する第2の工程と、
     前記センサ出力信号の波形を強度変化を損なわずにディジタルの波形データに変換する第3の工程と、
     前記波形データに基づいて前記センサ出力信号の波形を可視化して表示する第4の工程と
     を有するレーザ加工監視方法。
    A laser processing monitoring method involving irradiating a metal workpiece with laser light and melting the workpiece,
    A first step of receiving radiation emitted from near the processing point of the workpiece during irradiation of the laser beam;
    A second step of photoelectrically converting radiated light in a predetermined wavelength band included in the radiated light to generate an analog sensor output signal representing the intensity of the radiated light;
    A third step of converting the waveform of the sensor output signal into digital waveform data without impairing the intensity change;
    And a fourth step of visualizing and displaying the waveform of the sensor output signal based on the waveform data.
  2.  可視化して表示された前記センサ出力信号の波形に基づいて、前記レーザ加工における前記レーザ光の作用を監視する第5の工程を有する、請求項1に記載のレーザ加工監視方法。 The laser processing monitoring method according to claim 1, further comprising a fifth step of monitoring an action of the laser beam in the laser processing based on a waveform of the sensor output signal displayed by visualization.
  3.  可視化して表示された前記センサ出力信号に基づいて、前記レーザ加工の加工状態または加工品質に関係する所定の要因の影響度を評価する第6の工程を有する、請求項1に記載のレーザ加工監視方法。 The laser processing according to claim 1, further comprising: a sixth step of evaluating an influence degree of a predetermined factor related to a processing state or processing quality of the laser processing based on the sensor output signal that is visualized and displayed. Monitoring method.
  4.  可視化して表示された前記センサ出力信号に基づいて、前記レーザ加工の良否を判定する第7の工程を有する、請求項1に記載のレーザ加工監視方法。 The laser processing monitoring method according to claim 1, further comprising a seventh step of determining whether the laser processing is good or not based on the sensor output signal that is visualized and displayed.
  5.  前記第2の工程は、
     前記被加工物に対向して配置される第1のユニット内で、前記放射光の受光および光電変換を行って前記センサ出力信号を電流出力で生成する工程と、
     前記第1のユニット内で電流出力の前記センサ出力信号を電流-電圧変換する工程と、
     前記第1のユニット内で、電圧信号に変換された前記センサ出力信号を所望のゲインで増幅する工程と
     を有し、
     前記第3の工程は、
      前記第1のユニット内で、増幅された前記センサ出力信号を電圧-電流変換する工程と、
     電流信号に変換された前記センサ出力信号を前記第1のユニットから遠隔の第2のユニットまで電気ケーブルを介して電流伝送する工程と、
     前記第2のユニット内で、前記第1のユニットから電流伝送された前記センサ出力信号を電流-電圧変換する工程と、
     電圧信号に変換された前記センサ出力信号をアナログ-ディジタル変換する工程と、
     ディジタル信号に変換された前記センサ出力信号を電圧-カウント値変換して前記波形データを取得する工程と、
     を有する、
     請求項1に記載のレーザ加工監視方法。
    The second step includes
    In the first unit arranged to face the workpiece, receiving the radiated light and performing photoelectric conversion to generate the sensor output signal as a current output;
    Current-voltage conversion of the sensor output signal of current output in the first unit;
    Amplifying the sensor output signal converted into a voltage signal with a desired gain in the first unit;
    The third step includes
    Voltage-current conversion of the amplified sensor output signal in the first unit;
    Transmitting the sensor output signal converted into a current signal from the first unit to a remote second unit via an electric cable;
    Current-voltage conversion of the sensor output signal current-transmitted from the first unit in the second unit;
    Analog-to-digital conversion of the sensor output signal converted into a voltage signal;
    Obtaining the waveform data by performing voltage-count value conversion on the sensor output signal converted into a digital signal;
    Having
    The laser processing monitoring method according to claim 1.
  6.  前記第2の工程において光電変換される放射光は、受光された前記放射光のうち少なくとも300nmの波長帯域に含まれるすべての放射光である、請求項1に記載のレーザ加工監視方法。 The laser processing monitoring method according to claim 1, wherein the radiation light photoelectrically converted in the second step is all radiation light included in a wavelength band of at least 300 nm among the received radiation light.
  7.  前記第2の工程において光電変換される放射光は、受光された前記放射光のうち1300nm~2500nmの波長帯域に含まれるすべての放射光である、請求項1に記載のレーザ加工監視方法。 2. The laser processing monitoring method according to claim 1, wherein the radiated light photoelectrically converted in the second step is all radiated light included in a wavelength band of 1300 nm to 2500 nm among the received radiated light.
  8.  金属系の被加工物にレーザ光を照射し前記被加工物の溶融を伴うレーザ加工の監視を行うためのレーザ監視装置であって、
     前記レーザ光の照射中に前記被加工物の加工点付近から生じる放射光を受光して、前記放射光に含まれる所定の波長帯域の放射光を光電変換して、前記放射光の強度を表すアナログのセンサ出力信号を生成する受光部と、
     前記センサ出力信号の波形を強度変化を損なわずにディジタルの波形データに変換する信号処理部と、
     前記波形データに基づいて前記センサ出力信号の波形を可視化して表示する表示部と
     を有するレーザ加工監視装置。
    A laser monitoring device for irradiating a metal workpiece with laser light to monitor laser processing accompanied by melting of the workpiece,
    Receiving radiated light generated near the processing point of the workpiece during irradiation of the laser light, photoelectrically converting radiated light in a predetermined wavelength band included in the radiated light, and expressing the intensity of the radiated light A light receiving unit for generating an analog sensor output signal;
    A signal processing unit for converting the waveform of the sensor output signal into digital waveform data without losing the intensity change;
    A laser processing monitoring apparatus comprising: a display unit that visualizes and displays a waveform of the sensor output signal based on the waveform data.
  9.  前記受光部は前記被加工物に対向して配置される第1のユニット内に設けられ、前記信号処理部の少なくとも一部は前記第1のユニットから離れた場所に配置される第2のユニット内に設けられる、請求項8に記載のレーザ加工監視装置。 The light receiving unit is provided in a first unit arranged to face the workpiece, and at least a part of the signal processing unit is a second unit arranged at a location away from the first unit. The laser processing monitoring device according to claim 8, which is provided in the inside.
  10.  前記信号処理部は、
     前記第1のユニット内で、前記受光部より生成される電流出力の前記センサ出力信号を電圧信号に変換する第1の電流-電圧変換回路と、
     前記第1のユニット内で、前記第1の電流-電圧変換回路によって電圧信号に変換された前記センサ出力信号を所望のゲインで増幅する増幅器と、
     前記第1のユニット内で、前記増幅器により増幅された前記センサ出力信号を電流信号に変換する第1の電流-電圧変換回路と、
     前記第1の電圧-電流変換回路によって電流信号に変換された前記センサ出力信号を前記第1のユニットから前記第2のユニットまで伝送する電気ケーブルと、
     前記第2のユニット内で、前記第1のユニットから電流伝送された前記センサ出力信号を電流-電圧変換する第2の電流-電圧変換回路と、
     前記第2のユニット内で、電圧信号に変換された前記センサ出力信号をアナログ-ディジタル変換するアナログ-ディジタル変換器と、
     ディジタル信号に変換された前記センサ出力信号についてその瞬時的な電圧値をカウント値(相対値)に変換する電圧-カウント値変換部と、
     を有する、請求項9に記載のレーザ加工監視装置。
    The signal processing unit
    A first current-voltage conversion circuit for converting the sensor output signal of the current output generated by the light receiving unit into a voltage signal in the first unit;
    An amplifier that amplifies the sensor output signal converted into a voltage signal by the first current-voltage conversion circuit with a desired gain in the first unit;
    A first current-voltage conversion circuit for converting the sensor output signal amplified by the amplifier into a current signal in the first unit;
    An electric cable for transmitting the sensor output signal converted into a current signal by the first voltage-current conversion circuit from the first unit to the second unit;
    A second current-voltage conversion circuit for current-voltage converting the sensor output signal that is current-transmitted from the first unit in the second unit;
    An analog-to-digital converter for analog-to-digital conversion of the sensor output signal converted into a voltage signal in the second unit;
    A voltage-count value converter for converting the instantaneous voltage value of the sensor output signal converted into a digital signal into a count value (relative value);
    The laser processing monitoring device according to claim 9, comprising:
  11.  可視光であるガイド光を発生するガイド光発生部と、
     前記第1のユニットに設けられ、前記ガイド光発生部からの前記ガイド光を前記受光部の光軸に一致させて前記被加工物に集光照射する光学系と、
     を有する請求項8に記載のレーザ加工監視装置。
    A guide light generator for generating guide light that is visible light;
    An optical system that is provided in the first unit and that condenses and irradiates the workpiece with the guide light from the guide light generation unit aligned with the optical axis of the light receiving unit;
    The laser processing monitoring apparatus according to claim 8, comprising:
PCT/JP2017/042882 2017-04-04 2017-11-29 Laser processing monitoring method and laser processing monitoring device WO2018185973A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019511061A JPWO2018185973A1 (en) 2017-04-04 2017-11-29 Laser processing monitoring method and laser processing monitoring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017074739 2017-04-04
JP2017-074739 2017-04-04

Publications (1)

Publication Number Publication Date
WO2018185973A1 true WO2018185973A1 (en) 2018-10-11

Family

ID=63712415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042882 WO2018185973A1 (en) 2017-04-04 2017-11-29 Laser processing monitoring method and laser processing monitoring device

Country Status (2)

Country Link
JP (1) JPWO2018185973A1 (en)
WO (1) WO2018185973A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021013937A (en) * 2019-07-10 2021-02-12 国立研究開発法人理化学研究所 Laser processing device
JP2021030295A (en) * 2019-08-29 2021-03-01 パナソニックIpマネジメント株式会社 Laser processing device and optical adjustment method
WO2021059825A1 (en) * 2019-09-25 2021-04-01 株式会社アマダウエルドテック Laser processing monitoring method, and laser processing monitoring device
WO2023218701A1 (en) * 2022-05-10 2023-11-16 パナソニックIpマネジメント株式会社 Machining condition determination method and determination device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106051A (en) * 1996-06-18 1998-01-13 Nissan Motor Co Ltd Quality inspecting method in laser beam welding and its equipment
JP2003320467A (en) * 2002-05-02 2003-11-11 Nissan Motor Co Ltd Method for monitoring quality of laser beam welding part and its device
JP2011240361A (en) * 2010-05-18 2011-12-01 Omron Corp Laser beam machining device and abnormality monitoring method of the laser beam machining device
WO2013153599A1 (en) * 2012-04-09 2013-10-17 三菱電機株式会社 Sequencer analog output unit
WO2013171848A1 (en) * 2012-05-15 2013-11-21 トヨタ自動車株式会社 Welding method, welding device, and battery manufacturing method
JP2017056464A (en) * 2015-09-14 2017-03-23 トヨタ自動車株式会社 Laser welding device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106051A (en) * 1996-06-18 1998-01-13 Nissan Motor Co Ltd Quality inspecting method in laser beam welding and its equipment
JP2003320467A (en) * 2002-05-02 2003-11-11 Nissan Motor Co Ltd Method for monitoring quality of laser beam welding part and its device
JP2011240361A (en) * 2010-05-18 2011-12-01 Omron Corp Laser beam machining device and abnormality monitoring method of the laser beam machining device
WO2013153599A1 (en) * 2012-04-09 2013-10-17 三菱電機株式会社 Sequencer analog output unit
WO2013171848A1 (en) * 2012-05-15 2013-11-21 トヨタ自動車株式会社 Welding method, welding device, and battery manufacturing method
JP2017056464A (en) * 2015-09-14 2017-03-23 トヨタ自動車株式会社 Laser welding device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021013937A (en) * 2019-07-10 2021-02-12 国立研究開発法人理化学研究所 Laser processing device
JP7367958B2 (en) 2019-07-10 2023-10-24 国立研究開発法人理化学研究所 laser processing equipment
JP2021030295A (en) * 2019-08-29 2021-03-01 パナソニックIpマネジメント株式会社 Laser processing device and optical adjustment method
JP7262081B2 (en) 2019-08-29 2023-04-21 パナソニックIpマネジメント株式会社 LASER PROCESSING DEVICE AND OPTICAL ADJUSTMENT METHOD
WO2021059825A1 (en) * 2019-09-25 2021-04-01 株式会社アマダウエルドテック Laser processing monitoring method, and laser processing monitoring device
JP2021049549A (en) * 2019-09-25 2021-04-01 株式会社アマダウエルドテック Laser machining monitoring method and laser machining monitoring device
CN114450120A (en) * 2019-09-25 2022-05-06 株式会社天田焊接技术 Laser processing monitoring method and laser processing monitoring device
WO2023218701A1 (en) * 2022-05-10 2023-11-16 パナソニックIpマネジメント株式会社 Machining condition determination method and determination device

Also Published As

Publication number Publication date
JPWO2018185973A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
CN102294549B (en) Welding system and welding method
WO2018185973A1 (en) Laser processing monitoring method and laser processing monitoring device
JP5043881B2 (en) Laser welding monitoring apparatus and laser welding monitoring method
JP5849985B2 (en) Welded part inspection device and inspection method
CN108778606B (en) Thermal crack detection during laser welding
JP5054297B2 (en) System and method for monitoring laser shock processing
CN102323216B (en) Welding inspection method and apparatus thereof
JP5947740B2 (en) Welded part inspection device and inspection method
US6399915B1 (en) Method and apparatus for determining quality of welding at weld between working material pieces
Sun et al. Sensor systems for real-time monitoring of laser weld quality
Zhang et al. Coaxial monitoring of the fibre laser lap welding of Zn-coated steel sheets using an auxiliary illuminant
JP2006247681A (en) Monitoring device for laser beam machining
JP5842851B2 (en) Welded part inspection device and inspection method
JP2013535340A (en) Fiber laser focus optimization method, material processing apparatus, and fiber laser focus change measurement method
JP2015530251A (en) Workpiece processing apparatus using laser beam
JP4757557B2 (en) Laser processing head
JP2006292424A (en) Optical fiber monitoring system and laser beam machining system
JP6688021B2 (en) Laser welding monitoring device and laser welding monitoring method
US20220347789A1 (en) Laser processing monitoring method and laser processing monitoring device
JPWO2017199904A1 (en) Component composition measuring system and component composition measuring method
JP4210560B2 (en) Laser welding monitoring method and laser welding monitoring apparatus
CN113714635A (en) Laser processing apparatus
JP2003320467A (en) Method for monitoring quality of laser beam welding part and its device
Steen et al. Laser automation and in-process sensing
JP5472380B2 (en) Welding state detection device and welding state detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511061

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904953

Country of ref document: EP

Kind code of ref document: A1